1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package safecopy
import (
"fmt"
"runtime"
"unsafe"
"golang.org/x/sys/unix"
)
// maxRegisterSize is the maximum register size used in memcpy and memclr. It
// is used to decide by how much to rewind the copy (for memcpy) or zeroing
// (for memclr) before proceeding.
const maxRegisterSize = 16
// memcpy copies data from src to dst. If a SIGSEGV or SIGBUS signal is received
// during the copy, it returns the address that caused the fault and the number
// of the signal that was received. Otherwise, it returns an unspecified address
// and a signal number of 0.
//
// Data is copied in order, such that if a fault happens at address p, it is
// safe to assume that all data before p-maxRegisterSize has already been
// successfully copied.
//
//go:noescape
func memcpy(dst, src uintptr, n uintptr) (fault uintptr, sig int32)
// memclr sets the n bytes following ptr to zeroes. If a SIGSEGV or SIGBUS
// signal is received during the write, it returns the address that caused the
// fault and the number of the signal that was received. Otherwise, it returns
// an unspecified address and a signal number of 0.
//
// Data is written in order, such that if a fault happens at address p, it is
// safe to assume that all data before p-maxRegisterSize has already been
// successfully written.
//
//go:noescape
func memclr(ptr uintptr, n uintptr) (fault uintptr, sig int32)
// swapUint32 atomically stores new into *ptr and returns (the previous *ptr
// value, 0). If a SIGSEGV or SIGBUS signal is received during the swap, the
// value of old is unspecified, and sig is the number of the signal that was
// received.
//
// Preconditions: ptr must be aligned to a 4-byte boundary.
//
//go:noescape
func swapUint32(ptr unsafe.Pointer, new uint32) (old uint32, sig int32)
// swapUint64 atomically stores new into *ptr and returns (the previous *ptr
// value, 0). If a SIGSEGV or SIGBUS signal is received during the swap, the
// value of old is unspecified, and sig is the number of the signal that was
// received.
//
// Preconditions: ptr must be aligned to a 8-byte boundary.
//
//go:noescape
func swapUint64(ptr unsafe.Pointer, new uint64) (old uint64, sig int32)
// compareAndSwapUint32 is like sync/atomic.CompareAndSwapUint32, but returns
// (the value previously stored at ptr, 0). If a SIGSEGV or SIGBUS signal is
// received during the operation, the value of prev is unspecified, and sig is
// the number of the signal that was received.
//
// Preconditions: ptr must be aligned to a 4-byte boundary.
//
//go:noescape
func compareAndSwapUint32(ptr unsafe.Pointer, old, new uint32) (prev uint32, sig int32)
// LoadUint32 is like sync/atomic.LoadUint32, but operates with user memory. It
// may fail with SIGSEGV or SIGBUS if it is received while reading from ptr.
//
// Preconditions: ptr must be aligned to a 4-byte boundary.
//
//go:noescape
func loadUint32(ptr unsafe.Pointer) (val uint32, sig int32)
// Return the start address of the functions above.
//
// In Go 1.17+, Go references to assembly functions resolve to an ABIInternal
// wrapper function rather than the function itself. We must reference from
// assembly to get the ABI0 (i.e., primary) address.
func addrOfMemcpy() uintptr
func addrOfMemclr() uintptr
func addrOfSwapUint32() uintptr
func addrOfSwapUint64() uintptr
func addrOfCompareAndSwapUint32() uintptr
func addrOfLoadUint32() uintptr
// CopyIn copies len(dst) bytes from src to dst. It returns the number of bytes
// copied and an error if SIGSEGV or SIGBUS is received while reading from src.
func CopyIn(dst []byte, src unsafe.Pointer) (int, error) {
n, err := copyIn(dst, uintptr(src))
runtime.KeepAlive(src)
return n, err
}
// copyIn is the underlying definition for CopyIn.
func copyIn(dst []byte, src uintptr) (int, error) {
toCopy := uintptr(len(dst))
if len(dst) == 0 {
return 0, nil
}
fault, sig := memcpy(uintptr(unsafe.Pointer(&dst[0])), src, toCopy)
if sig == 0 {
return len(dst), nil
}
if fault < src || fault >= src+toCopy {
panic(fmt.Sprintf("CopyIn raised signal %d at %#x, which is outside source [%#x, %#x)", sig, fault, src, src+toCopy))
}
// memcpy might have ended the copy up to maxRegisterSize bytes before
// fault, if an instruction caused a memory access that straddled two
// pages, and the second one faulted. Try to copy up to the fault.
var done int
if fault-src > maxRegisterSize {
done = int(fault - src - maxRegisterSize)
}
n, err := copyIn(dst[done:int(fault-src)], src+uintptr(done))
done += n
if err != nil {
return done, err
}
return done, errorFromFaultSignal(fault, sig)
}
// CopyOut copies len(src) bytes from src to dst. If returns the number of
// bytes done and an error if SIGSEGV or SIGBUS is received while writing to
// dst.
func CopyOut(dst unsafe.Pointer, src []byte) (int, error) {
n, err := copyOut(uintptr(dst), src)
runtime.KeepAlive(dst)
return n, err
}
// copyOut is the underlying definition for CopyOut.
func copyOut(dst uintptr, src []byte) (int, error) {
toCopy := uintptr(len(src))
if toCopy == 0 {
return 0, nil
}
fault, sig := memcpy(dst, uintptr(unsafe.Pointer(&src[0])), toCopy)
if sig == 0 {
return len(src), nil
}
if fault < dst || fault >= dst+toCopy {
panic(fmt.Sprintf("CopyOut raised signal %d at %#x, which is outside destination [%#x, %#x)", sig, fault, dst, dst+toCopy))
}
// memcpy might have ended the copy up to maxRegisterSize bytes before
// fault, if an instruction caused a memory access that straddled two
// pages, and the second one faulted. Try to copy up to the fault.
var done int
if fault-dst > maxRegisterSize {
done = int(fault - dst - maxRegisterSize)
}
n, err := copyOut(dst+uintptr(done), src[done:int(fault-dst)])
done += n
if err != nil {
return done, err
}
return done, errorFromFaultSignal(fault, sig)
}
// Copy copies toCopy bytes from src to dst. It returns the number of bytes
// copied and an error if SIGSEGV or SIGBUS is received while reading from src
// or writing to dst.
//
// Data is copied in order; if [src, src+toCopy) and [dst, dst+toCopy) overlap,
// the resulting contents of dst are unspecified.
func Copy(dst, src unsafe.Pointer, toCopy uintptr) (uintptr, error) {
n, err := copyN(uintptr(dst), uintptr(src), toCopy)
runtime.KeepAlive(dst)
runtime.KeepAlive(src)
return n, err
}
// copyN is the underlying definition for Copy.
func copyN(dst, src uintptr, toCopy uintptr) (uintptr, error) {
if toCopy == 0 {
return 0, nil
}
fault, sig := memcpy(dst, src, toCopy)
if sig == 0 {
return toCopy, nil
}
// Did the fault occur while reading from src or writing to dst?
faultAfterSrc := ^uintptr(0)
if fault >= src {
faultAfterSrc = fault - src
}
faultAfterDst := ^uintptr(0)
if fault >= dst {
faultAfterDst = fault - dst
}
if faultAfterSrc >= toCopy && faultAfterDst >= toCopy {
panic(fmt.Sprintf("Copy raised signal %d at %#x, which is outside source [%#x, %#x) and destination [%#x, %#x)", sig, fault, src, src+toCopy, dst, dst+toCopy))
}
faultedAfter := faultAfterSrc
if faultedAfter > faultAfterDst {
faultedAfter = faultAfterDst
}
// memcpy might have ended the copy up to maxRegisterSize bytes before
// fault, if an instruction caused a memory access that straddled two
// pages, and the second one faulted. Try to copy up to the fault.
var done uintptr
if faultedAfter > maxRegisterSize {
done = faultedAfter - maxRegisterSize
}
n, err := copyN(dst+done, src+done, faultedAfter-done)
done += n
if err != nil {
return done, err
}
return done, errorFromFaultSignal(fault, sig)
}
// ZeroOut writes toZero zero bytes to dst. It returns the number of bytes
// written and an error if SIGSEGV or SIGBUS is received while writing to dst.
func ZeroOut(dst unsafe.Pointer, toZero uintptr) (uintptr, error) {
n, err := zeroOut(uintptr(dst), toZero)
runtime.KeepAlive(dst)
return n, err
}
// zeroOut is the underlying definition for ZeroOut.
func zeroOut(dst uintptr, toZero uintptr) (uintptr, error) {
if toZero == 0 {
return 0, nil
}
fault, sig := memclr(dst, toZero)
if sig == 0 {
return toZero, nil
}
if fault < dst || fault >= dst+toZero {
panic(fmt.Sprintf("ZeroOut raised signal %d at %#x, which is outside destination [%#x, %#x)", sig, fault, dst, dst+toZero))
}
// memclr might have ended the write up to maxRegisterSize bytes before
// fault, if an instruction caused a memory access that straddled two
// pages, and the second one faulted. Try to write up to the fault.
var done uintptr
if fault-dst > maxRegisterSize {
done = fault - dst - maxRegisterSize
}
n, err := zeroOut(dst+done, fault-dst-done)
done += n
if err != nil {
return done, err
}
return done, errorFromFaultSignal(fault, sig)
}
// SwapUint32 is equivalent to sync/atomic.SwapUint32, except that it returns
// an error if SIGSEGV or SIGBUS is received while accessing ptr, or if ptr is
// not aligned to a 4-byte boundary.
func SwapUint32(ptr unsafe.Pointer, new uint32) (uint32, error) {
if addr := uintptr(ptr); addr&3 != 0 {
return 0, AlignmentError{addr, 4}
}
old, sig := swapUint32(ptr, new)
return old, errorFromFaultSignal(uintptr(ptr), sig)
}
// SwapUint64 is equivalent to sync/atomic.SwapUint64, except that it returns
// an error if SIGSEGV or SIGBUS is received while accessing ptr, or if ptr is
// not aligned to an 8-byte boundary.
func SwapUint64(ptr unsafe.Pointer, new uint64) (uint64, error) {
if addr := uintptr(ptr); addr&7 != 0 {
return 0, AlignmentError{addr, 8}
}
old, sig := swapUint64(ptr, new)
return old, errorFromFaultSignal(uintptr(ptr), sig)
}
// CompareAndSwapUint32 is equivalent to atomicbitops.CompareAndSwapUint32,
// except that it returns an error if SIGSEGV or SIGBUS is received while
// accessing ptr, or if ptr is not aligned to a 4-byte boundary.
func CompareAndSwapUint32(ptr unsafe.Pointer, old, new uint32) (uint32, error) {
if addr := uintptr(ptr); addr&3 != 0 {
return 0, AlignmentError{addr, 4}
}
prev, sig := compareAndSwapUint32(ptr, old, new)
return prev, errorFromFaultSignal(uintptr(ptr), sig)
}
// LoadUint32 is like sync/atomic.LoadUint32, but operates with user memory. It
// may fail with SIGSEGV or SIGBUS if it is received while reading from ptr.
//
// Preconditions: ptr must be aligned to a 4-byte boundary.
func LoadUint32(ptr unsafe.Pointer) (uint32, error) {
if addr := uintptr(ptr); addr&3 != 0 {
return 0, AlignmentError{addr, 4}
}
val, sig := loadUint32(ptr)
return val, errorFromFaultSignal(uintptr(ptr), sig)
}
func errorFromFaultSignal(addr uintptr, sig int32) error {
switch sig {
case 0:
return nil
case int32(unix.SIGSEGV):
return SegvError{addr}
case int32(unix.SIGBUS):
return BusError{addr}
default:
panic(fmt.Sprintf("safecopy got unexpected signal %d at address %#x", sig, addr))
}
}
|