1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"fmt"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/marshal/primitive"
"gvisor.dev/gvisor/pkg/sentry/mm"
"gvisor.dev/gvisor/pkg/usermem"
)
// ptraceOptions are the subset of options controlling a task's ptrace behavior
// that are set by ptrace(PTRACE_SETOPTIONS).
//
// +stateify savable
type ptraceOptions struct {
// ExitKill is true if the tracee should be sent SIGKILL when the tracer
// exits.
ExitKill bool
// If SysGood is true, set bit 7 in the signal number for
// syscall-entry-stop and syscall-exit-stop traps delivered to this task's
// tracer.
SysGood bool
// TraceClone is true if the tracer wants to receive PTRACE_EVENT_CLONE
// events.
TraceClone bool
// TraceExec is true if the tracer wants to receive PTRACE_EVENT_EXEC
// events.
TraceExec bool
// TraceExit is true if the tracer wants to receive PTRACE_EVENT_EXIT
// events.
TraceExit bool
// TraceFork is true if the tracer wants to receive PTRACE_EVENT_FORK
// events.
TraceFork bool
// TraceSeccomp is true if the tracer wants to receive PTRACE_EVENT_SECCOMP
// events.
TraceSeccomp bool
// TraceVfork is true if the tracer wants to receive PTRACE_EVENT_VFORK
// events.
TraceVfork bool
// TraceVforkDone is true if the tracer wants to receive
// PTRACE_EVENT_VFORK_DONE events.
TraceVforkDone bool
}
// ptraceSyscallMode controls the behavior of a ptraced task at syscall entry
// and exit.
type ptraceSyscallMode int
const (
// ptraceSyscallNone indicates that the task has never ptrace-stopped, or
// that it was resumed from its last ptrace-stop by PTRACE_CONT or
// PTRACE_DETACH. The task's syscalls will not be intercepted.
ptraceSyscallNone ptraceSyscallMode = iota
// ptraceSyscallIntercept indicates that the task was resumed from its last
// ptrace-stop by PTRACE_SYSCALL. The next time the task enters or exits a
// syscall, a ptrace-stop will occur.
ptraceSyscallIntercept
// ptraceSyscallEmu indicates that the task was resumed from its last
// ptrace-stop by PTRACE_SYSEMU or PTRACE_SYSEMU_SINGLESTEP. The next time
// the task enters a syscall, the syscall will be skipped, and a
// ptrace-stop will occur.
ptraceSyscallEmu
)
// CanTrace checks that t is permitted to access target's state, as defined by
// ptrace(2), subsection "Ptrace access mode checking". If attach is true, it
// checks for access mode PTRACE_MODE_ATTACH; otherwise, it checks for access
// mode PTRACE_MODE_READ.
//
// In Linux, ptrace access restrictions may be configured by LSMs. While we do
// not support LSMs, we do add additional restrictions based on the commoncap
// and YAMA LSMs.
//
// TODO(gvisor.dev/issue/212): The result of CanTrace is immediately stale (e.g., a
// racing setuid(2) may change traceability). This may pose a risk when a task
// changes from traceable to not traceable. This is only problematic across
// execve, where privileges may increase.
//
// We currently do not implement privileged executables (set-user/group-ID bits
// and file capabilities), so that case is not reachable.
func (t *Task) CanTrace(target *Task, attach bool) bool {
// "If the calling thread and the target thread are in the same thread
// group, access is always allowed." - ptrace(2)
//
// Note: Strictly speaking, prior to 73af963f9f30 ("__ptrace_may_access()
// should not deny sub-threads", first released in Linux 3.12), the rule
// only applies if t and target are the same task. But, as that commit
// message puts it, "[any] security check is pointless when the tasks share
// the same ->mm."
if t.tg == target.tg {
return true
}
if !t.canTraceStandard(target, attach) {
return false
}
if t.k.YAMAPtraceScope.Load() == linux.YAMA_SCOPE_RELATIONAL {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
if !t.canTraceYAMALocked(target) {
return false
}
}
return true
}
// canTraceLocked is the same as CanTrace, except the caller must already hold
// the TaskSet mutex (for reading or writing).
func (t *Task) canTraceLocked(target *Task, attach bool) bool {
if t.tg == target.tg {
return true
}
if !t.canTraceStandard(target, attach) {
return false
}
if t.k.YAMAPtraceScope.Load() == linux.YAMA_SCOPE_RELATIONAL {
if !t.canTraceYAMALocked(target) {
return false
}
}
return true
}
// canTraceStandard performs standard ptrace access checks as defined by
// kernel/ptrace.c:__ptrace_may_access as well as the commoncap LSM
// implementation of the security_ptrace_access_check() interface, which is
// always invoked.
func (t *Task) canTraceStandard(target *Task, attach bool) bool {
// """
// TODO(gvisor.dev/issue/260): 1. If the access mode specifies
// PTRACE_MODE_FSCREDS (ED: snipped, doesn't exist until Linux 4.5).
//
// Otherwise, the access mode specifies PTRACE_MODE_REALCREDS, so use the
// caller's real UID and GID for the checks in the next step. (Most APIs
// that check the caller's UID and GID use the effective IDs. For
// historical reasons, the PTRACE_MODE_REALCREDS check uses the real IDs
// instead.)
//
// 2. Deny access if neither of the following is true:
//
// - The real, effective, and saved-set user IDs of the target match the
// caller's user ID, *and* the real, effective, and saved-set group IDs of
// the target match the caller's group ID.
//
// - The caller has the CAP_SYS_PTRACE capability in the user namespace of
// the target.
//
// 3. Deny access if the target process "dumpable" attribute has a value
// other than 1 (SUID_DUMP_USER; see the discussion of PR_SET_DUMPABLE in
// prctl(2)), and the caller does not have the CAP_SYS_PTRACE capability in
// the user namespace of the target process.
//
// 4. The commoncap LSM performs the following steps:
//
// a) If the access mode includes PTRACE_MODE_FSCREDS, then use the
// caller's effective capability set; otherwise (the access mode specifies
// PTRACE_MODE_REALCREDS, so) use the caller's permitted capability set.
//
// b) Deny access if neither of the following is true:
//
// - The caller and the target process are in the same user namespace, and
// the caller's capabilities are a proper superset of the target process's
// permitted capabilities.
//
// - The caller has the CAP_SYS_PTRACE capability in the target process's
// user namespace.
//
// Note that the commoncap LSM does not distinguish between
// PTRACE_MODE_READ and PTRACE_MODE_ATTACH. (ED: From earlier in this
// section: "the commoncap LSM ... is always invoked".)
// """
callerCreds := t.Credentials()
targetCreds := target.Credentials()
if callerCreds.HasCapabilityIn(linux.CAP_SYS_PTRACE, targetCreds.UserNamespace) {
return true
}
if cuid := callerCreds.RealKUID; cuid != targetCreds.RealKUID || cuid != targetCreds.EffectiveKUID || cuid != targetCreds.SavedKUID {
return false
}
if cgid := callerCreds.RealKGID; cgid != targetCreds.RealKGID || cgid != targetCreds.EffectiveKGID || cgid != targetCreds.SavedKGID {
return false
}
var targetMM *mm.MemoryManager
target.WithMuLocked(func(t *Task) {
targetMM = t.MemoryManager()
})
if targetMM != nil && targetMM.Dumpability() != mm.UserDumpable {
return false
}
if callerCreds.UserNamespace != targetCreds.UserNamespace {
return false
}
if targetCreds.PermittedCaps&^callerCreds.PermittedCaps != 0 {
return false
}
return true
}
// canTraceYAMALocked performs ptrace access checks as defined by the YAMA LSM
// implementation of the security_ptrace_access_check() interface, with YAMA
// configured to mode 1. This is a common default among various Linux
// distributions.
//
// It only permits the tracer to proceed if one of the following conditions is
// met:
//
// a) The tracer is already attached to the tracee.
//
// b) The target is a descendant of the tracer.
//
// c) The target has explicitly given permission to the tracer through the
// PR_SET_PTRACER prctl.
//
// d) The tracer has CAP_SYS_PTRACE.
//
// See security/yama/yama_lsm.c:yama_ptrace_access_check.
//
// Precondition: the TaskSet mutex must be locked (for reading or writing).
func (t *Task) canTraceYAMALocked(target *Task) bool {
if tracer := target.Tracer(); tracer != nil {
if tracer.tg == t.tg {
return true
}
}
if target.isYAMADescendantOfLocked(t) {
return true
}
if target.hasYAMAExceptionForLocked(t) {
return true
}
if t.HasCapabilityIn(linux.CAP_SYS_PTRACE, target.UserNamespace()) {
return true
}
return false
}
// Determines whether t is considered a descendant of ancestor for the purposes
// of YAMA permissions (specifically, whether t's thread group is descended from
// ancestor's).
//
// Precondition: the TaskSet mutex must be locked (for reading or writing).
func (t *Task) isYAMADescendantOfLocked(ancestor *Task) bool {
walker := t
for walker != nil {
if walker.tg.leader == ancestor.tg.leader {
return true
}
walker = walker.parent
}
return false
}
// Precondition: the TaskSet mutex must be locked (for reading or writing).
func (t *Task) hasYAMAExceptionForLocked(tracer *Task) bool {
allowed, ok := t.k.ptraceExceptions[t.tg.leader]
if !ok {
return false
}
return allowed == nil || tracer.isYAMADescendantOfLocked(allowed)
}
// ClearYAMAException removes any YAMA exception with t as the tracee.
func (t *Task) ClearYAMAException() {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
tracee := t.tg.leader
delete(t.k.ptraceExceptions, tracee)
}
// SetYAMAException creates a YAMA exception allowing all descendants of tracer
// to trace t. If tracer is nil, then any task is allowed to trace t.
//
// If there was an existing exception, it is overwritten with the new one.
func (t *Task) SetYAMAException(tracer *Task) {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
tracee := t.tg.leader
tracee.ptraceYAMAExceptionAdded = true
if tracer != nil {
tracer.ptraceYAMAExceptionAdded = true
}
t.k.ptraceExceptions[tracee] = tracer
}
// Tracer returns t's ptrace Tracer.
func (t *Task) Tracer() *Task {
return t.ptraceTracer.Load().(*Task)
}
// hasTracer returns true if t has a ptrace tracer attached.
func (t *Task) hasTracer() bool {
// This isn't just inlined into callers so that if Task.Tracer() turns out
// to be too expensive because of e.g. interface conversion, we can switch
// to having a separate atomic flag more easily.
return t.Tracer() != nil
}
// ptraceStop is a TaskStop placed on tasks in a ptrace-stop.
//
// +stateify savable
type ptraceStop struct {
// If frozen is true, the stopped task's tracer is currently operating on
// it, so Task.Kill should not remove the stop.
frozen bool
// If listen is true, the stopped task's tracer invoked PTRACE_LISTEN, so
// ptraceFreeze should fail.
listen bool
}
// Killable implements TaskStop.Killable.
func (s *ptraceStop) Killable() bool {
return !s.frozen
}
// beginPtraceStopLocked initiates an unfrozen ptrace-stop on t. If t has been
// killed, the stop is skipped, and beginPtraceStopLocked returns false.
//
// beginPtraceStopLocked does not signal t's tracer or wake it if it is
// waiting.
//
// Preconditions:
// - The TaskSet mutex must be locked.
// - The caller must be running on the task goroutine.
func (t *Task) beginPtraceStopLocked() bool {
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
// This is analogous to Linux's kernel/signal.c:ptrace_stop() => ... =>
// kernel/sched/core.c:__schedule() => signal_pending_state() check, which
// is what prevents tasks from entering ptrace-stops after being killed.
// Note that if t was SIGKILLed and beingPtraceStopLocked is being called
// for PTRACE_EVENT_EXIT, the task will have dequeued the signal before
// entering the exit path, so t.killedLocked() will no longer return true.
// This is consistent with Linux: "Bugs: ... A SIGKILL signal may still
// cause a PTRACE_EVENT_EXIT stop before actual signal death. This may be
// changed in the future; SIGKILL is meant to always immediately kill tasks
// even under ptrace. Last confirmed on Linux 3.13." - ptrace(2)
if t.killedLocked() {
return false
}
t.beginInternalStopLocked(&ptraceStop{})
return true
}
// Preconditions: The TaskSet mutex must be locked.
func (t *Task) ptraceTrapLocked(code int32) {
// This is unconditional in ptrace_stop().
t.tg.signalHandlers.mu.Lock()
t.trapStopPending = false
t.tg.signalHandlers.mu.Unlock()
t.ptraceCode = code
t.ptraceSiginfo = &linux.SignalInfo{
Signo: int32(linux.SIGTRAP),
Code: code,
}
t.ptraceSiginfo.SetPID(int32(t.tg.pidns.tids[t]))
t.ptraceSiginfo.SetUID(int32(t.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()))
if t.beginPtraceStopLocked() {
tracer := t.Tracer()
tracer.signalStop(t, linux.CLD_TRAPPED, int32(linux.SIGTRAP))
tracer.tg.eventQueue.Notify(EventTraceeStop)
}
}
// ptraceFreeze checks if t is in a ptraceStop. If so, it freezes the
// ptraceStop, temporarily preventing it from being removed by a concurrent
// Task.Kill, and returns true. Otherwise it returns false.
//
// Preconditions:
// - The TaskSet mutex must be locked.
// - The caller must be running on the task goroutine of t's tracer.
func (t *Task) ptraceFreeze() bool {
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
if t.stop == nil {
return false
}
s, ok := t.stop.(*ptraceStop)
if !ok {
return false
}
if s.listen {
return false
}
s.frozen = true
return true
}
// ptraceUnfreeze ends the effect of a previous successful call to
// ptraceFreeze.
//
// Preconditions: t must be in a frozen ptraceStop.
func (t *Task) ptraceUnfreeze() {
// t.tg.signalHandlers is stable because t is in a frozen ptrace-stop,
// preventing its thread group from completing execve.
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
t.ptraceUnfreezeLocked()
}
// Preconditions:
// - t must be in a frozen ptraceStop.
// - t's signal mutex must be locked.
func (t *Task) ptraceUnfreezeLocked() {
// Do this even if the task has been killed to ensure a panic if t.stop is
// nil or not a ptraceStop.
t.stop.(*ptraceStop).frozen = false
if t.killedLocked() {
t.endInternalStopLocked()
}
}
// ptraceUnstop implements ptrace request PTRACE_CONT, PTRACE_SYSCALL,
// PTRACE_SINGLESTEP, PTRACE_SYSEMU, or PTRACE_SYSEMU_SINGLESTEP depending on
// mode and singlestep.
//
// Preconditions: t must be in a frozen ptrace stop.
//
// Postconditions: If ptraceUnstop returns nil, t will no longer be in a ptrace
// stop.
func (t *Task) ptraceUnstop(mode ptraceSyscallMode, singlestep bool, sig linux.Signal) error {
if sig != 0 && !sig.IsValid() {
return linuxerr.EIO
}
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
t.ptraceCode = int32(sig)
t.ptraceSyscallMode = mode
t.ptraceSinglestep = singlestep
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
t.endInternalStopLocked()
return nil
}
func (t *Task) ptraceTraceme() error {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
if t.hasTracer() {
return linuxerr.EPERM
}
if t.parent == nil {
// In Linux, only init can not have a parent, and init is assumed never
// to invoke PTRACE_TRACEME. In the sentry, TGID 1 is an arbitrary user
// application that may invoke PTRACE_TRACEME; having no parent can
// also occur if all tasks in the parent thread group have exited, and
// failed to find a living thread group to reparent to. The former case
// is treated as if TGID 1 has an exited parent in an invisible
// ancestor PID namespace that is an owner of the root user namespace
// (and consequently has CAP_SYS_PTRACE), and the latter case is a
// special form of the exited parent case below. In either case,
// returning nil here is correct.
return nil
}
if !t.parent.canTraceLocked(t, true) {
return linuxerr.EPERM
}
if t.parent.exitState != TaskExitNone {
// Fail silently, as if we were successfully attached but then
// immediately detached. This is consistent with Linux.
return nil
}
t.ptraceTracer.Store(t.parent)
t.parent.ptraceTracees[t] = struct{}{}
return nil
}
// ptraceAttach implements ptrace(PTRACE_ATTACH, target) if seize is false, and
// ptrace(PTRACE_SEIZE, target, 0, opts) if seize is true. t is the caller.
func (t *Task) ptraceAttach(target *Task, seize bool, opts uintptr) error {
if t.tg == target.tg {
return linuxerr.EPERM
}
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
if !t.canTraceLocked(target, true) {
return linuxerr.EPERM
}
if target.hasTracer() {
return linuxerr.EPERM
}
// Attaching to zombies and dead tasks is not permitted; the exit
// notification logic relies on this. Linux allows attaching to PF_EXITING
// tasks, though.
if target.exitState >= TaskExitZombie {
return linuxerr.EPERM
}
if seize {
if err := target.ptraceSetOptionsLocked(opts); err != nil {
return linuxerr.EIO
}
}
target.ptraceTracer.Store(t)
t.ptraceTracees[target] = struct{}{}
target.ptraceSeized = seize
target.tg.signalHandlers.mu.Lock()
// "Unlike PTRACE_ATTACH, PTRACE_SEIZE does not stop the process." -
// ptrace(2)
if !seize {
target.sendSignalLocked(&linux.SignalInfo{
Signo: int32(linux.SIGSTOP),
Code: linux.SI_USER,
}, false /* group */)
}
// Undocumented Linux feature: If the tracee is already group-stopped (and
// consequently will not report the SIGSTOP just sent), force it to leave
// and re-enter the stop so that it will switch to a ptrace-stop.
if target.stop == (*groupStop)(nil) {
target.trapStopPending = true
target.endInternalStopLocked()
// TODO(jamieliu): Linux blocks ptrace_attach() until the task has
// entered the ptrace-stop (or exited) via JOBCTL_TRAPPING.
}
target.tg.signalHandlers.mu.Unlock()
return nil
}
// ptraceDetach implements ptrace(PTRACE_DETACH, target, 0, sig). t is the
// caller.
//
// Preconditions: target must be a tracee of t in a frozen ptrace stop.
//
// Postconditions: If ptraceDetach returns nil, target will no longer be in a
// ptrace stop.
func (t *Task) ptraceDetach(target *Task, sig linux.Signal) error {
if sig != 0 && !sig.IsValid() {
return linuxerr.EIO
}
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
target.ptraceCode = int32(sig)
target.forgetTracerLocked()
delete(t.ptraceTracees, target)
return nil
}
// exitPtrace is called in the exit path to detach all of t's tracees.
func (t *Task) exitPtrace() {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
for target := range t.ptraceTracees {
if target.ptraceOpts.ExitKill {
target.tg.signalHandlers.mu.Lock()
target.sendSignalLocked(&linux.SignalInfo{
Signo: int32(linux.SIGKILL),
}, false /* group */)
target.tg.signalHandlers.mu.Unlock()
}
// Leave ptraceCode unchanged so that if the task is ptrace-stopped, it
// observes the ptraceCode it set before it entered the stop. I believe
// this is consistent with Linux.
target.forgetTracerLocked()
}
// "nil maps cannot be saved"
t.ptraceTracees = make(map[*Task]struct{})
if t.ptraceYAMAExceptionAdded {
delete(t.k.ptraceExceptions, t)
for tracee, tracer := range t.k.ptraceExceptions {
if tracer == t {
delete(t.k.ptraceExceptions, tracee)
}
}
}
}
// forgetTracerLocked detaches t's tracer and ensures that t is no longer
// ptrace-stopped.
//
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) forgetTracerLocked() {
t.ptraceSeized = false
t.ptraceOpts = ptraceOptions{}
t.ptraceSyscallMode = ptraceSyscallNone
t.ptraceSinglestep = false
t.ptraceTracer.Store((*Task)(nil))
if t.exitTracerNotified && !t.exitTracerAcked {
t.exitTracerAcked = true
t.exitNotifyLocked(true)
}
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
// Unset t.trapStopPending, which might have been set by PTRACE_INTERRUPT. If
// it wasn't, it will be reset via t.groupStopPending after the following.
t.trapStopPending = false
// If t's thread group is in a group stop and t is eligible to participate,
// make it do so. This is essentially the reverse of the special case in
// ptraceAttach, which converts a group stop to a ptrace stop. ("Handling
// of restart from group-stop is currently buggy, but the "as planned"
// behavior is to leave tracee stopped and waiting for SIGCONT." -
// ptrace(2))
if (t.tg.groupStopComplete || t.tg.groupStopPendingCount != 0) && !t.groupStopPending && t.exitState < TaskExitInitiated {
t.groupStopPending = true
// t already participated in the group stop when it unset
// groupStopPending.
t.groupStopAcknowledged = true
t.interrupt()
}
if _, ok := t.stop.(*ptraceStop); ok {
t.endInternalStopLocked()
}
}
// ptraceSignalLocked is called after signal dequeueing to check if t should
// enter ptrace signal-delivery-stop.
//
// Preconditions:
// - The signal mutex must be locked.
// - The caller must be running on the task goroutine.
//
// +checklocks:t.tg.signalHandlers.mu
func (t *Task) ptraceSignalLocked(info *linux.SignalInfo) bool {
if linux.Signal(info.Signo) == linux.SIGKILL {
return false
}
if !t.hasTracer() {
return false
}
// The tracer might change this signal into a stop signal, in which case
// any SIGCONT received after the signal was originally dequeued should
// cancel it. This is consistent with Linux.
t.tg.groupStopDequeued = true
// This is unconditional in ptrace_stop().
t.trapStopPending = false
// Can't lock the TaskSet mutex while holding a signal mutex.
t.tg.signalHandlers.mu.Unlock()
defer t.tg.signalHandlers.mu.Lock()
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
tracer := t.Tracer()
if tracer == nil {
return false
}
t.ptraceCode = info.Signo
t.ptraceSiginfo = info
t.Debugf("Entering signal-delivery-stop for signal %d", info.Signo)
if t.beginPtraceStopLocked() {
tracer.signalStop(t, linux.CLD_TRAPPED, info.Signo)
tracer.tg.eventQueue.Notify(EventTraceeStop)
}
return true
}
// ptraceSeccomp is called when a seccomp-bpf filter returns action
// SECCOMP_RET_TRACE to check if t should enter PTRACE_EVENT_SECCOMP stop. data
// is the lower 16 bits of the filter's return value.
func (t *Task) ptraceSeccomp(data uint16) bool {
if !t.hasTracer() {
return false
}
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
if !t.ptraceOpts.TraceSeccomp {
return false
}
t.Debugf("Entering PTRACE_EVENT_SECCOMP stop")
t.ptraceEventLocked(linux.PTRACE_EVENT_SECCOMP, uint64(data))
return true
}
// ptraceSyscallEnter is called immediately before entering a syscall to check
// if t should enter ptrace syscall-enter-stop.
func (t *Task) ptraceSyscallEnter() (taskRunState, bool) {
if !t.hasTracer() {
return nil, false
}
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
switch t.ptraceSyscallMode {
case ptraceSyscallNone:
return nil, false
case ptraceSyscallIntercept:
t.Debugf("Entering syscall-enter-stop from PTRACE_SYSCALL")
t.ptraceSyscallStopLocked()
return (*runSyscallAfterSyscallEnterStop)(nil), true
case ptraceSyscallEmu:
t.Debugf("Entering syscall-enter-stop from PTRACE_SYSEMU")
t.ptraceSyscallStopLocked()
return (*runSyscallAfterSysemuStop)(nil), true
}
panic(fmt.Sprintf("Unknown ptraceSyscallMode: %v", t.ptraceSyscallMode))
}
// ptraceSyscallExit is called immediately after leaving a syscall to check if
// t should enter ptrace syscall-exit-stop.
func (t *Task) ptraceSyscallExit() {
if !t.hasTracer() {
return
}
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
if t.ptraceSyscallMode != ptraceSyscallIntercept {
return
}
t.Debugf("Entering syscall-exit-stop")
t.ptraceSyscallStopLocked()
}
// Preconditions: The TaskSet mutex must be locked.
func (t *Task) ptraceSyscallStopLocked() {
code := int32(linux.SIGTRAP)
if t.ptraceOpts.SysGood {
code |= 0x80
}
t.ptraceTrapLocked(code)
}
type ptraceCloneKind int32
const (
// ptraceCloneKindClone represents a call to Task.Clone where
// TerminationSignal is not SIGCHLD and Vfork is false.
ptraceCloneKindClone ptraceCloneKind = iota
// ptraceCloneKindFork represents a call to Task.Clone where
// TerminationSignal is SIGCHLD and Vfork is false.
ptraceCloneKindFork
// ptraceCloneKindVfork represents a call to Task.Clone where Vfork is
// true.
ptraceCloneKindVfork
)
// ptraceClone is called at the end of a clone or fork syscall to check if t
// should enter PTRACE_EVENT_CLONE, PTRACE_EVENT_FORK, or PTRACE_EVENT_VFORK
// stop. child is the new task.
func (t *Task) ptraceClone(kind ptraceCloneKind, child *Task, args *linux.CloneArgs) bool {
if !t.hasTracer() {
return false
}
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
event := false
if args.Flags&linux.CLONE_UNTRACED == 0 {
switch kind {
case ptraceCloneKindClone:
if t.ptraceOpts.TraceClone {
t.Debugf("Entering PTRACE_EVENT_CLONE stop")
t.ptraceEventLocked(linux.PTRACE_EVENT_CLONE, uint64(t.tg.pidns.tids[child]))
event = true
}
case ptraceCloneKindFork:
if t.ptraceOpts.TraceFork {
t.Debugf("Entering PTRACE_EVENT_FORK stop")
t.ptraceEventLocked(linux.PTRACE_EVENT_FORK, uint64(t.tg.pidns.tids[child]))
event = true
}
case ptraceCloneKindVfork:
if t.ptraceOpts.TraceVfork {
t.Debugf("Entering PTRACE_EVENT_VFORK stop")
t.ptraceEventLocked(linux.PTRACE_EVENT_VFORK, uint64(t.tg.pidns.tids[child]))
event = true
}
default:
panic(fmt.Sprintf("Unknown ptraceCloneKind: %v", kind))
}
}
// "If the PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK, or PTRACE_O_TRACECLONE
// options are in effect, then children created by, respectively, vfork(2)
// or clone(2) with the CLONE_VFORK flag, fork(2) or clone(2) with the exit
// signal set to SIGCHLD, and other kinds of clone(2), are automatically
// attached to the same tracer which traced their parent. SIGSTOP is
// delivered to the children, causing them to enter signal-delivery-stop
// after they exit the system call which created them." - ptrace(2)
//
// clone(2)'s documentation of CLONE_UNTRACED and CLONE_PTRACE is
// confusingly wrong; see kernel/fork.c:_do_fork() => copy_process() =>
// include/linux/ptrace.h:ptrace_init_task().
if event || args.Flags&linux.CLONE_PTRACE != 0 {
tracer := t.Tracer()
if tracer != nil {
child.ptraceTracer.Store(tracer)
tracer.ptraceTracees[child] = struct{}{}
// "The "seized" behavior ... is inherited by children that are
// automatically attached using PTRACE_O_TRACEFORK,
// PTRACE_O_TRACEVFORK, and PTRACE_O_TRACECLONE." - ptrace(2)
child.ptraceSeized = t.ptraceSeized
// "Flags are inherited by new tracees created and "auto-attached"
// via active PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK, or
// PTRACE_O_TRACECLONE options." - ptrace(2)
child.ptraceOpts = t.ptraceOpts
child.tg.signalHandlers.mu.Lock()
// "PTRACE_SEIZE: ... Automatically attached children stop with
// PTRACE_EVENT_STOP and WSTOPSIG(status) returns SIGTRAP instead
// of having SIGSTOP signal delivered to them." - ptrace(2)
if child.ptraceSeized {
child.trapStopPending = true
} else {
child.pendingSignals.enqueue(&linux.SignalInfo{
Signo: int32(linux.SIGSTOP),
}, nil)
}
// The child will self-interrupt() when its task goroutine starts
// running, so we don't have to.
child.tg.signalHandlers.mu.Unlock()
}
}
return event
}
// ptraceVforkDone is called after the end of a vfork stop to check if t should
// enter PTRACE_EVENT_VFORK_DONE stop. child is the new task's thread ID in t's
// PID namespace.
func (t *Task) ptraceVforkDone(child ThreadID) bool {
if !t.hasTracer() {
return false
}
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
if !t.ptraceOpts.TraceVforkDone {
return false
}
t.Debugf("Entering PTRACE_EVENT_VFORK_DONE stop")
t.ptraceEventLocked(linux.PTRACE_EVENT_VFORK_DONE, uint64(child))
return true
}
// ptraceExec is called at the end of an execve syscall to check if t should
// enter PTRACE_EVENT_EXEC stop. oldTID is t's thread ID, in its *tracer's* PID
// namespace, prior to the execve. (If t did not have a tracer at the time
// oldTID was read, oldTID may be 0. This is consistent with Linux.)
func (t *Task) ptraceExec(oldTID ThreadID) {
if !t.hasTracer() {
return
}
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
// Recheck with the TaskSet mutex locked. Most ptrace points don't need to
// do this because detaching resets ptrace options, but PTRACE_EVENT_EXEC
// is special because both TraceExec and !TraceExec do something if a
// tracer is attached.
if !t.hasTracer() {
return
}
if t.ptraceOpts.TraceExec {
t.Debugf("Entering PTRACE_EVENT_EXEC stop")
t.ptraceEventLocked(linux.PTRACE_EVENT_EXEC, uint64(oldTID))
return
}
// "If the PTRACE_O_TRACEEXEC option is not in effect for the execing
// tracee, and if the tracee was PTRACE_ATTACHed rather that [sic]
// PTRACE_SEIZEd, the kernel delivers an extra SIGTRAP to the tracee after
// execve(2) returns. This is an ordinary signal (similar to one which can
// be generated by `kill -TRAP`, not a special kind of ptrace-stop.
// Employing PTRACE_GETSIGINFO for this signal returns si_code set to 0
// (SI_USER). This signal may be blocked by signal mask, and thus may be
// delivered (much) later." - ptrace(2)
if t.ptraceSeized {
return
}
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
t.sendSignalLocked(&linux.SignalInfo{
Signo: int32(linux.SIGTRAP),
Code: linux.SI_USER,
}, false /* group */)
}
// ptraceExit is called early in the task exit path to check if t should enter
// PTRACE_EVENT_EXIT stop.
func (t *Task) ptraceExit() {
if !t.hasTracer() {
return
}
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
if !t.ptraceOpts.TraceExit {
return
}
t.tg.signalHandlers.mu.Lock()
status := t.exitStatus
t.tg.signalHandlers.mu.Unlock()
t.Debugf("Entering PTRACE_EVENT_EXIT stop")
t.ptraceEventLocked(linux.PTRACE_EVENT_EXIT, uint64(status))
}
// Preconditions: The TaskSet mutex must be locked.
func (t *Task) ptraceEventLocked(event int32, msg uint64) {
t.ptraceEventMsg = msg
// """
// PTRACE_EVENT stops are observed by the tracer as waitpid(2) returning
// with WIFSTOPPED(status), and WSTOPSIG(status) returns SIGTRAP. An
// additional bit is set in the higher byte of the status word: the value
// status>>8 will be
//
// (SIGTRAP | PTRACE_EVENT_foo << 8).
//
// ...
//
// """ - ptrace(2)
t.ptraceTrapLocked(int32(linux.SIGTRAP) | (event << 8))
}
// ptraceKill implements ptrace(PTRACE_KILL, target). t is the caller.
func (t *Task) ptraceKill(target *Task) error {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
if target.Tracer() != t {
return linuxerr.ESRCH
}
target.tg.signalHandlers.mu.Lock()
defer target.tg.signalHandlers.mu.Unlock()
// "This operation is deprecated; do not use it! Instead, send a SIGKILL
// directly using kill(2) or tgkill(2). The problem with PTRACE_KILL is
// that it requires the tracee to be in signal-delivery-stop, otherwise it
// may not work (i.e., may complete successfully but won't kill the
// tracee)." - ptrace(2)
if target.stop == nil {
return nil
}
if _, ok := target.stop.(*ptraceStop); !ok {
return nil
}
target.ptraceCode = int32(linux.SIGKILL)
target.endInternalStopLocked()
return nil
}
func (t *Task) ptraceInterrupt(target *Task) error {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
if target.Tracer() != t {
return linuxerr.ESRCH
}
if !target.ptraceSeized {
return linuxerr.EIO
}
target.tg.signalHandlers.mu.Lock()
defer target.tg.signalHandlers.mu.Unlock()
if target.killedLocked() || target.exitState >= TaskExitInitiated {
return nil
}
target.trapStopPending = true
if s, ok := target.stop.(*ptraceStop); ok && s.listen {
target.endInternalStopLocked()
}
target.interrupt()
return nil
}
// Preconditions:
// - The TaskSet mutex must be locked for writing.
// - t must have a tracer.
func (t *Task) ptraceSetOptionsLocked(opts uintptr) error {
const valid = uintptr(linux.PTRACE_O_EXITKILL |
linux.PTRACE_O_TRACESYSGOOD |
linux.PTRACE_O_TRACECLONE |
linux.PTRACE_O_TRACEEXEC |
linux.PTRACE_O_TRACEEXIT |
linux.PTRACE_O_TRACEFORK |
linux.PTRACE_O_TRACESECCOMP |
linux.PTRACE_O_TRACEVFORK |
linux.PTRACE_O_TRACEVFORKDONE)
if opts&^valid != 0 {
return linuxerr.EINVAL
}
t.ptraceOpts = ptraceOptions{
ExitKill: opts&linux.PTRACE_O_EXITKILL != 0,
SysGood: opts&linux.PTRACE_O_TRACESYSGOOD != 0,
TraceClone: opts&linux.PTRACE_O_TRACECLONE != 0,
TraceExec: opts&linux.PTRACE_O_TRACEEXEC != 0,
TraceExit: opts&linux.PTRACE_O_TRACEEXIT != 0,
TraceFork: opts&linux.PTRACE_O_TRACEFORK != 0,
TraceSeccomp: opts&linux.PTRACE_O_TRACESECCOMP != 0,
TraceVfork: opts&linux.PTRACE_O_TRACEVFORK != 0,
TraceVforkDone: opts&linux.PTRACE_O_TRACEVFORKDONE != 0,
}
return nil
}
// Ptrace implements the ptrace system call.
func (t *Task) Ptrace(req int64, pid ThreadID, addr, data hostarch.Addr) error {
// PTRACE_TRACEME ignores all other arguments.
if req == linux.PTRACE_TRACEME {
return t.ptraceTraceme()
}
// All other ptrace requests operate on a current or future tracee
// specified by pid.
target := t.tg.pidns.TaskWithID(pid)
if target == nil {
return linuxerr.ESRCH
}
// PTRACE_ATTACH and PTRACE_SEIZE do not require that target is not already
// a tracee.
if req == linux.PTRACE_ATTACH || req == linux.PTRACE_SEIZE {
seize := req == linux.PTRACE_SEIZE
if seize && addr != 0 {
return linuxerr.EIO
}
return t.ptraceAttach(target, seize, uintptr(data))
}
// PTRACE_KILL and PTRACE_INTERRUPT require that the target is a tracee,
// but does not require that it is ptrace-stopped.
if req == linux.PTRACE_KILL {
return t.ptraceKill(target)
}
if req == linux.PTRACE_INTERRUPT {
return t.ptraceInterrupt(target)
}
// All other ptrace requests require that the target is a ptrace-stopped
// tracee, and freeze the ptrace-stop so the tracee can be operated on.
t.tg.pidns.owner.mu.RLock()
if target.Tracer() != t {
t.tg.pidns.owner.mu.RUnlock()
return linuxerr.ESRCH
}
if !target.ptraceFreeze() {
t.tg.pidns.owner.mu.RUnlock()
// "Most ptrace commands (all except PTRACE_ATTACH, PTRACE_SEIZE,
// PTRACE_TRACEME, PTRACE_INTERRUPT, and PTRACE_KILL) require the
// tracee to be in a ptrace-stop, otherwise they fail with ESRCH." -
// ptrace(2)
return linuxerr.ESRCH
}
t.tg.pidns.owner.mu.RUnlock()
// Even if the target has a ptrace-stop active, the tracee's task goroutine
// may not yet have reached Task.doStop; wait for it to do so. This is safe
// because there's no way for target to initiate a ptrace-stop and then
// block (by calling Task.block) before entering it.
//
// Caveat: If tasks were just restored, the tracee's first call to
// Task.Activate (in Task.run) occurs before its first call to Task.doStop,
// which may block if the tracer's address space is active.
t.UninterruptibleSleepStart(true)
target.waitGoroutineStoppedOrExited()
t.UninterruptibleSleepFinish(true)
// Resuming commands end the ptrace stop, but only if successful.
// PTRACE_LISTEN ends the ptrace stop if trapNotifyPending is already set on the
// target.
switch req {
case linux.PTRACE_DETACH:
if err := t.ptraceDetach(target, linux.Signal(data)); err != nil {
target.ptraceUnfreeze()
return err
}
return nil
case linux.PTRACE_CONT:
if err := target.ptraceUnstop(ptraceSyscallNone, false, linux.Signal(data)); err != nil {
target.ptraceUnfreeze()
return err
}
return nil
case linux.PTRACE_SYSCALL:
if err := target.ptraceUnstop(ptraceSyscallIntercept, false, linux.Signal(data)); err != nil {
target.ptraceUnfreeze()
return err
}
return nil
case linux.PTRACE_SINGLESTEP:
if err := target.ptraceUnstop(ptraceSyscallNone, true, linux.Signal(data)); err != nil {
target.ptraceUnfreeze()
return err
}
return nil
case linux.PTRACE_SYSEMU:
if err := target.ptraceUnstop(ptraceSyscallEmu, false, linux.Signal(data)); err != nil {
target.ptraceUnfreeze()
return err
}
return nil
case linux.PTRACE_SYSEMU_SINGLESTEP:
if err := target.ptraceUnstop(ptraceSyscallEmu, true, linux.Signal(data)); err != nil {
target.ptraceUnfreeze()
return err
}
return nil
case linux.PTRACE_LISTEN:
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
if !target.ptraceSeized {
return linuxerr.EIO
}
if target.ptraceSiginfo == nil {
return linuxerr.EIO
}
if target.ptraceSiginfo.Code>>8 != linux.PTRACE_EVENT_STOP {
return linuxerr.EIO
}
target.tg.signalHandlers.mu.Lock()
defer target.tg.signalHandlers.mu.Unlock()
if target.trapNotifyPending {
target.endInternalStopLocked()
} else {
target.stop.(*ptraceStop).listen = true
target.ptraceUnfreezeLocked()
}
return nil
}
// All other ptrace requests expect us to unfreeze the stop.
defer target.ptraceUnfreeze()
switch req {
case linux.PTRACE_PEEKTEXT, linux.PTRACE_PEEKDATA:
// "At the system call level, the PTRACE_PEEKTEXT, PTRACE_PEEKDATA, and
// PTRACE_PEEKUSER requests have a different API: they store the result
// at the address specified by the data parameter, and the return value
// is the error flag." - ptrace(2)
word := t.Arch().Native(0)
if _, err := word.CopyIn(target.CopyContext(t, usermem.IOOpts{IgnorePermissions: true}), addr); err != nil {
return err
}
_, err := word.CopyOut(t, data)
return err
case linux.PTRACE_POKETEXT, linux.PTRACE_POKEDATA:
word := t.Arch().Native(uintptr(data))
_, err := word.CopyOut(target.CopyContext(t, usermem.IOOpts{IgnorePermissions: true}), addr)
return err
case linux.PTRACE_GETREGSET:
// "Read the tracee's registers. addr specifies, in an
// architecture-dependent way, the type of registers to be read. ...
// data points to a struct iovec, which describes the destination
// buffer's location and length. On return, the kernel modifies iov.len
// to indicate the actual number of bytes returned." - ptrace(2)
ars, err := t.CopyInIovecs(data, 1)
if err != nil {
return err
}
t.p.PullFullState(t.MemoryManager().AddressSpace(), t.Arch())
ar := ars.Head()
n, err := target.Arch().PtraceGetRegSet(uintptr(addr), &usermem.IOReadWriter{
Ctx: t,
IO: t.MemoryManager(),
Addr: ar.Start,
Opts: usermem.IOOpts{
AddressSpaceActive: true,
},
}, int(ar.Length()), target.Kernel().FeatureSet())
if err != nil {
return err
}
// Update iovecs to represent the range of the written register set.
end, ok := ar.Start.AddLength(uint64(n))
if !ok {
panic(fmt.Sprintf("%#x + %#x overflows. Invalid reg size > %#x", ar.Start, n, ar.Length()))
}
ar.End = end
return t.CopyOutIovecs(data, hostarch.AddrRangeSeqOf(ar))
case linux.PTRACE_SETREGSET:
ars, err := t.CopyInIovecs(data, 1)
if err != nil {
return err
}
mm := t.MemoryManager()
t.p.PullFullState(mm.AddressSpace(), t.Arch())
ar := ars.Head()
n, err := target.Arch().PtraceSetRegSet(uintptr(addr), &usermem.IOReadWriter{
Ctx: t,
IO: mm,
Addr: ar.Start,
Opts: usermem.IOOpts{
AddressSpaceActive: true,
},
}, int(ar.Length()), target.Kernel().FeatureSet())
if err != nil {
return err
}
t.p.FullStateChanged()
ar.End -= hostarch.Addr(n)
return t.CopyOutIovecs(data, hostarch.AddrRangeSeqOf(ar))
case linux.PTRACE_GETSIGINFO:
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
if target.ptraceSiginfo == nil {
return linuxerr.EINVAL
}
_, err := target.ptraceSiginfo.CopyOut(t, data)
return err
case linux.PTRACE_SETSIGINFO:
var info linux.SignalInfo
if _, err := info.CopyIn(t, data); err != nil {
return err
}
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
if target.ptraceSiginfo == nil {
return linuxerr.EINVAL
}
target.ptraceSiginfo = &info
return nil
case linux.PTRACE_GETSIGMASK:
if addr != linux.SignalSetSize {
return linuxerr.EINVAL
}
mask := target.SignalMask()
_, err := mask.CopyOut(t, data)
return err
case linux.PTRACE_SETSIGMASK:
if addr != linux.SignalSetSize {
return linuxerr.EINVAL
}
var mask linux.SignalSet
if _, err := mask.CopyIn(t, data); err != nil {
return err
}
// The target's task goroutine is stopped, so this is safe:
target.SetSignalMask(mask &^ UnblockableSignals)
return nil
case linux.PTRACE_SETOPTIONS:
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
return target.ptraceSetOptionsLocked(uintptr(data))
case linux.PTRACE_GETEVENTMSG:
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
_, err := primitive.CopyUint64Out(t, hostarch.Addr(data), target.ptraceEventMsg)
return err
// PEEKSIGINFO is unimplemented but seems to have no users anywhere.
default:
return t.ptraceArch(target, req, addr, data)
}
}
|