1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
)
// SessionID is the public identifier.
type SessionID ThreadID
// ProcessGroupID is the public identifier.
type ProcessGroupID ThreadID
// Session contains a leader threadgroup and a list of ProcessGroups.
//
// +stateify savable
type Session struct {
SessionRefs
// leader is the originator of the Session.
//
// Note that this may no longer be running (and may be reaped), so the
// ID is cached upon initial creation. The leader is still required
// however, since its PIDNamespace defines the scope of the Session.
//
// The leader is immutable.
leader *ThreadGroup
// id is the cached identifier in the leader's namespace.
//
// The id is immutable.
id SessionID
// foreground is the foreground process group.
//
// This is protected by TaskSet.mu.
foreground *ProcessGroup
// ProcessGroups is a list of process groups in this Session. This is
// protected by TaskSet.mu.
processGroups processGroupList
// sessionEntry is the embed for TaskSet.sessions. This is protected by
// TaskSet.mu.
sessionEntry
}
// DecRef drops a reference.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (s *Session) DecRef() {
s.SessionRefs.DecRef(func() {
// Remove translations from the leader.
for ns := s.leader.pidns; ns != nil; ns = ns.parent {
id := ns.sids[s]
delete(ns.sids, s)
delete(ns.sessions, id)
}
// Remove from the list of global Sessions.
s.leader.pidns.owner.sessions.Remove(s)
})
}
// ProcessGroup contains an originator threadgroup and a parent Session.
//
// +stateify savable
type ProcessGroup struct {
refs ProcessGroupRefs
// originator is the originator of the group.
//
// See note re: leader in Session. The same applies here.
//
// The originator is immutable.
originator *ThreadGroup
// id is the cached identifier in the originator's namespace.
//
// The id is immutable.
id ProcessGroupID
// Session is the parent Session.
//
// The session is immutable.
session *Session
// ancestors is the number of thread groups in this process group whose
// parent is in a different process group in the same session.
//
// The name is derived from the fact that process groups where
// ancestors is zero are considered "orphans".
//
// ancestors is protected by TaskSet.mu.
ancestors uint32
// processGroupEntry is the embedded entry for Sessions.groups. This is
// protected by TaskSet.mu.
processGroupEntry
}
// Originator retuns the originator of the process group.
func (pg *ProcessGroup) Originator() *ThreadGroup {
return pg.originator
}
// IsOrphan returns true if this process group is an orphan.
func (pg *ProcessGroup) IsOrphan() bool {
ts := pg.originator.TaskSet()
ts.mu.RLock()
defer ts.mu.RUnlock()
return pg.ancestors == 0
}
// incRefWithParent grabs a reference.
//
// This function is called when this ProcessGroup is being associated with some
// new ThreadGroup, tg. parentPG is the ProcessGroup of tg's parent
// ThreadGroup. If tg is init, then parentPG may be nil.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (pg *ProcessGroup) incRefWithParent(parentPG *ProcessGroup) {
// We acquire an "ancestor" reference in the case of a nil parent.
// This is because the process being associated is init, and init can
// never be orphaned (we count it as always having an ancestor).
if pg != parentPG && (parentPG == nil || pg.session == parentPG.session) {
pg.ancestors++
}
pg.refs.IncRef()
}
// decRefWithParent drops a reference.
//
// parentPG is per incRefWithParent.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (pg *ProcessGroup) decRefWithParent(parentPG *ProcessGroup) {
// See incRefWithParent regarding parent == nil.
if pg != parentPG && (parentPG == nil || pg.session == parentPG.session) {
pg.ancestors--
}
alive := true
pg.refs.DecRef(func() {
alive = false // don't bother with handleOrphan.
// Remove translations from the originator.
for ns := pg.originator.pidns; ns != nil; ns = ns.parent {
id := ns.pgids[pg]
delete(ns.pgids, pg)
delete(ns.processGroups, id)
}
// Remove the list of process groups.
pg.session.processGroups.Remove(pg)
pg.session.DecRef()
})
if alive {
pg.handleOrphan()
}
}
// parentPG returns the parent process group.
//
// Precondition: callers must hold TaskSet.mu.
func (tg *ThreadGroup) parentPG() *ProcessGroup {
if tg.leader.parent != nil {
return tg.leader.parent.tg.processGroup
}
return nil
}
// handleOrphan checks whether the process group is an orphan and has any
// stopped jobs. If yes, then appropriate signals are delivered to each thread
// group within the process group.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (pg *ProcessGroup) handleOrphan() {
// Check if this process is an orphan.
if pg.ancestors != 0 {
return
}
// See if there are any stopped jobs.
hasStopped := false
pg.originator.pidns.owner.forEachThreadGroupLocked(func(tg *ThreadGroup) {
if tg.processGroup != pg {
return
}
tg.signalHandlers.mu.NestedLock(signalHandlersLockTg)
if tg.groupStopComplete {
hasStopped = true
}
tg.signalHandlers.mu.NestedUnlock(signalHandlersLockTg)
})
if !hasStopped {
return
}
// Deliver appropriate signals to all thread groups.
pg.originator.pidns.owner.forEachThreadGroupLocked(func(tg *ThreadGroup) {
if tg.processGroup != pg {
return
}
tg.signalHandlers.mu.NestedLock(signalHandlersLockTg)
tg.leader.sendSignalLocked(SignalInfoPriv(linux.SIGHUP), true /* group */)
tg.leader.sendSignalLocked(SignalInfoPriv(linux.SIGCONT), true /* group */)
tg.signalHandlers.mu.NestedUnlock(signalHandlersLockTg)
})
return
}
// Session returns the process group's session without taking a reference.
func (pg *ProcessGroup) Session() *Session {
return pg.session
}
// SendSignal sends a signal to all processes inside the process group. It is
// analogous to kernel/signal.c:kill_pgrp.
func (pg *ProcessGroup) SendSignal(info *linux.SignalInfo) error {
tasks := pg.originator.TaskSet()
tasks.mu.RLock()
defer tasks.mu.RUnlock()
var lastErr error
for tg := range tasks.Root.tgids {
if tg.processGroup == pg {
tg.signalHandlers.mu.Lock()
infoCopy := *info
if err := tg.leader.sendSignalLocked(&infoCopy, true /*group*/); err != nil {
lastErr = err
}
tg.signalHandlers.mu.Unlock()
}
}
return lastErr
}
// CreateSession creates a new Session, with the ThreadGroup as the leader.
//
// EPERM may be returned if either the given ThreadGroup is already a Session
// leader, or a ProcessGroup already exists for the ThreadGroup's ID.
func (tg *ThreadGroup) CreateSession() error {
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
tg.signalHandlers.mu.Lock()
defer tg.signalHandlers.mu.Unlock()
return tg.createSession()
}
// createSession creates a new session for a threadgroup.
//
// Precondition: callers must hold TaskSet.mu and the signal mutex for writing.
func (tg *ThreadGroup) createSession() error {
// Get the ID for this thread in the current namespace.
id := tg.pidns.tgids[tg]
// Check if this ThreadGroup already leads a Session, or
// if the proposed group is already taken.
for s := tg.pidns.owner.sessions.Front(); s != nil; s = s.Next() {
if s.leader.pidns != tg.pidns {
continue
}
if s.leader == tg {
return linuxerr.EPERM
}
if s.id == SessionID(id) {
return linuxerr.EPERM
}
for pg := s.processGroups.Front(); pg != nil; pg = pg.Next() {
if pg.id == ProcessGroupID(id) {
return linuxerr.EPERM
}
}
}
// Create a new Session, with a single reference.
s := &Session{
id: SessionID(id),
leader: tg,
}
s.InitRefs()
// Create a new ProcessGroup, belonging to that Session.
// This also has a single reference (assigned below).
//
// Note that since this is a new session and a new process group, there
// will be zero ancestors for this process group. (It is an orphan at
// this point.)
pg := &ProcessGroup{
id: ProcessGroupID(id),
originator: tg,
session: s,
ancestors: 0,
}
pg.refs.InitRefs()
// Tie them and return the result.
s.processGroups.PushBack(pg)
tg.pidns.owner.sessions.PushBack(s)
// Leave the current group, and assign the new one.
if tg.processGroup != nil {
oldParentPG := tg.parentPG()
tg.forEachChildThreadGroupLocked(func(childTG *ThreadGroup) {
childTG.processGroup.incRefWithParent(pg)
childTG.processGroup.decRefWithParent(oldParentPG)
})
// If tg.processGroup is an orphan, decRefWithParent will lock
// the signal mutex of each thread group in tg.processGroup.
// However, tg's signal mutex may already be locked at this
// point. We change tg's process group before calling
// decRefWithParent to avoid locking tg's signal mutex twice.
oldPG := tg.processGroup
tg.processGroup = pg
oldPG.decRefWithParent(oldParentPG)
} else {
// The current process group may be nil only in the case of an
// unparented thread group (i.e. the init process). This would
// not normally occur, but we allow it for the convenience of
// CreateSession working from that point. There will be no
// child processes. We always say that the very first group
// created has ancestors (avoids checks elsewhere).
//
// Note that this mirrors the parent == nil logic in
// incRef/decRef/reparent, which counts nil as an ancestor.
tg.processGroup = pg
tg.processGroup.ancestors++
}
// Ensure a translation is added to all namespaces.
for ns := tg.pidns; ns != nil; ns = ns.parent {
local := ns.tgids[tg]
ns.sids[s] = SessionID(local)
ns.sessions[SessionID(local)] = s
ns.pgids[pg] = ProcessGroupID(local)
ns.processGroups[ProcessGroupID(local)] = pg
}
// Disconnect from the controlling terminal.
tg.tty = nil
return nil
}
// CreateProcessGroup creates a new process group.
//
// An EPERM error will be returned if the ThreadGroup belongs to a different
// Session, is a Session leader or the group already exists.
func (tg *ThreadGroup) CreateProcessGroup() error {
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
// Get the ID for this thread in the current namespace.
id := tg.pidns.tgids[tg]
// Check whether a process still exists or not.
if id == 0 {
return linuxerr.ESRCH
}
// Per above, check for a Session leader or existing group.
for s := tg.pidns.owner.sessions.Front(); s != nil; s = s.Next() {
if s.leader.pidns != tg.pidns {
continue
}
if s.leader == tg {
return linuxerr.EPERM
}
for pg := s.processGroups.Front(); pg != nil; pg = pg.Next() {
if pg.id == ProcessGroupID(id) {
return linuxerr.EPERM
}
}
}
// Create a new ProcessGroup, belonging to the current Session.
//
// We manually adjust the ancestors if the parent is in the same
// session.
tg.processGroup.session.IncRef()
pg := ProcessGroup{
id: ProcessGroupID(id),
originator: tg,
session: tg.processGroup.session,
}
pg.refs.InitRefs()
if tg.leader.parent != nil && tg.leader.parent.tg.processGroup.session == pg.session {
pg.ancestors++
}
// Assign the new process group; adjust children.
oldParentPG := tg.parentPG()
tg.forEachChildThreadGroupLocked(func(childTG *ThreadGroup) {
childTG.processGroup.incRefWithParent(&pg)
childTG.processGroup.decRefWithParent(oldParentPG)
})
tg.processGroup.decRefWithParent(oldParentPG)
tg.processGroup = &pg
// Add the new process group to the session.
pg.session.processGroups.PushBack(&pg)
// Ensure this translation is added to all namespaces.
for ns := tg.pidns; ns != nil; ns = ns.parent {
local := ns.tgids[tg]
ns.pgids[&pg] = ProcessGroupID(local)
ns.processGroups[ProcessGroupID(local)] = &pg
}
return nil
}
// JoinProcessGroup joins an existing process group.
//
// This function will return EACCES if an exec has been performed since fork
// by the given ThreadGroup, and EPERM if the Sessions are not the same or the
// group does not exist.
//
// If checkExec is set, then the join is not permitted after the process has
// executed exec at least once.
func (tg *ThreadGroup) JoinProcessGroup(pidns *PIDNamespace, pgid ProcessGroupID, checkExec bool) error {
pidns.owner.mu.Lock()
defer pidns.owner.mu.Unlock()
// Check whether the process still exists or not.
if _, ok := pidns.tgids[tg]; !ok {
return linuxerr.ESRCH
}
// Lookup the ProcessGroup.
pg := pidns.processGroups[pgid]
if pg == nil {
return linuxerr.EPERM
}
// Disallow the join if an execve has performed, per POSIX.
if checkExec && tg.execed {
return linuxerr.EACCES
}
// See if it's in the same session as ours.
if pg.session != tg.processGroup.session {
return linuxerr.EPERM
}
// Join the group; adjust children.
parentPG := tg.parentPG()
pg.incRefWithParent(parentPG)
tg.forEachChildThreadGroupLocked(func(childTG *ThreadGroup) {
childTG.processGroup.incRefWithParent(pg)
childTG.processGroup.decRefWithParent(tg.processGroup)
})
tg.processGroup.decRefWithParent(parentPG)
tg.processGroup = pg
return nil
}
// Session returns the ThreadGroup's Session.
//
// A reference is not taken on the session.
func (tg *ThreadGroup) Session() *Session {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.processGroup.session
}
// IDOfSession returns the Session assigned to s in PID namespace ns.
//
// If this group isn't visible in this namespace, zero will be returned. It is
// the callers responsibility to check that before using this function.
func (ns *PIDNamespace) IDOfSession(s *Session) SessionID {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
return ns.sids[s]
}
// SessionWithID returns the Session with the given ID in the PID namespace ns,
// or nil if that given ID is not defined in this namespace.
//
// A reference is not taken on the session.
func (ns *PIDNamespace) SessionWithID(id SessionID) *Session {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
return ns.sessions[id]
}
// ProcessGroup returns the ThreadGroup's ProcessGroup.
//
// A reference is not taken on the process group.
func (tg *ThreadGroup) ProcessGroup() *ProcessGroup {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.processGroup
}
// IDOfProcessGroup returns the process group assigned to pg in PID namespace ns.
//
// The same constraints apply as IDOfSession.
func (ns *PIDNamespace) IDOfProcessGroup(pg *ProcessGroup) ProcessGroupID {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
return ns.pgids[pg]
}
// ProcessGroupWithID returns the ProcessGroup with the given ID in the PID
// namespace ns, or nil if that given ID is not defined in this namespace.
//
// A reference is not taken on the process group.
func (ns *PIDNamespace) ProcessGroupWithID(id ProcessGroupID) *ProcessGroup {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
return ns.processGroups[id]
}
|