1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"fmt"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/hostcpu"
"gvisor.dev/gvisor/pkg/usermem"
)
// Restartable sequences.
//
// We support two different APIs for restartable sequences.
//
// 1. The upstream interface added in v4.18.
// 2. The interface described in https://lwn.net/Articles/650333/.
//
// Throughout this file and other parts of the kernel, the latter is referred
// to as "old rseq". This interface was never merged upstream, but is supported
// for a limited set of applications that use it regardless.
// OldRSeqCriticalRegion describes an old rseq critical region.
//
// +stateify savable
type OldRSeqCriticalRegion struct {
// When a task in this thread group has its CPU preempted (as defined by
// platform.ErrContextCPUPreempted) or has a signal delivered to an
// application handler while its instruction pointer is in CriticalSection,
// set the instruction pointer to Restart and application register r10 (on
// amd64) to the former instruction pointer.
CriticalSection hostarch.AddrRange
Restart hostarch.Addr
}
// RSeqAvailable returns true if t supports (old and new) restartable sequences.
func (t *Task) RSeqAvailable() bool {
return t.k.useHostCores && t.k.Platform.DetectsCPUPreemption()
}
// SetRSeq registers addr as this thread's rseq structure.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) SetRSeq(addr hostarch.Addr, length, signature uint32) error {
if t.rseqAddr != 0 {
if t.rseqAddr != addr {
return linuxerr.EINVAL
}
if t.rseqSignature != signature {
return linuxerr.EINVAL
}
return linuxerr.EBUSY
}
// rseq must be aligned and correctly sized.
if addr&(linux.AlignOfRSeq-1) != 0 {
return linuxerr.EINVAL
}
if length != linux.SizeOfRSeq {
return linuxerr.EINVAL
}
if _, ok := t.MemoryManager().CheckIORange(addr, linux.SizeOfRSeq); !ok {
return linuxerr.EFAULT
}
t.rseqAddr = addr
t.rseqSignature = signature
// Initialize the CPUID.
//
// Linux implicitly does this on return from userspace, where failure
// would cause SIGSEGV.
if err := t.rseqUpdateCPU(); err != nil {
t.rseqAddr = 0
t.rseqSignature = 0
t.Debugf("Failed to copy CPU to %#x for rseq: %v", t.rseqAddr, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return linuxerr.EFAULT
}
return nil
}
// ClearRSeq unregisters addr as this thread's rseq structure.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) ClearRSeq(addr hostarch.Addr, length, signature uint32) error {
if t.rseqAddr == 0 {
return linuxerr.EINVAL
}
if t.rseqAddr != addr {
return linuxerr.EINVAL
}
if length != linux.SizeOfRSeq {
return linuxerr.EINVAL
}
if t.rseqSignature != signature {
return linuxerr.EPERM
}
if err := t.rseqClearCPU(); err != nil {
return err
}
t.rseqAddr = 0
t.rseqSignature = 0
if t.oldRSeqCPUAddr == 0 {
// rseqCPU no longer needed.
t.rseqCPU = -1
}
return nil
}
// OldRSeqCriticalRegion returns a copy of t's thread group's current
// old restartable sequence.
func (t *Task) OldRSeqCriticalRegion() OldRSeqCriticalRegion {
return *t.tg.oldRSeqCritical.Load().(*OldRSeqCriticalRegion)
}
// SetOldRSeqCriticalRegion replaces t's thread group's old restartable
// sequence.
//
// Preconditions: t.RSeqAvailable() == true.
func (t *Task) SetOldRSeqCriticalRegion(r OldRSeqCriticalRegion) error {
// These checks are somewhat more lenient than in Linux, which (bizarrely)
// requires r.CriticalSection to be non-empty and r.Restart to be
// outside of r.CriticalSection, even if r.CriticalSection.Start == 0
// (which disables the critical region).
if r.CriticalSection.Start == 0 {
r.CriticalSection.End = 0
r.Restart = 0
t.tg.oldRSeqCritical.Store(&r)
return nil
}
if r.CriticalSection.Start >= r.CriticalSection.End {
return linuxerr.EINVAL
}
if r.CriticalSection.Contains(r.Restart) {
return linuxerr.EINVAL
}
// TODO(jamieliu): check that r.CriticalSection and r.Restart are in
// the application address range, for consistency with Linux.
t.tg.oldRSeqCritical.Store(&r)
return nil
}
// OldRSeqCPUAddr returns the address that old rseq will keep updated with t's
// CPU number.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) OldRSeqCPUAddr() hostarch.Addr {
return t.oldRSeqCPUAddr
}
// SetOldRSeqCPUAddr replaces the address that old rseq will keep updated with
// t's CPU number.
//
// Preconditions:
// - t.RSeqAvailable() == true.
// - The caller must be running on the task goroutine.
// - t's AddressSpace must be active.
func (t *Task) SetOldRSeqCPUAddr(addr hostarch.Addr) error {
t.oldRSeqCPUAddr = addr
// Check that addr is writable.
//
// N.B. rseqUpdateCPU may fail on a bad t.rseqAddr as well. That's
// unfortunate, but unlikely in a correct program.
if err := t.rseqUpdateCPU(); err != nil {
t.oldRSeqCPUAddr = 0
return linuxerr.EINVAL // yes, EINVAL, not err or EFAULT
}
return nil
}
// Preconditions:
// - The caller must be running on the task goroutine.
// - t's AddressSpace must be active.
func (t *Task) rseqUpdateCPU() error {
if t.rseqAddr == 0 && t.oldRSeqCPUAddr == 0 {
t.rseqCPU = -1
return nil
}
t.rseqCPU = int32(hostcpu.GetCPU())
// Update both CPUs, even if one fails.
rerr := t.rseqCopyOutCPU()
oerr := t.oldRSeqCopyOutCPU()
if rerr != nil {
return rerr
}
return oerr
}
// Preconditions:
// - The caller must be running on the task goroutine.
// - t's AddressSpace must be active.
func (t *Task) oldRSeqCopyOutCPU() error {
if t.oldRSeqCPUAddr == 0 {
return nil
}
buf := t.CopyScratchBuffer(4)
hostarch.ByteOrder.PutUint32(buf, uint32(t.rseqCPU))
_, err := t.CopyOutBytes(t.oldRSeqCPUAddr, buf)
return err
}
// Preconditions:
// - The caller must be running on the task goroutine.
// - t's AddressSpace must be active.
func (t *Task) rseqCopyOutCPU() error {
if t.rseqAddr == 0 {
return nil
}
buf := t.CopyScratchBuffer(8)
// CPUIDStart and CPUID are the first two fields in linux.RSeq.
hostarch.ByteOrder.PutUint32(buf, uint32(t.rseqCPU)) // CPUIDStart
hostarch.ByteOrder.PutUint32(buf[4:], uint32(t.rseqCPU)) // CPUID
// N.B. This write is not atomic, but since this occurs on the task
// goroutine then as long as userspace uses a single-instruction read
// it can't see an invalid value.
_, err := t.CopyOutBytes(t.rseqAddr, buf)
return err
}
// Preconditions:
// - The caller must be running on the task goroutine.
// - t's AddressSpace must be active.
func (t *Task) rseqClearCPU() error {
buf := t.CopyScratchBuffer(8)
// CPUIDStart and CPUID are the first two fields in linux.RSeq.
hostarch.ByteOrder.PutUint32(buf, 0) // CPUIDStart
hostarch.ByteOrder.PutUint32(buf[4:], linux.RSEQ_CPU_ID_UNINITIALIZED) // CPUID
// N.B. This write is not atomic, but since this occurs on the task
// goroutine then as long as userspace uses a single-instruction read
// it can't see an invalid value.
_, err := t.CopyOutBytes(t.rseqAddr, buf)
return err
}
// rseqAddrInterrupt checks if IP is in a critical section, and aborts if so.
//
// This is a bit complex since both the RSeq and RSeqCriticalSection structs
// are stored in userspace. So we must:
//
// 1. Copy in the address of RSeqCriticalSection from RSeq.
// 2. Copy in RSeqCriticalSection itself.
// 3. Validate critical section struct version, address range, abort address.
// 4. Validate the abort signature (4 bytes preceding abort IP match expected
// signature).
//
// 5. Clear address of RSeqCriticalSection from RSeq.
// 6. Finally, conditionally abort.
//
// See kernel/rseq.c:rseq_ip_fixup for reference.
//
// Preconditions:
// - The caller must be running on the task goroutine.
// - t's AddressSpace must be active.
func (t *Task) rseqAddrInterrupt() {
if t.rseqAddr == 0 {
return
}
critAddrAddr, ok := t.rseqAddr.AddLength(linux.OffsetOfRSeqCriticalSection)
if !ok {
// SetRSeq should validate this.
panic(fmt.Sprintf("t.rseqAddr (%#x) not large enough", t.rseqAddr))
}
if t.Arch().Width() != 8 {
// We only handle 64-bit for now.
t.Debugf("Only 64-bit rseq supported.")
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
buf := t.CopyScratchBuffer(8)
if _, err := t.CopyInBytes(critAddrAddr, buf); err != nil {
t.Debugf("Failed to copy critical section address from %#x for rseq: %v", critAddrAddr, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
critAddr := hostarch.Addr(hostarch.ByteOrder.Uint64(buf))
if critAddr == 0 {
return
}
var cs linux.RSeqCriticalSection
if _, err := cs.CopyIn(t, critAddr); err != nil {
t.Debugf("Failed to copy critical section from %#x for rseq: %v", critAddr, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
if cs.Version != 0 {
t.Debugf("Unknown version in %+v", cs)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
start := hostarch.Addr(cs.Start)
critRange, ok := start.ToRange(cs.PostCommitOffset)
if !ok {
t.Debugf("Invalid start and offset in %+v", cs)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
abort := hostarch.Addr(cs.Abort)
if critRange.Contains(abort) {
t.Debugf("Abort in critical section in %+v", cs)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
// Verify signature.
sigAddr := abort - linux.SizeOfRSeqSignature
buf = t.CopyScratchBuffer(linux.SizeOfRSeqSignature)
if _, err := t.CopyInBytes(sigAddr, buf); err != nil {
t.Debugf("Failed to copy critical section signature from %#x for rseq: %v", sigAddr, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
sig := hostarch.ByteOrder.Uint32(buf)
if sig != t.rseqSignature {
t.Debugf("Mismatched rseq signature %d != %d", sig, t.rseqSignature)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
// Clear the critical section address.
//
// NOTE(b/143949567): We don't support any rseq flags, so we always
// restart if we are in the critical section, and thus *always* clear
// critAddrAddr.
if _, err := t.MemoryManager().ZeroOut(t, critAddrAddr, int64(t.Arch().Width()), usermem.IOOpts{
AddressSpaceActive: true,
}); err != nil {
t.Debugf("Failed to clear critical section address from %#x for rseq: %v", critAddrAddr, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return
}
// Finally we can actually decide whether or not to restart.
if !critRange.Contains(hostarch.Addr(t.Arch().IP())) {
return
}
t.Arch().SetIP(uintptr(cs.Abort))
}
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) oldRSeqInterrupt() {
r := t.tg.oldRSeqCritical.Load().(*OldRSeqCriticalRegion)
if ip := t.Arch().IP(); r.CriticalSection.Contains(hostarch.Addr(ip)) {
t.Debugf("Interrupted rseq critical section at %#x; restarting at %#x", ip, r.Restart)
t.Arch().SetIP(uintptr(r.Restart))
t.Arch().SetOldRSeqInterruptedIP(ip)
}
}
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) rseqInterrupt() {
t.rseqAddrInterrupt()
t.oldRSeqInterrupt()
}
|