1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"fmt"
"io"
"sync"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/coverage"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/safemem"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/mm"
"gvisor.dev/gvisor/pkg/sentry/pgalloc"
"gvisor.dev/gvisor/pkg/sentry/usage"
)
// kcovAreaSizeMax is the maximum number of uint64 entries allowed in the kcov
// area. On Linux, the maximum is INT_MAX / 8.
const kcovAreaSizeMax = 10 * 1024 * 1024
// Kcov provides kernel coverage data to userspace through a memory-mapped
// region, as kcov does in Linux.
//
// To give the illusion that the data is always up to date, we update the shared
// memory every time before we return to userspace.
type Kcov struct {
// mfp provides application memory. It is immutable after creation.
mfp pgalloc.MemoryFileProvider
// mu protects all of the fields below.
mu sync.RWMutex
// mode is the current kcov mode.
mode uint8
// size is the size of the mapping through which the kernel conveys coverage
// information to userspace.
size uint64
// owningTask is the task that currently owns coverage data on the system. The
// interface for kcov essentially requires that coverage is only going to a
// single task. Note that kcov should only generate coverage data for the
// owning task, but we currently generate global coverage.
owningTask *Task
// count is a locally cached version of the first uint64 in the kcov data,
// which is the number of subsequent entries representing PCs.
//
// It is used with kcovInode.countBlock(), to copy in/out the first element of
// the actual data in an efficient manner, avoid boilerplate, and prevent
// accidental garbage escapes by the temporary counts.
count uint64
mappable *mm.SpecialMappable
}
// NewKcov creates and returns a Kcov instance.
func (k *Kernel) NewKcov() *Kcov {
return &Kcov{
mfp: k,
}
}
var coveragePool = sync.Pool{
New: func() any {
return make([]byte, 0)
},
}
// TaskWork implements TaskWorker.TaskWork.
func (kcov *Kcov) TaskWork(t *Task) {
kcov.mu.Lock()
defer kcov.mu.Unlock()
if kcov.mode != linux.KCOV_MODE_TRACE_PC {
return
}
rw := &kcovReadWriter{
mf: kcov.mfp.MemoryFile(),
fr: kcov.mappable.FileRange(),
}
// Read in the PC count.
if _, err := safemem.ReadFullToBlocks(rw, kcov.countBlock()); err != nil {
panic(fmt.Sprintf("Internal error reading count from kcov area: %v", err))
}
rw.off = 8 * (1 + kcov.count)
n := coverage.ConsumeCoverageData(&kcovIOWriter{rw})
// Update the pc count, based on the number of entries written. Note that if
// we reached the end of the kcov area, we may not have written everything in
// output.
kcov.count += uint64(n / 8)
rw.off = 0
if _, err := safemem.WriteFullFromBlocks(rw, kcov.countBlock()); err != nil {
panic(fmt.Sprintf("Internal error writing count to kcov area: %v", err))
}
// Re-register for future work.
t.RegisterWork(kcov)
}
// InitTrace performs the KCOV_INIT_TRACE ioctl.
func (kcov *Kcov) InitTrace(size uint64) error {
kcov.mu.Lock()
defer kcov.mu.Unlock()
if kcov.mode != linux.KCOV_MODE_DISABLED {
return linuxerr.EBUSY
}
// To simplify all the logic around mapping, we require that the length of the
// shared region is a multiple of the system page size.
if (8*size)&(hostarch.PageSize-1) != 0 {
return linuxerr.EINVAL
}
// We need space for at least two uint64s to hold current position and a
// single PC.
if size < 2 || size > kcovAreaSizeMax {
return linuxerr.EINVAL
}
kcov.size = size
kcov.mode = linux.KCOV_MODE_INIT
return nil
}
// EnableTrace performs the KCOV_ENABLE_TRACE ioctl.
func (kcov *Kcov) EnableTrace(ctx context.Context, traceKind uint8) error {
t := TaskFromContext(ctx)
if t == nil {
panic("kcovInode.EnableTrace() cannot be used outside of a task goroutine")
}
kcov.mu.Lock()
defer kcov.mu.Unlock()
// KCOV_ENABLE must be preceded by KCOV_INIT_TRACE and an mmap call.
if kcov.mode != linux.KCOV_MODE_INIT || kcov.mappable == nil {
return linuxerr.EINVAL
}
switch traceKind {
case linux.KCOV_TRACE_PC:
kcov.mode = linux.KCOV_MODE_TRACE_PC
case linux.KCOV_TRACE_CMP:
// We do not support KCOV_MODE_TRACE_CMP.
return linuxerr.ENOTSUP
default:
return linuxerr.EINVAL
}
if kcov.owningTask != nil && kcov.owningTask != t {
return linuxerr.EBUSY
}
kcov.owningTask = t
t.SetKcov(kcov)
t.RegisterWork(kcov)
// Clear existing coverage data; the task expects to read only coverage data
// from the time it is activated.
coverage.ClearCoverageData()
return nil
}
// DisableTrace performs the KCOV_DISABLE_TRACE ioctl.
func (kcov *Kcov) DisableTrace(ctx context.Context) error {
kcov.mu.Lock()
defer kcov.mu.Unlock()
t := TaskFromContext(ctx)
if t == nil {
panic("kcovInode.EnableTrace() cannot be used outside of a task goroutine")
}
if t != kcov.owningTask {
return linuxerr.EINVAL
}
kcov.mode = linux.KCOV_MODE_INIT
kcov.owningTask = nil
if kcov.mappable != nil {
kcov.mappable.DecRef(ctx)
kcov.mappable = nil
}
return nil
}
// Clear resets the mode and clears the owning task and memory mapping for kcov.
// It is called when the fd corresponding to kcov is closed. Note that the mode
// needs to be set so that the next call to kcov.TaskWork() will exit early.
func (kcov *Kcov) Clear(ctx context.Context) {
kcov.mu.Lock()
kcov.mode = linux.KCOV_MODE_INIT
kcov.owningTask = nil
if kcov.mappable != nil {
kcov.mappable.DecRef(ctx)
kcov.mappable = nil
}
kcov.mu.Unlock()
}
// OnTaskExit is called when the owning task exits. It is similar to
// kcov.Clear(), except the memory mapping is not cleared, so that the same
// mapping can be used in the future if kcov is enabled again by another task.
func (kcov *Kcov) OnTaskExit() {
kcov.mu.Lock()
kcov.mode = linux.KCOV_MODE_INIT
kcov.owningTask = nil
kcov.mu.Unlock()
}
// ConfigureMMap is called by the vfs.FileDescription for this kcov instance to
// implement vfs.FileDescription.ConfigureMMap.
func (kcov *Kcov) ConfigureMMap(ctx context.Context, opts *memmap.MMapOpts) error {
kcov.mu.Lock()
defer kcov.mu.Unlock()
if kcov.mode != linux.KCOV_MODE_INIT {
return linuxerr.EINVAL
}
if kcov.mappable == nil {
// Set up the kcov area.
fr, err := kcov.mfp.MemoryFile().Allocate(kcov.size*8, pgalloc.AllocOpts{Kind: usage.Anonymous})
if err != nil {
return err
}
// Get the thread id for the mmap name.
t := TaskFromContext(ctx)
if t == nil {
panic("ThreadFromContext returned nil")
}
// For convenience, a special mappable is used here. Note that these mappings
// will look different under /proc/[pid]/maps than they do on Linux.
kcov.mappable = mm.NewSpecialMappable(fmt.Sprintf("[kcov:%d]", t.ThreadID()), kcov.mfp, fr)
}
kcov.mappable.IncRef()
opts.Mappable = kcov.mappable
opts.MappingIdentity = kcov.mappable
return nil
}
// kcovReadWriter implements safemem.Reader and safemem.Writer.
type kcovReadWriter struct {
off uint64
mf *pgalloc.MemoryFile
fr memmap.FileRange
}
// ReadToBlocks implements safemem.Reader.ReadToBlocks.
func (rw *kcovReadWriter) ReadToBlocks(dsts safemem.BlockSeq) (uint64, error) {
if dsts.IsEmpty() {
return 0, nil
}
// Limit the read to the kcov range and check for overflow.
if rw.fr.Length() <= rw.off {
return 0, io.EOF
}
start := rw.fr.Start + rw.off
end := rw.fr.Start + rw.fr.Length()
if rend := start + dsts.NumBytes(); rend < end {
end = rend
}
// Get internal mappings.
bs, err := rw.mf.MapInternal(memmap.FileRange{start, end}, hostarch.Read)
if err != nil {
return 0, err
}
// Copy from internal mappings.
n, err := safemem.CopySeq(dsts, bs)
rw.off += n
return n, err
}
// WriteFromBlocks implements safemem.Writer.WriteFromBlocks.
func (rw *kcovReadWriter) WriteFromBlocks(srcs safemem.BlockSeq) (uint64, error) {
if srcs.IsEmpty() {
return 0, nil
}
// Limit the write to the kcov area and check for overflow.
if rw.fr.Length() <= rw.off {
return 0, io.EOF
}
start := rw.fr.Start + rw.off
end := rw.fr.Start + rw.fr.Length()
if wend := start + srcs.NumBytes(); wend < end {
end = wend
}
// Get internal mapping.
bs, err := rw.mf.MapInternal(memmap.FileRange{start, end}, hostarch.Write)
if err != nil {
return 0, err
}
// Copy to internal mapping.
n, err := safemem.CopySeq(bs, srcs)
rw.off += n
return n, err
}
// kcovIOWriter implements io.Writer as a basic wrapper over kcovReadWriter.
type kcovIOWriter struct {
rw *kcovReadWriter
}
// Write implements io.Writer.Write.
func (w *kcovIOWriter) Write(p []byte) (int, error) {
bs := safemem.BlockSeqOf(safemem.BlockFromSafeSlice(p))
n, err := safemem.WriteFullFromBlocks(w.rw, bs)
return int(n), err
}
|