1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/bpf"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/arch"
)
const maxSyscallFilterInstructions = 1 << 15
// dataAsBPFInput returns a serialized BPF program, only valid on the current task
// goroutine.
//
// Note: this is called for every syscall, which is a very hot path.
func dataAsBPFInput(t *Task, d *linux.SeccompData) bpf.Input {
buf := t.CopyScratchBuffer(d.SizeBytes())
d.MarshalUnsafe(buf)
return bpf.InputBytes{
Data: buf,
// Go-marshal always uses the native byte order.
Order: hostarch.ByteOrder,
}
}
func seccompSiginfo(t *Task, errno, sysno int32, ip hostarch.Addr) *linux.SignalInfo {
si := &linux.SignalInfo{
Signo: int32(linux.SIGSYS),
Errno: errno,
Code: linux.SYS_SECCOMP,
}
si.SetCallAddr(uint64(ip))
si.SetSyscall(sysno)
si.SetArch(t.SyscallTable().AuditNumber)
return si
}
// checkSeccompSyscall applies the task's seccomp filters before the execution
// of syscall sysno at instruction pointer ip. (These parameters must be passed
// in because vsyscalls do not use the values in t.Arch().)
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) checkSeccompSyscall(sysno int32, args arch.SyscallArguments, ip hostarch.Addr) linux.BPFAction {
result := linux.BPFAction(t.evaluateSyscallFilters(sysno, args, ip))
action := result & linux.SECCOMP_RET_ACTION
switch action {
case linux.SECCOMP_RET_TRAP:
// "Results in the kernel sending a SIGSYS signal to the triggering
// task without executing the system call. ... The SECCOMP_RET_DATA
// portion of the return value will be passed as si_errno." -
// Documentation/prctl/seccomp_filter.txt
t.SendSignal(seccompSiginfo(t, int32(result.Data()), sysno, ip))
// "The return value register will contain an arch-dependent value." In
// practice, it's ~always the syscall number.
t.Arch().SetReturn(uintptr(sysno))
case linux.SECCOMP_RET_ERRNO:
// "Results in the lower 16-bits of the return value being passed to
// userland as the errno without executing the system call."
t.Arch().SetReturn(-uintptr(result.Data()))
case linux.SECCOMP_RET_TRACE:
// "When returned, this value will cause the kernel to attempt to
// notify a ptrace()-based tracer prior to executing the system call.
// If there is no tracer present, -ENOSYS is returned to userland and
// the system call is not executed."
if !t.ptraceSeccomp(result.Data()) {
// This useless-looking temporary is needed because Go.
tmp := uintptr(unix.ENOSYS)
t.Arch().SetReturn(-tmp)
return linux.SECCOMP_RET_ERRNO
}
case linux.SECCOMP_RET_ALLOW:
// "Results in the system call being executed."
case linux.SECCOMP_RET_KILL_THREAD:
// "Results in the task exiting immediately without executing the
// system call. The exit status of the task will be SIGSYS, not
// SIGKILL."
default:
// consistent with Linux
return linux.SECCOMP_RET_KILL_THREAD
}
return action
}
func (t *Task) evaluateSyscallFilters(sysno int32, args arch.SyscallArguments, ip hostarch.Addr) uint32 {
data := linux.SeccompData{
Nr: sysno,
Arch: t.image.st.AuditNumber,
InstructionPointer: uint64(ip),
}
// data.args is []uint64 and args is []arch.SyscallArgument (uintptr), so
// we can't do any slicing tricks or even use copy/append here.
for i, arg := range args {
if i >= len(data.Args) {
break
}
data.Args[i] = arg.Uint64()
}
input := dataAsBPFInput(t, &data)
ret := uint32(linux.SECCOMP_RET_ALLOW)
f := t.syscallFilters.Load()
if f == nil {
return ret
}
// "Every filter successfully installed will be evaluated (in reverse
// order) for each system call the task makes." - kernel/seccomp.c
for i := len(f.([]bpf.Program)) - 1; i >= 0; i-- {
thisRet, err := bpf.Exec(f.([]bpf.Program)[i], input)
if err != nil {
t.Debugf("seccomp-bpf filter %d returned error: %v", i, err)
thisRet = uint32(linux.SECCOMP_RET_KILL_THREAD)
}
// "If multiple filters exist, the return value for the evaluation of a
// given system call will always use the highest precedent value." -
// Documentation/prctl/seccomp_filter.txt
//
// (Note that this contradicts prctl(2): "If the filters permit prctl()
// calls, then additional filters can be added; they are run in order
// until the first non-allow result is seen." prctl(2) is incorrect.)
//
// "The ordering ensures that a min_t() over composed return values
// always selects the least permissive choice." -
// include/uapi/linux/seccomp.h
if (thisRet & linux.SECCOMP_RET_ACTION) < (ret & linux.SECCOMP_RET_ACTION) {
ret = thisRet
}
}
return ret
}
// AppendSyscallFilter adds BPF program p as a system call filter.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) AppendSyscallFilter(p bpf.Program, syncAll bool) error {
// While syscallFilters are an atomic.Value we must take the mutex to prevent
// our read-copy-update from happening while another task is syncing syscall
// filters to us, this keeps the filters in a consistent state.
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
// Cap the combined length of all syscall filters (plus a penalty of 4
// instructions per filter beyond the first) to maxSyscallFilterInstructions.
// This restriction is inherited from Linux.
totalLength := p.Length()
var newFilters []bpf.Program
if sf := t.syscallFilters.Load(); sf != nil {
oldFilters := sf.([]bpf.Program)
for _, f := range oldFilters {
totalLength += f.Length() + 4
}
newFilters = append(newFilters, oldFilters...)
}
if totalLength > maxSyscallFilterInstructions {
return linuxerr.ENOMEM
}
newFilters = append(newFilters, p)
t.syscallFilters.Store(newFilters)
if syncAll {
// Note: No new privs is always assumed to be set.
for ot := t.tg.tasks.Front(); ot != nil; ot = ot.Next() {
if ot != t {
var copiedFilters []bpf.Program
copiedFilters = append(copiedFilters, newFilters...)
ot.syscallFilters.Store(copiedFilters)
}
}
}
return nil
}
// SeccompMode returns a SECCOMP_MODE_* constant indicating the task's current
// seccomp syscall filtering mode, appropriate for both prctl(PR_GET_SECCOMP)
// and /proc/[pid]/status.
func (t *Task) SeccompMode() int {
f := t.syscallFilters.Load()
if f != nil && len(f.([]bpf.Program)) > 0 {
return linux.SECCOMP_MODE_FILTER
}
return linux.SECCOMP_MODE_NONE
}
|