1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package kernel provides an emulation of the Linux kernel.
//
// See README.md for a detailed overview.
//
// Lock order (outermost locks must be taken first):
//
// Kernel.extMu
// ThreadGroup.timerMu
// ktime.Timer.mu (for IntervalTimer) and Kernel.cpuClockMu
// TaskSet.mu
// SignalHandlers.mu
// Task.mu
// runningTasksMu
//
// Locking SignalHandlers.mu in multiple SignalHandlers requires locking
// TaskSet.mu exclusively first. Locking Task.mu in multiple Tasks at the same
// time requires locking all of their signal mutexes first.
package kernel
import (
"errors"
"fmt"
"path/filepath"
"time"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/cleanup"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/cpuid"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/eventchannel"
"gvisor.dev/gvisor/pkg/fspath"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/fsimpl/pipefs"
"gvisor.dev/gvisor/pkg/sentry/fsimpl/sockfs"
"gvisor.dev/gvisor/pkg/sentry/fsimpl/timerfd"
"gvisor.dev/gvisor/pkg/sentry/fsimpl/tmpfs"
"gvisor.dev/gvisor/pkg/sentry/hostcpu"
"gvisor.dev/gvisor/pkg/sentry/inet"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/kernel/futex"
"gvisor.dev/gvisor/pkg/sentry/kernel/ipc"
"gvisor.dev/gvisor/pkg/sentry/kernel/sched"
ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
"gvisor.dev/gvisor/pkg/sentry/limits"
"gvisor.dev/gvisor/pkg/sentry/loader"
"gvisor.dev/gvisor/pkg/sentry/mm"
"gvisor.dev/gvisor/pkg/sentry/pgalloc"
"gvisor.dev/gvisor/pkg/sentry/platform"
"gvisor.dev/gvisor/pkg/sentry/socket/netlink/port"
sentrytime "gvisor.dev/gvisor/pkg/sentry/time"
"gvisor.dev/gvisor/pkg/sentry/unimpl"
uspb "gvisor.dev/gvisor/pkg/sentry/unimpl/unimplemented_syscall_go_proto"
"gvisor.dev/gvisor/pkg/sentry/uniqueid"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/state"
"gvisor.dev/gvisor/pkg/state/wire"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
)
// userCounters is a set of user counters.
//
// +stateify savable
type userCounters struct {
uid auth.KUID
rlimitNProc atomicbitops.Uint64
}
// incRLimitNProc increments the rlimitNProc counter.
func (uc *userCounters) incRLimitNProc(ctx context.Context) error {
lim := limits.FromContext(ctx).Get(limits.ProcessCount)
creds := auth.CredentialsFromContext(ctx)
nproc := uc.rlimitNProc.Add(1)
if nproc > lim.Cur &&
!creds.HasCapability(linux.CAP_SYS_ADMIN) &&
!creds.HasCapability(linux.CAP_SYS_RESOURCE) {
uc.rlimitNProc.Add(^uint64(0))
return linuxerr.EAGAIN
}
return nil
}
// decRLimitNProc decrements the rlimitNProc counter.
func (uc *userCounters) decRLimitNProc() {
uc.rlimitNProc.Add(^uint64(0))
}
// Kernel represents an emulated Linux kernel. It must be initialized by calling
// Init() or LoadFrom().
//
// +stateify savable
type Kernel struct {
// extMu serializes external changes to the Kernel with calls to
// Kernel.SaveTo. (Kernel.SaveTo requires that the state of the Kernel
// remains frozen for the duration of the call; it requires that the Kernel
// is paused as a precondition, which ensures that none of the tasks
// running within the Kernel can affect its state, but extMu is required to
// ensure that concurrent users of the Kernel *outside* the Kernel's
// control cannot affect its state by calling e.g.
// Kernel.SendExternalSignal.)
extMu sync.Mutex `state:"nosave"`
// started is true if Start has been called. Unless otherwise specified,
// all Kernel fields become immutable once started becomes true.
started bool `state:"nosave"`
// All of the following fields are immutable unless otherwise specified.
// Platform is the platform that is used to execute tasks in the created
// Kernel. See comment on pgalloc.MemoryFileProvider for why Platform is
// embedded anonymously (the same issue applies).
platform.Platform `state:"nosave"`
// mf provides application memory.
mf *pgalloc.MemoryFile `state:"nosave"`
// See InitKernelArgs for the meaning of these fields.
featureSet cpuid.FeatureSet
timekeeper *Timekeeper
tasks *TaskSet
rootUserNamespace *auth.UserNamespace
rootNetworkNamespace *inet.Namespace
applicationCores uint
useHostCores bool
extraAuxv []arch.AuxEntry
vdso *loader.VDSO
rootUTSNamespace *UTSNamespace
rootIPCNamespace *IPCNamespace
rootAbstractSocketNamespace *AbstractSocketNamespace
// futexes is the "root" futex.Manager, from which all others are forked.
// This is necessary to ensure that shared futexes are coherent across all
// tasks, including those created by CreateProcess.
futexes *futex.Manager
// globalInit is the thread group whose leader has ID 1 in the root PID
// namespace. globalInit is stored separately so that it is accessible even
// after all tasks in the thread group have exited, such that ID 1 is no
// longer mapped.
//
// globalInit is mutable until it is assigned by the first successful call
// to CreateProcess, and is protected by extMu.
globalInit *ThreadGroup
// syslog is the kernel log.
syslog syslog
runningTasksMu runningTasksMutex `state:"nosave"`
// runningTasks is the total count of tasks currently in
// TaskGoroutineRunningSys or TaskGoroutineRunningApp. i.e., they are
// not blocked or stopped.
//
// runningTasks must be accessed atomically. Increments from 0 to 1 are
// further protected by runningTasksMu (see incRunningTasks).
runningTasks atomicbitops.Int64
// runningTasksCond is signaled when runningTasks is incremented from 0 to 1.
//
// Invariant: runningTasksCond.L == &runningTasksMu.
runningTasksCond sync.Cond `state:"nosave"`
// cpuClock is incremented every linux.ClockTick by a goroutine running
// kernel.runCPUClockTicker() while runningTasks != 0.
//
// cpuClock is used to measure task CPU usage, since sampling monotonicClock
// twice on every syscall turns out to be unreasonably expensive. This is
// similar to how Linux does task CPU accounting on x86
// (CONFIG_IRQ_TIME_ACCOUNTING), although Linux also uses scheduler timing
// information to improve resolution
// (kernel/sched/cputime.c:cputime_adjust()), which we can't do since
// "preeemptive" scheduling is managed by the Go runtime, which doesn't
// provide this information.
//
// cpuClock is mutable, and is accessed using atomic memory operations.
cpuClock atomicbitops.Uint64
// cpuClockTickTimer drives increments of cpuClock.
cpuClockTickTimer *time.Timer `state:"nosave"`
// cpuClockMu is used to make increments of cpuClock, and updates of timers
// based on cpuClock, atomic.
cpuClockMu cpuClockMutex `state:"nosave"`
// cpuClockTickerRunning is true if the goroutine that increments cpuClock is
// running and false if it is blocked in runningTasksCond.Wait() or if it
// never started.
//
// cpuClockTickerRunning is protected by runningTasksMu.
cpuClockTickerRunning bool
// cpuClockTickerWakeCh is sent to to wake the goroutine that increments
// cpuClock if it's sleeping between ticks.
cpuClockTickerWakeCh chan struct{} `state:"nosave"`
// cpuClockTickerStopCond is broadcast when cpuClockTickerRunning transitions
// from true to false.
//
// Invariant: cpuClockTickerStopCond.L == &runningTasksMu.
cpuClockTickerStopCond sync.Cond `state:"nosave"`
// uniqueID is used to generate unique identifiers.
//
// uniqueID is mutable, and is accessed using atomic memory operations.
uniqueID atomicbitops.Uint64
// nextInotifyCookie is a monotonically increasing counter used for
// generating unique inotify event cookies.
//
// nextInotifyCookie is mutable.
nextInotifyCookie atomicbitops.Uint32
// netlinkPorts manages allocation of netlink socket port IDs.
netlinkPorts *port.Manager
// saveStatus is nil if the sandbox has not been saved, errSaved or
// errAutoSaved if it has been saved successfully, or the error causing the
// sandbox to exit during save.
// It is protected by extMu.
saveStatus error `state:"nosave"`
// danglingEndpoints is used to save / restore tcpip.DanglingEndpoints.
danglingEndpoints struct{} `state:".([]tcpip.Endpoint)"`
// sockets records all network sockets in the system. Protected by extMu.
sockets map[*vfs.FileDescription]*SocketRecord
// nextSocketRecord is the next entry number to use in sockets. Protected
// by extMu.
nextSocketRecord uint64
// deviceRegistry is used to save/restore device.SimpleDevices.
deviceRegistry struct{} `state:".(*device.Registry)"`
// unimplementedSyscallEmitterOnce is used in the initialization of
// unimplementedSyscallEmitter.
unimplementedSyscallEmitterOnce sync.Once `state:"nosave"`
// unimplementedSyscallEmitter is used to emit unimplemented syscall
// events. This is initialized lazily on the first unimplemented
// syscall.
unimplementedSyscallEmitter eventchannel.Emitter `state:"nosave"`
// SpecialOpts contains special kernel options.
SpecialOpts
// vfs keeps the filesystem state used across the kernel.
vfs vfs.VirtualFilesystem
// hostMount is the Mount used for file descriptors that were imported
// from the host.
hostMount *vfs.Mount
// pipeMount is the Mount used for pipes created by the pipe() and pipe2()
// syscalls (as opposed to named pipes created by mknod()).
pipeMount *vfs.Mount
// shmMount is the Mount used for anonymous files created by the
// memfd_create() syscalls. It is analogous to Linux's shm_mnt.
shmMount *vfs.Mount
// socketMount is the Mount used for sockets created by the socket() and
// socketpair() syscalls. There are several cases where a socket dentry will
// not be contained in socketMount:
// 1. Socket files created by mknod()
// 2. Socket fds imported from the host (Kernel.hostMount is used for these)
// 3. Socket files created by binding Unix sockets to a file path
socketMount *vfs.Mount
// If set to true, report address space activation waits as if the task is in
// external wait so that the watchdog doesn't report the task stuck.
SleepForAddressSpaceActivation bool
// Exceptions to YAMA ptrace restrictions. Each key-value pair represents a
// tracee-tracer relationship. The key is a process (technically, the thread
// group leader) that can be traced by any thread that is a descendant of the
// value. If the value is nil, then anyone can trace the process represented by
// the key.
//
// ptraceExceptions is protected by the TaskSet mutex.
ptraceExceptions map[*Task]*Task
// YAMAPtraceScope is the current level of YAMA ptrace restrictions.
YAMAPtraceScope atomicbitops.Int32
// cgroupRegistry contains the set of active cgroup controllers on the
// system. It is controller by cgroupfs. Nil if cgroupfs is unavailable on
// the system.
cgroupRegistry *CgroupRegistry
// userCountersMap maps auth.KUID into a set of user counters.
userCountersMap map[auth.KUID]*userCounters
userCountersMapMu userCountersMutex `state:"nosave"`
}
// InitKernelArgs holds arguments to Init.
type InitKernelArgs struct {
// FeatureSet is the emulated CPU feature set.
FeatureSet cpuid.FeatureSet
// Timekeeper manages time for all tasks in the system.
Timekeeper *Timekeeper
// RootUserNamespace is the root user namespace.
RootUserNamespace *auth.UserNamespace
// RootNetworkNamespace is the root network namespace. If nil, no networking
// will be available.
RootNetworkNamespace *inet.Namespace
// ApplicationCores is the number of logical CPUs visible to sandboxed
// applications. The set of logical CPU IDs is [0, ApplicationCores); thus
// ApplicationCores is analogous to Linux's nr_cpu_ids, the index of the
// most significant bit in cpu_possible_mask + 1.
ApplicationCores uint
// If UseHostCores is true, Task.CPU() returns the task goroutine's CPU
// instead of a virtualized CPU number, and Task.CopyToCPUMask() is a
// no-op. If ApplicationCores is less than hostcpu.MaxPossibleCPU(), it
// will be overridden.
UseHostCores bool
// ExtraAuxv contains additional auxiliary vector entries that are added to
// each process by the ELF loader.
ExtraAuxv []arch.AuxEntry
// Vdso holds the VDSO and its parameter page.
Vdso *loader.VDSO
// RootUTSNamespace is the root UTS namespace.
RootUTSNamespace *UTSNamespace
// RootIPCNamespace is the root IPC namespace.
RootIPCNamespace *IPCNamespace
// RootAbstractSocketNamespace is the root Abstract Socket namespace.
RootAbstractSocketNamespace *AbstractSocketNamespace
// PIDNamespace is the root PID namespace.
PIDNamespace *PIDNamespace
}
// Init initialize the Kernel with no tasks.
//
// Callers must manually set Kernel.Platform and call Kernel.SetMemoryFile
// before calling Init.
func (k *Kernel) Init(args InitKernelArgs) error {
if args.Timekeeper == nil {
return fmt.Errorf("args.Timekeeper is nil")
}
if args.Timekeeper.clocks == nil {
return fmt.Errorf("must call Timekeeper.SetClocks() before Kernel.Init()")
}
if args.RootUserNamespace == nil {
return fmt.Errorf("args.RootUserNamespace is nil")
}
if args.ApplicationCores == 0 {
return fmt.Errorf("args.ApplicationCores is 0")
}
k.featureSet = args.FeatureSet
k.timekeeper = args.Timekeeper
k.tasks = newTaskSet(args.PIDNamespace)
k.rootUserNamespace = args.RootUserNamespace
k.rootUTSNamespace = args.RootUTSNamespace
k.rootIPCNamespace = args.RootIPCNamespace
k.rootAbstractSocketNamespace = args.RootAbstractSocketNamespace
k.rootNetworkNamespace = args.RootNetworkNamespace
if k.rootNetworkNamespace == nil {
k.rootNetworkNamespace = inet.NewRootNamespace(nil, nil)
}
k.runningTasksCond.L = &k.runningTasksMu
k.cpuClockTickerWakeCh = make(chan struct{}, 1)
k.cpuClockTickerStopCond.L = &k.runningTasksMu
k.applicationCores = args.ApplicationCores
if args.UseHostCores {
k.useHostCores = true
maxCPU, err := hostcpu.MaxPossibleCPU()
if err != nil {
return fmt.Errorf("failed to get maximum CPU number: %v", err)
}
minAppCores := uint(maxCPU) + 1
if k.applicationCores < minAppCores {
log.Infof("UseHostCores enabled: increasing ApplicationCores from %d to %d", k.applicationCores, minAppCores)
k.applicationCores = minAppCores
}
}
k.extraAuxv = args.ExtraAuxv
k.vdso = args.Vdso
k.futexes = futex.NewManager()
k.netlinkPorts = port.New()
k.ptraceExceptions = make(map[*Task]*Task)
k.YAMAPtraceScope = atomicbitops.FromInt32(linux.YAMA_SCOPE_RELATIONAL)
k.userCountersMap = make(map[auth.KUID]*userCounters)
ctx := k.SupervisorContext()
if err := k.vfs.Init(ctx); err != nil {
return fmt.Errorf("failed to initialize VFS: %v", err)
}
err := k.rootIPCNamespace.InitPosixQueues(ctx, &k.vfs, auth.CredentialsFromContext(ctx))
if err != nil {
return fmt.Errorf("failed to create mqfs filesystem: %v", err)
}
pipeFilesystem, err := pipefs.NewFilesystem(&k.vfs)
if err != nil {
return fmt.Errorf("failed to create pipefs filesystem: %v", err)
}
defer pipeFilesystem.DecRef(ctx)
pipeMount := k.vfs.NewDisconnectedMount(pipeFilesystem, nil, &vfs.MountOptions{})
k.pipeMount = pipeMount
tmpfsFilesystem, tmpfsRoot, err := tmpfs.NewFilesystem(ctx, &k.vfs, auth.NewRootCredentials(k.rootUserNamespace))
if err != nil {
return fmt.Errorf("failed to create tmpfs filesystem: %v", err)
}
defer tmpfsFilesystem.DecRef(ctx)
defer tmpfsRoot.DecRef(ctx)
k.shmMount = k.vfs.NewDisconnectedMount(tmpfsFilesystem, tmpfsRoot, &vfs.MountOptions{})
socketFilesystem, err := sockfs.NewFilesystem(&k.vfs)
if err != nil {
return fmt.Errorf("failed to create sockfs filesystem: %v", err)
}
defer socketFilesystem.DecRef(ctx)
k.socketMount = k.vfs.NewDisconnectedMount(socketFilesystem, nil, &vfs.MountOptions{})
k.sockets = make(map[*vfs.FileDescription]*SocketRecord)
k.cgroupRegistry = newCgroupRegistry()
return nil
}
// SaveTo saves the state of k to w.
//
// Preconditions: The kernel must be paused throughout the call to SaveTo.
func (k *Kernel) SaveTo(ctx context.Context, w wire.Writer) error {
saveStart := time.Now()
// Do not allow other Kernel methods to affect it while it's being saved.
k.extMu.Lock()
defer k.extMu.Unlock()
// Stop time.
k.pauseTimeLocked(ctx)
defer k.resumeTimeLocked(ctx)
// Evict all evictable MemoryFile allocations.
k.mf.StartEvictions()
k.mf.WaitForEvictions()
// Discard unsavable mappings, such as those for host file descriptors.
if err := k.invalidateUnsavableMappings(ctx); err != nil {
return fmt.Errorf("failed to invalidate unsavable mappings: %v", err)
}
// Prepare filesystems for saving. This must be done after
// invalidateUnsavableMappings(), since dropping memory mappings may
// affect filesystem state (e.g. page cache reference counts).
if err := k.vfs.PrepareSave(ctx); err != nil {
return err
}
// Save the CPUID FeatureSet before the rest of the kernel so we can
// verify its compatibility on restore before attempting to restore the
// entire kernel, which may fail on an incompatible machine.
//
// N.B. This will also be saved along with the full kernel save below.
cpuidStart := time.Now()
if _, err := state.Save(ctx, w, &k.featureSet); err != nil {
return err
}
log.Infof("CPUID save took [%s].", time.Since(cpuidStart))
// Save the timekeeper's state.
if rootNS := k.rootNetworkNamespace; rootNS != nil && rootNS.Stack() != nil {
// Pause the network stack.
netstackPauseStart := time.Now()
log.Infof("Pausing root network namespace")
k.rootNetworkNamespace.Stack().Pause()
defer k.rootNetworkNamespace.Stack().Resume()
log.Infof("Pausing root network namespace took [%s].", time.Since(netstackPauseStart))
}
// Save the kernel state.
kernelStart := time.Now()
stats, err := state.Save(ctx, w, k)
if err != nil {
return err
}
log.Infof("Kernel save stats: %s", stats.String())
log.Infof("Kernel save took [%s].", time.Since(kernelStart))
// Save the memory file's state.
memoryStart := time.Now()
if err := k.mf.SaveTo(ctx, w); err != nil {
return err
}
log.Infof("Memory save took [%s].", time.Since(memoryStart))
log.Infof("Overall save took [%s].", time.Since(saveStart))
return nil
}
// Preconditions: The kernel must be paused.
func (k *Kernel) invalidateUnsavableMappings(ctx context.Context) error {
invalidated := make(map[*mm.MemoryManager]struct{})
k.tasks.mu.RLock()
defer k.tasks.mu.RUnlock()
for t := range k.tasks.Root.tids {
// We can skip locking Task.mu here since the kernel is paused.
if memMgr := t.image.MemoryManager; memMgr != nil {
if _, ok := invalidated[memMgr]; !ok {
if err := memMgr.InvalidateUnsavable(ctx); err != nil {
return err
}
invalidated[memMgr] = struct{}{}
}
}
// I really wish we just had a sync.Map of all MMs...
if r, ok := t.runState.(*runSyscallAfterExecStop); ok {
if err := r.image.MemoryManager.InvalidateUnsavable(ctx); err != nil {
return err
}
}
}
return nil
}
// LoadFrom returns a new Kernel loaded from args.
func (k *Kernel) LoadFrom(ctx context.Context, r wire.Reader, timeReady chan struct{}, net inet.Stack, clocks sentrytime.Clocks, vfsOpts *vfs.CompleteRestoreOptions) error {
loadStart := time.Now()
k.runningTasksCond.L = &k.runningTasksMu
k.cpuClockTickerWakeCh = make(chan struct{}, 1)
k.cpuClockTickerStopCond.L = &k.runningTasksMu
initAppCores := k.applicationCores
// Load the pre-saved CPUID FeatureSet.
//
// N.B. This was also saved along with the full kernel below, so we
// don't need to explicitly install it in the Kernel.
cpuidStart := time.Now()
if _, err := state.Load(ctx, r, &k.featureSet); err != nil {
return err
}
log.Infof("CPUID load took [%s].", time.Since(cpuidStart))
// Verify that the FeatureSet is usable on this host. We do this before
// Kernel load so that the explicit CPUID mismatch error has priority
// over floating point state restore errors that may occur on load on
// an incompatible machine.
if err := k.featureSet.CheckHostCompatible(); err != nil {
return err
}
// Load the kernel state.
kernelStart := time.Now()
stats, err := state.Load(ctx, r, k)
if err != nil {
return err
}
log.Infof("Kernel load stats: %s", stats.String())
log.Infof("Kernel load took [%s].", time.Since(kernelStart))
// rootNetworkNamespace should be populated after loading the state file.
// Restore the root network stack.
k.rootNetworkNamespace.RestoreRootStack(net)
// Load the memory file's state.
memoryStart := time.Now()
if err := k.mf.LoadFrom(ctx, r); err != nil {
return err
}
log.Infof("Memory load took [%s].", time.Since(memoryStart))
log.Infof("Overall load took [%s]", time.Since(loadStart))
k.Timekeeper().SetClocks(clocks)
if timeReady != nil {
close(timeReady)
}
if net != nil {
net.Resume()
}
if err := k.vfs.CompleteRestore(ctx, vfsOpts); err != nil {
return err
}
tcpip.AsyncLoading.Wait()
log.Infof("Overall load took [%s] after async work", time.Since(loadStart))
// Applications may size per-cpu structures based on k.applicationCores, so
// it can't change across save/restore. When we are virtualizing CPU
// numbers, this isn't a problem. However, when we are exposing host CPU
// assignments, we can't tolerate an increase in the number of host CPUs,
// which could result in getcpu(2) returning CPUs that applications expect
// not to exist.
if k.useHostCores && initAppCores > k.applicationCores {
return fmt.Errorf("UseHostCores enabled: can't increase ApplicationCores from %d to %d after restore", k.applicationCores, initAppCores)
}
return nil
}
// UniqueID returns a unique identifier.
func (k *Kernel) UniqueID() uint64 {
id := k.uniqueID.Add(1)
if id == 0 {
panic("unique identifier generator wrapped around")
}
return id
}
// CreateProcessArgs holds arguments to kernel.CreateProcess.
type CreateProcessArgs struct {
// Filename is the filename to load as the init binary.
//
// If this is provided as "", File will be checked, then the file will be
// guessed via Argv[0].
Filename string
// File is a passed host FD pointing to a file to load as the init binary.
//
// This is checked if and only if Filename is "".
File *vfs.FileDescription
// Argvv is a list of arguments.
Argv []string
// Envv is a list of environment variables.
Envv []string
// WorkingDirectory is the initial working directory.
//
// This defaults to the root if empty.
WorkingDirectory string
// Credentials is the initial credentials.
Credentials *auth.Credentials
// FDTable is the initial set of file descriptors. If CreateProcess succeeds,
// it takes a reference on FDTable.
FDTable *FDTable
// Umask is the initial umask.
Umask uint
// Limits is the initial resource limits.
Limits *limits.LimitSet
// MaxSymlinkTraversals is the maximum number of symlinks to follow
// during resolution.
MaxSymlinkTraversals uint
// UTSNamespace is the initial UTS namespace.
UTSNamespace *UTSNamespace
// IPCNamespace is the initial IPC namespace.
IPCNamespace *IPCNamespace
// PIDNamespace is the initial PID Namespace.
PIDNamespace *PIDNamespace
// AbstractSocketNamespace is the initial Abstract Socket namespace.
AbstractSocketNamespace *AbstractSocketNamespace
// MountNamespace optionally contains the mount namespace for this
// process. If nil, the init process's mount namespace is used.
//
// Anyone setting MountNamespace must donate a reference (i.e.
// increment it).
MountNamespace *vfs.MountNamespace
// ContainerID is the container that the process belongs to.
ContainerID string
}
// NewContext returns a context.Context that represents the task that will be
// created by args.NewContext(k).
func (args *CreateProcessArgs) NewContext(k *Kernel) context.Context {
return &createProcessContext{
Context: context.Background(),
kernel: k,
args: args,
}
}
// createProcessContext is a context.Context that represents the context
// associated with a task that is being created.
type createProcessContext struct {
context.Context
kernel *Kernel
args *CreateProcessArgs
}
// Value implements context.Context.Value.
func (ctx *createProcessContext) Value(key any) any {
switch key {
case CtxKernel:
return ctx.kernel
case CtxPIDNamespace:
return ctx.args.PIDNamespace
case CtxUTSNamespace:
return ctx.args.UTSNamespace
case ipc.CtxIPCNamespace:
ipcns := ctx.args.IPCNamespace
ipcns.IncRef()
return ipcns
case auth.CtxCredentials:
return ctx.args.Credentials
case vfs.CtxRoot:
if ctx.args.MountNamespace == nil {
return nil
}
root := ctx.args.MountNamespace.Root()
root.IncRef()
return root
case vfs.CtxMountNamespace:
if ctx.kernel.globalInit == nil {
return nil
}
mntns := ctx.kernel.GlobalInit().Leader().MountNamespace()
mntns.IncRef()
return mntns
case inet.CtxStack:
return ctx.kernel.RootNetworkNamespace().Stack()
case ktime.CtxRealtimeClock:
return ctx.kernel.RealtimeClock()
case limits.CtxLimits:
return ctx.args.Limits
case pgalloc.CtxMemoryFile:
return ctx.kernel.mf
case pgalloc.CtxMemoryFileProvider:
return ctx.kernel
case platform.CtxPlatform:
return ctx.kernel
case uniqueid.CtxGlobalUniqueID:
return ctx.kernel.UniqueID()
case uniqueid.CtxGlobalUniqueIDProvider:
return ctx.kernel
case uniqueid.CtxInotifyCookie:
return ctx.kernel.GenerateInotifyCookie()
case unimpl.CtxEvents:
return ctx.kernel
default:
return nil
}
}
// CreateProcess creates a new task in a new thread group with the given
// options. The new task has no parent and is in the root PID namespace.
//
// If k.Start() has already been called, then the created process must be
// started by calling kernel.StartProcess(tg).
//
// If k.Start() has not yet been called, then the created task will begin
// running when k.Start() is called.
//
// CreateProcess has no analogue in Linux; it is used to create the initial
// application task, as well as processes started by the control server.
func (k *Kernel) CreateProcess(args CreateProcessArgs) (*ThreadGroup, ThreadID, error) {
k.extMu.Lock()
defer k.extMu.Unlock()
log.Infof("EXEC: %v", args.Argv)
ctx := args.NewContext(k)
mntns := args.MountNamespace
if mntns == nil {
if k.globalInit == nil {
return nil, 0, fmt.Errorf("mount namespace is nil")
}
// Add a reference to the namespace, which is transferred to the new process.
mntns = k.globalInit.Leader().MountNamespace()
mntns.IncRef()
}
// Get the root directory from the MountNamespace.
root := mntns.Root()
root.IncRef()
defer root.DecRef(ctx)
// Grab the working directory.
wd := root // Default.
if args.WorkingDirectory != "" {
pop := vfs.PathOperation{
Root: root,
Start: wd,
Path: fspath.Parse(args.WorkingDirectory),
FollowFinalSymlink: true,
}
// NOTE(b/236028361): Do not set CheckSearchable flag to true.
// Application is allowed to start with a working directory that it can
// not access/search. This is consistent with Docker and VFS1. Runc
// explicitly allows for this in 6ce2d63a5db6 ("libct/init_linux: retry
// chdir to fix EPERM"). As described in the commit, runc unintentionally
// allowed this behavior in a couple of releases and applications started
// relying on it. So they decided to allow it for backward compatibility.
var err error
wd, err = k.VFS().GetDentryAt(ctx, args.Credentials, &pop, &vfs.GetDentryOptions{})
if err != nil {
return nil, 0, fmt.Errorf("failed to find initial working directory %q: %v", args.WorkingDirectory, err)
}
defer wd.DecRef(ctx)
}
fsContext := NewFSContext(root, wd, args.Umask)
tg := k.NewThreadGroup(args.PIDNamespace, NewSignalHandlers(), linux.SIGCHLD, args.Limits)
cu := cleanup.Make(func() {
tg.Release(ctx)
})
defer cu.Clean()
// Check which file to start from.
switch {
case args.Filename != "":
// If a filename is given, take that.
// Set File to nil so we resolve the path in LoadTaskImage.
args.File = nil
case args.File != nil:
// If File is set, take the File provided directly.
args.Filename = args.File.MappedName(ctx)
default:
// Otherwise look at Argv and see if the first argument is a valid path.
if len(args.Argv) == 0 {
return nil, 0, fmt.Errorf("no filename or command provided")
}
if !filepath.IsAbs(args.Argv[0]) {
return nil, 0, fmt.Errorf("'%s' is not an absolute path", args.Argv[0])
}
args.Filename = args.Argv[0]
}
// Create a fresh task context.
remainingTraversals := args.MaxSymlinkTraversals
loadArgs := loader.LoadArgs{
Root: root,
WorkingDir: wd,
RemainingTraversals: &remainingTraversals,
ResolveFinal: true,
Filename: args.Filename,
File: args.File,
CloseOnExec: false,
Argv: args.Argv,
Envv: args.Envv,
Features: k.featureSet,
}
image, se := k.LoadTaskImage(ctx, loadArgs)
if se != nil {
return nil, 0, errors.New(se.String())
}
// Take a reference on the FDTable, which will be transferred to
// TaskSet.NewTask().
args.FDTable.IncRef()
// Create the task.
config := &TaskConfig{
Kernel: k,
ThreadGroup: tg,
TaskImage: image,
FSContext: fsContext,
FDTable: args.FDTable,
Credentials: args.Credentials,
NetworkNamespace: k.RootNetworkNamespace(),
AllowedCPUMask: sched.NewFullCPUSet(k.applicationCores),
UTSNamespace: args.UTSNamespace,
IPCNamespace: args.IPCNamespace,
AbstractSocketNamespace: args.AbstractSocketNamespace,
MountNamespace: mntns,
ContainerID: args.ContainerID,
UserCounters: k.GetUserCounters(args.Credentials.RealKUID),
}
config.NetworkNamespace.IncRef()
t, err := k.tasks.NewTask(ctx, config)
if err != nil {
return nil, 0, err
}
t.traceExecEvent(image) // Simulate exec for tracing.
// Success.
cu.Release()
tgid := k.tasks.Root.IDOfThreadGroup(tg)
if k.globalInit == nil {
k.globalInit = tg
}
return tg, tgid, nil
}
// StartProcess starts running a process that was created with CreateProcess.
func (k *Kernel) StartProcess(tg *ThreadGroup) {
t := tg.Leader()
tid := k.tasks.Root.IDOfTask(t)
t.Start(tid)
}
// Start starts execution of all tasks in k.
//
// Preconditions: Start may be called exactly once.
func (k *Kernel) Start() error {
k.extMu.Lock()
defer k.extMu.Unlock()
if k.started {
return fmt.Errorf("kernel already started")
}
k.started = true
k.cpuClockTickTimer = time.NewTimer(linux.ClockTick)
k.runningTasksMu.Lock()
k.cpuClockTickerRunning = true
k.runningTasksMu.Unlock()
go k.runCPUClockTicker()
// If k was created by LoadKernelFrom, timers were stopped during
// Kernel.SaveTo and need to be resumed. If k was created by NewKernel,
// this is a no-op.
k.resumeTimeLocked(k.SupervisorContext())
k.tasks.mu.RLock()
ts := make([]*Task, 0, len(k.tasks.Root.tids))
for t := range k.tasks.Root.tids {
ts = append(ts, t)
}
k.tasks.mu.RUnlock()
// Start task goroutines.
// NOTE(b/235349091): We don't actually need the TaskSet mutex, we just
// need to make sure we only call t.Start() once for each task. Holding the
// mutex for each task start may cause a nested locking error.
for _, t := range ts {
t.Start(t.ThreadID())
}
return nil
}
// pauseTimeLocked pauses all Timers and Timekeeper updates.
//
// Preconditions:
// - Any task goroutines running in k must be stopped.
// - k.extMu must be locked.
func (k *Kernel) pauseTimeLocked(ctx context.Context) {
// Since all task goroutines have been stopped by precondition, the CPU clock
// ticker should stop on its own; wait for it to do so, waking it up from
// sleeping betwen ticks if necessary.
k.runningTasksMu.Lock()
for k.cpuClockTickerRunning {
select {
case k.cpuClockTickerWakeCh <- struct{}{}:
default:
}
k.cpuClockTickerStopCond.Wait()
}
k.runningTasksMu.Unlock()
// By precondition, nothing else can be interacting with PIDNamespace.tids
// or FDTable.files, so we can iterate them without synchronization. (We
// can't hold the TaskSet mutex when pausing thread group timers because
// thread group timers call ThreadGroup.SendSignal, which takes the TaskSet
// mutex, while holding the Timer mutex.)
for t := range k.tasks.Root.tids {
if t == t.tg.leader {
t.tg.itimerRealTimer.Pause()
for _, it := range t.tg.timers {
it.PauseTimer()
}
}
// This means we'll iterate FDTables shared by multiple tasks repeatedly,
// but ktime.Timer.Pause is idempotent so this is harmless.
if t.fdTable != nil {
t.fdTable.forEach(ctx, func(_ int32, fd *vfs.FileDescription, _ FDFlags) {
if tfd, ok := fd.Impl().(*timerfd.TimerFileDescription); ok {
tfd.PauseTimer()
}
})
}
}
k.timekeeper.PauseUpdates()
}
// resumeTimeLocked resumes all Timers and Timekeeper updates. If
// pauseTimeLocked has not been previously called, resumeTimeLocked has no
// effect.
//
// Preconditions:
// - Any task goroutines running in k must be stopped.
// - k.extMu must be locked.
func (k *Kernel) resumeTimeLocked(ctx context.Context) {
// The CPU clock ticker will automatically resume as task goroutines resume
// execution.
k.timekeeper.ResumeUpdates()
for t := range k.tasks.Root.tids {
if t == t.tg.leader {
t.tg.itimerRealTimer.Resume()
for _, it := range t.tg.timers {
it.ResumeTimer()
}
}
if t.fdTable != nil {
t.fdTable.forEach(ctx, func(_ int32, fd *vfs.FileDescription, _ FDFlags) {
if tfd, ok := fd.Impl().(*timerfd.TimerFileDescription); ok {
tfd.ResumeTimer()
}
})
}
}
}
func (k *Kernel) incRunningTasks() {
for {
tasks := k.runningTasks.Load()
if tasks != 0 {
// Standard case. Simply increment.
if !k.runningTasks.CompareAndSwap(tasks, tasks+1) {
continue
}
return
}
// Transition from 0 -> 1.
k.runningTasksMu.Lock()
if k.runningTasks.Load() != 0 {
// Raced with another transition and lost.
k.runningTasks.Add(1)
k.runningTasksMu.Unlock()
return
}
if !k.cpuClockTickerRunning {
select {
case tickTime := <-k.cpuClockTickTimer.C:
// Rearm the timer since we consumed the wakeup. Estimate how much time
// remains on the current tick so that periodic workloads interact with
// the (periodic) CPU clock ticker in the same way that they would
// without the optimization of putting the ticker to sleep.
missedNS := time.Since(tickTime).Nanoseconds()
missedTicks := missedNS / linux.ClockTick.Nanoseconds()
thisTickNS := missedNS - missedTicks*linux.ClockTick.Nanoseconds()
k.cpuClockTickTimer.Reset(time.Duration(linux.ClockTick.Nanoseconds() - thisTickNS))
// Increment k.cpuClock on the CPU clock ticker goroutine's behalf.
// (Whole missed ticks don't matter, and adding them to k.cpuClock will
// just confuse the watchdog.) At the time the tick occurred, all task
// goroutines were asleep, so there's nothing else to do. This ensures
// that our caller (Task.accountTaskGoroutineLeave()) records an
// updated k.cpuClock in Task.gosched.Timestamp, so that it's correctly
// accounted as having resumed execution in the sentry during this tick
// instead of at the end of the previous one.
k.cpuClock.Add(1)
default:
}
// We are transitioning from idle to active. Set k.cpuClockTickerRunning
// = true here so that if we transition to idle and then active again
// before the CPU clock ticker goroutine has a chance to run, the first
// call to k.incRunningTasks() at the end of that cycle does not try to
// steal k.cpuClockTickTimer.C again, as this would allow workloads that
// rapidly cycle between idle and active to starve the CPU clock ticker
// of chances to observe task goroutines in a running state and account
// their CPU usage.
k.cpuClockTickerRunning = true
k.runningTasksCond.Signal()
}
// This store must happen after the increment of k.cpuClock above to ensure
// that concurrent calls to Task.accountTaskGoroutineLeave() also observe
// the updated k.cpuClock.
k.runningTasks.Store(1)
k.runningTasksMu.Unlock()
return
}
}
func (k *Kernel) decRunningTasks() {
tasks := k.runningTasks.Add(-1)
if tasks < 0 {
panic(fmt.Sprintf("Invalid running count %d", tasks))
}
// Nothing to do. The next CPU clock tick will disable the timer if
// there is still nothing running. This provides approximately one tick
// of slack in which we can switch back and forth between idle and
// active without an expensive transition.
}
// WaitExited blocks until all tasks in k have exited.
func (k *Kernel) WaitExited() {
k.tasks.liveGoroutines.Wait()
}
// Kill requests that all tasks in k immediately exit as if group exiting with
// status ws. Kill does not wait for tasks to exit.
func (k *Kernel) Kill(ws linux.WaitStatus) {
k.extMu.Lock()
defer k.extMu.Unlock()
k.tasks.Kill(ws)
}
// Pause requests that all tasks in k temporarily stop executing, and blocks
// until all tasks and asynchronous I/O operations in k have stopped. Multiple
// calls to Pause nest and require an equal number of calls to Unpause to
// resume execution.
func (k *Kernel) Pause() {
k.extMu.Lock()
k.tasks.BeginExternalStop()
k.extMu.Unlock()
k.tasks.runningGoroutines.Wait()
k.tasks.aioGoroutines.Wait()
}
// ReceiveTaskStates receives full states for all tasks.
func (k *Kernel) ReceiveTaskStates() {
k.extMu.Lock()
k.tasks.PullFullState()
k.extMu.Unlock()
}
// Unpause ends the effect of a previous call to Pause. If Unpause is called
// without a matching preceding call to Pause, Unpause may panic.
func (k *Kernel) Unpause() {
k.extMu.Lock()
defer k.extMu.Unlock()
k.tasks.EndExternalStop()
}
// SendExternalSignal injects a signal into the kernel.
//
// context is used only for debugging to describe how the signal was received.
//
// Preconditions: Kernel must have an init process.
func (k *Kernel) SendExternalSignal(info *linux.SignalInfo, context string) {
k.extMu.Lock()
defer k.extMu.Unlock()
k.sendExternalSignal(info, context)
}
// SendExternalSignalThreadGroup injects a signal into an specific ThreadGroup.
// This function doesn't skip signals like SendExternalSignal does.
func (k *Kernel) SendExternalSignalThreadGroup(tg *ThreadGroup, info *linux.SignalInfo) error {
k.extMu.Lock()
defer k.extMu.Unlock()
return tg.SendSignal(info)
}
// SendContainerSignal sends the given signal to all processes inside the
// namespace that match the given container ID.
func (k *Kernel) SendContainerSignal(cid string, info *linux.SignalInfo) error {
k.extMu.Lock()
defer k.extMu.Unlock()
k.tasks.mu.RLock()
defer k.tasks.mu.RUnlock()
var lastErr error
for tg := range k.tasks.Root.tgids {
if tg.leader.ContainerID() == cid {
tg.signalHandlers.mu.Lock()
infoCopy := *info
if err := tg.leader.sendSignalLocked(&infoCopy, true /*group*/); err != nil {
lastErr = err
}
tg.signalHandlers.mu.Unlock()
}
}
return lastErr
}
// RebuildTraceContexts rebuilds the trace context for all tasks.
//
// Unfortunately, if these are built while tracing is not enabled, then we will
// not have meaningful trace data. Rebuilding here ensures that we can do so
// after tracing has been enabled.
func (k *Kernel) RebuildTraceContexts() {
// We need to pause all task goroutines because Task.rebuildTraceContext()
// replaces Task.traceContext and Task.traceTask, which are
// task-goroutine-exclusive (i.e. the task goroutine assumes that it can
// access them without synchronization) for performance.
k.Pause()
defer k.Unpause()
k.extMu.Lock()
defer k.extMu.Unlock()
k.tasks.mu.RLock()
defer k.tasks.mu.RUnlock()
for t, tid := range k.tasks.Root.tids {
t.rebuildTraceContext(tid)
}
}
// FeatureSet returns the FeatureSet.
func (k *Kernel) FeatureSet() cpuid.FeatureSet {
return k.featureSet
}
// Timekeeper returns the Timekeeper.
func (k *Kernel) Timekeeper() *Timekeeper {
return k.timekeeper
}
// TaskSet returns the TaskSet.
func (k *Kernel) TaskSet() *TaskSet {
return k.tasks
}
// RootUserNamespace returns the root UserNamespace.
func (k *Kernel) RootUserNamespace() *auth.UserNamespace {
return k.rootUserNamespace
}
// RootUTSNamespace returns the root UTSNamespace.
func (k *Kernel) RootUTSNamespace() *UTSNamespace {
return k.rootUTSNamespace
}
// RootIPCNamespace takes a reference and returns the root IPCNamespace.
func (k *Kernel) RootIPCNamespace() *IPCNamespace {
k.rootIPCNamespace.IncRef()
return k.rootIPCNamespace
}
// RootPIDNamespace returns the root PIDNamespace.
func (k *Kernel) RootPIDNamespace() *PIDNamespace {
return k.tasks.Root
}
// RootAbstractSocketNamespace returns the root AbstractSocketNamespace.
func (k *Kernel) RootAbstractSocketNamespace() *AbstractSocketNamespace {
return k.rootAbstractSocketNamespace
}
// RootNetworkNamespace returns the root network namespace, always non-nil.
func (k *Kernel) RootNetworkNamespace() *inet.Namespace {
return k.rootNetworkNamespace
}
// GlobalInit returns the thread group with ID 1 in the root PID namespace, or
// nil if no such thread group exists. GlobalInit may return a thread group
// containing no tasks if the thread group has already exited.
func (k *Kernel) GlobalInit() *ThreadGroup {
k.extMu.Lock()
defer k.extMu.Unlock()
return k.globalInit
}
// TestOnlySetGlobalInit sets the thread group with ID 1 in the root PID namespace.
func (k *Kernel) TestOnlySetGlobalInit(tg *ThreadGroup) {
k.globalInit = tg
}
// ApplicationCores returns the number of CPUs visible to sandboxed
// applications.
func (k *Kernel) ApplicationCores() uint {
return k.applicationCores
}
// RealtimeClock returns the application CLOCK_REALTIME clock.
func (k *Kernel) RealtimeClock() ktime.Clock {
return k.timekeeper.realtimeClock
}
// MonotonicClock returns the application CLOCK_MONOTONIC clock.
func (k *Kernel) MonotonicClock() ktime.Clock {
return k.timekeeper.monotonicClock
}
// CPUClockNow returns the current value of k.cpuClock.
func (k *Kernel) CPUClockNow() uint64 {
return k.cpuClock.Load()
}
// Syslog returns the syslog.
func (k *Kernel) Syslog() *syslog {
return &k.syslog
}
// GenerateInotifyCookie generates a unique inotify event cookie.
//
// Returned values may overlap with previously returned values if the value
// space is exhausted. 0 is not a valid cookie value, all other values
// representable in a uint32 are allowed.
func (k *Kernel) GenerateInotifyCookie() uint32 {
id := k.nextInotifyCookie.Add(1)
// Wrap-around is explicitly allowed for inotify event cookies.
if id == 0 {
id = k.nextInotifyCookie.Add(1)
}
return id
}
// NetlinkPorts returns the netlink port manager.
func (k *Kernel) NetlinkPorts() *port.Manager {
return k.netlinkPorts
}
var (
errSaved = errors.New("sandbox has been successfully saved")
errAutoSaved = errors.New("sandbox has been successfully auto-saved")
)
// SaveStatus returns the sandbox save status. If it was saved successfully,
// autosaved indicates whether save was triggered by autosave. If it was not
// saved successfully, err indicates the sandbox error that caused the kernel to
// exit during save.
func (k *Kernel) SaveStatus() (saved, autosaved bool, err error) {
k.extMu.Lock()
defer k.extMu.Unlock()
switch k.saveStatus {
case nil:
return false, false, nil
case errSaved:
return true, false, nil
case errAutoSaved:
return true, true, nil
default:
return false, false, k.saveStatus
}
}
// SetSaveSuccess sets the flag indicating that save completed successfully, if
// no status was already set.
func (k *Kernel) SetSaveSuccess(autosave bool) {
k.extMu.Lock()
defer k.extMu.Unlock()
if k.saveStatus == nil {
if autosave {
k.saveStatus = errAutoSaved
} else {
k.saveStatus = errSaved
}
}
}
// SetSaveError sets the sandbox error that caused the kernel to exit during
// save, if one is not already set.
func (k *Kernel) SetSaveError(err error) {
k.extMu.Lock()
defer k.extMu.Unlock()
if k.saveStatus == nil {
k.saveStatus = err
}
}
// SetMemoryFile sets Kernel.mf. SetMemoryFile must be called before Init or
// LoadFrom.
func (k *Kernel) SetMemoryFile(mf *pgalloc.MemoryFile) {
k.mf = mf
}
// MemoryFile implements pgalloc.MemoryFileProvider.MemoryFile.
func (k *Kernel) MemoryFile() *pgalloc.MemoryFile {
return k.mf
}
// SupervisorContext returns a Context with maximum privileges in k. It should
// only be used by goroutines outside the control of the emulated kernel
// defined by e.
//
// Callers are responsible for ensuring that the returned Context is not used
// concurrently with changes to the Kernel.
func (k *Kernel) SupervisorContext() context.Context {
return &supervisorContext{
Kernel: k,
Logger: log.Log(),
}
}
// SocketRecord represents a socket recorded in Kernel.sockets.
//
// +stateify savable
type SocketRecord struct {
k *Kernel
Sock *vfs.FileDescription
ID uint64 // Socket table entry number.
}
// RecordSocket adds a socket to the system-wide socket table for
// tracking.
//
// Precondition: Caller must hold a reference to sock.
//
// Note that the socket table will not hold a reference on the
// vfs.FileDescription.
func (k *Kernel) RecordSocket(sock *vfs.FileDescription) {
k.extMu.Lock()
if _, ok := k.sockets[sock]; ok {
panic(fmt.Sprintf("Socket %p added twice", sock))
}
id := k.nextSocketRecord
k.nextSocketRecord++
s := &SocketRecord{
k: k,
ID: id,
Sock: sock,
}
k.sockets[sock] = s
k.extMu.Unlock()
}
// DeleteSocket removes a socket from the system-wide socket table.
func (k *Kernel) DeleteSocket(sock *vfs.FileDescription) {
k.extMu.Lock()
delete(k.sockets, sock)
k.extMu.Unlock()
}
// ListSockets returns a snapshot of all sockets.
//
// Callers of ListSockets() should use SocketRecord.Sock.TryIncRef()
// to get a reference on a socket in the table.
func (k *Kernel) ListSockets() []*SocketRecord {
k.extMu.Lock()
var socks []*SocketRecord
for _, s := range k.sockets {
socks = append(socks, s)
}
k.extMu.Unlock()
return socks
}
// supervisorContext is a privileged context.
type supervisorContext struct {
context.NoTask
log.Logger
*Kernel
}
// Deadline implements context.Context.Deadline.
func (*Kernel) Deadline() (time.Time, bool) {
return time.Time{}, false
}
// Done implements context.Context.Done.
func (*Kernel) Done() <-chan struct{} {
return nil
}
// Err implements context.Context.Err.
func (*Kernel) Err() error {
return nil
}
// Value implements context.Context.
func (ctx *supervisorContext) Value(key any) any {
switch key {
case CtxCanTrace:
// The supervisor context can trace anything. (None of
// supervisorContext's users are expected to invoke ptrace, but ptrace
// permissions are required for certain file accesses.)
return func(*Task, bool) bool { return true }
case CtxKernel:
return ctx.Kernel
case CtxPIDNamespace:
return ctx.Kernel.tasks.Root
case CtxUTSNamespace:
return ctx.Kernel.rootUTSNamespace
case ipc.CtxIPCNamespace:
ipcns := ctx.Kernel.rootIPCNamespace
ipcns.IncRef()
return ipcns
case auth.CtxCredentials:
// The supervisor context is global root.
return auth.NewRootCredentials(ctx.Kernel.rootUserNamespace)
case vfs.CtxRoot:
if ctx.Kernel.globalInit == nil {
return vfs.VirtualDentry{}
}
root := ctx.Kernel.GlobalInit().Leader().MountNamespace().Root()
root.IncRef()
return root
case vfs.CtxMountNamespace:
if ctx.Kernel.globalInit == nil {
return nil
}
mntns := ctx.Kernel.GlobalInit().Leader().MountNamespace()
mntns.IncRef()
return mntns
case inet.CtxStack:
return ctx.Kernel.RootNetworkNamespace().Stack()
case ktime.CtxRealtimeClock:
return ctx.Kernel.RealtimeClock()
case limits.CtxLimits:
// No limits apply.
return limits.NewLimitSet()
case pgalloc.CtxMemoryFile:
return ctx.Kernel.mf
case pgalloc.CtxMemoryFileProvider:
return ctx.Kernel
case platform.CtxPlatform:
return ctx.Kernel
case uniqueid.CtxGlobalUniqueID:
return ctx.Kernel.UniqueID()
case uniqueid.CtxGlobalUniqueIDProvider:
return ctx.Kernel
case uniqueid.CtxInotifyCookie:
return ctx.Kernel.GenerateInotifyCookie()
case unimpl.CtxEvents:
return ctx.Kernel
case cpuid.CtxFeatureSet:
return ctx.Kernel.featureSet
default:
return nil
}
}
// Rate limits for the number of unimplemented syscall events.
const (
unimplementedSyscallsMaxRate = 100 // events per second
unimplementedSyscallBurst = 1000 // events
)
// EmitUnimplementedEvent emits an UnimplementedSyscall event via the event
// channel.
func (k *Kernel) EmitUnimplementedEvent(ctx context.Context) {
k.unimplementedSyscallEmitterOnce.Do(func() {
k.unimplementedSyscallEmitter = eventchannel.RateLimitedEmitterFrom(eventchannel.DefaultEmitter, unimplementedSyscallsMaxRate, unimplementedSyscallBurst)
})
t := TaskFromContext(ctx)
_, _ = k.unimplementedSyscallEmitter.Emit(&uspb.UnimplementedSyscall{
Tid: int32(t.ThreadID()),
Registers: t.Arch().StateData().Proto(),
})
}
// VFS returns the virtual filesystem for the kernel.
func (k *Kernel) VFS() *vfs.VirtualFilesystem {
return &k.vfs
}
// SetHostMount sets the hostfs mount.
func (k *Kernel) SetHostMount(mnt *vfs.Mount) {
if k.hostMount != nil {
panic("Kernel.hostMount cannot be set more than once")
}
k.hostMount = mnt
}
// HostMount returns the hostfs mount.
func (k *Kernel) HostMount() *vfs.Mount {
return k.hostMount
}
// PipeMount returns the pipefs mount.
func (k *Kernel) PipeMount() *vfs.Mount {
return k.pipeMount
}
// ShmMount returns the tmpfs mount.
func (k *Kernel) ShmMount() *vfs.Mount {
return k.shmMount
}
// SocketMount returns the sockfs mount.
func (k *Kernel) SocketMount() *vfs.Mount {
return k.socketMount
}
// CgroupRegistry returns the cgroup registry.
func (k *Kernel) CgroupRegistry() *CgroupRegistry {
return k.cgroupRegistry
}
// Release releases resources owned by k.
//
// Precondition: This should only be called after the kernel is fully
// initialized, e.g. after k.Start() has been called.
func (k *Kernel) Release() {
ctx := k.SupervisorContext()
k.hostMount.DecRef(ctx)
k.pipeMount.DecRef(ctx)
k.shmMount.DecRef(ctx)
k.socketMount.DecRef(ctx)
k.vfs.Release(ctx)
k.timekeeper.Destroy()
k.vdso.Release(ctx)
k.RootNetworkNamespace().DecRef()
}
// PopulateNewCgroupHierarchy moves all tasks into a newly created cgroup
// hierarchy.
//
// Precondition: root must be a new cgroup with no tasks. This implies the
// controllers for root are also new and currently manage no task, which in turn
// implies the new cgroup can be populated without migrating tasks between
// cgroups.
func (k *Kernel) PopulateNewCgroupHierarchy(root Cgroup) {
k.tasks.mu.RLock()
k.tasks.forEachTaskLocked(func(t *Task) {
if t.exitState != TaskExitNone {
return
}
t.mu.Lock()
// A task can be in the cgroup if it has been created after the
// cgroup hierarchy was registered.
t.enterCgroupIfNotYetLocked(root)
t.mu.Unlock()
})
k.tasks.mu.RUnlock()
}
// ReleaseCgroupHierarchy moves all tasks out of all cgroups belonging to the
// hierarchy with the provided id. This is intended for use during hierarchy
// teardown, as otherwise the tasks would be orphaned w.r.t to some controllers.
func (k *Kernel) ReleaseCgroupHierarchy(hid uint32) {
var releasedCGs []Cgroup
k.tasks.mu.RLock()
// We'll have one cgroup per hierarchy per task.
releasedCGs = make([]Cgroup, 0, len(k.tasks.Root.tids))
k.tasks.forEachTaskLocked(func(t *Task) {
if t.exitState != TaskExitNone {
return
}
t.mu.Lock()
for cg := range t.cgroups {
if cg.HierarchyID() == hid {
cg.Leave(t)
delete(t.cgroups, cg)
releasedCGs = append(releasedCGs, cg)
// A task can't be part of multiple cgroups from the same
// hierarchy, so we can skip checking the rest once we find a
// match.
break
}
}
t.mu.Unlock()
})
k.tasks.mu.RUnlock()
for _, c := range releasedCGs {
c.decRef()
}
}
func (k *Kernel) ReplaceFSContextRoots(ctx context.Context, oldRoot vfs.VirtualDentry, newRoot vfs.VirtualDentry) {
k.tasks.mu.RLock()
oldRootDecRefs := 0
k.tasks.forEachTaskLocked(func(t *Task) {
t.mu.Lock()
defer t.mu.Unlock()
if fsc := t.fsContext; fsc != nil {
fsc.mu.Lock()
defer fsc.mu.Unlock()
if fsc.root == oldRoot {
newRoot.IncRef()
oldRootDecRefs++
fsc.root = newRoot
}
if fsc.cwd == oldRoot {
newRoot.IncRef()
oldRootDecRefs++
fsc.cwd = newRoot
}
}
})
k.tasks.mu.RUnlock()
for i := 0; i < oldRootDecRefs; i++ {
oldRoot.DecRef(ctx)
}
}
func (k *Kernel) GetUserCounters(uid auth.KUID) *userCounters {
k.userCountersMapMu.Lock()
defer k.userCountersMapMu.Unlock()
if uc, ok := k.userCountersMap[uid]; ok {
return uc
}
uc := &userCounters{}
k.userCountersMap[uid] = uc
return uc
}
|