1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
// This file implements the task exit cycle:
//
// - Tasks are asynchronously requested to exit with Task.Kill.
//
// - When able, the task goroutine enters the exit path starting from state
// runExit.
//
// - Other tasks observe completed exits with Task.Wait (which implements the
// wait*() family of syscalls).
import (
"errors"
"fmt"
"strconv"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/seccheck"
pb "gvisor.dev/gvisor/pkg/sentry/seccheck/points/points_go_proto"
"gvisor.dev/gvisor/pkg/waiter"
)
// TaskExitState represents a step in the task exit path.
//
// "Exiting" and "exited" are often ambiguous; prefer to name specific states.
type TaskExitState int
const (
// TaskExitNone indicates that the task has not begun exiting.
TaskExitNone TaskExitState = iota
// TaskExitInitiated indicates that the task goroutine has entered the exit
// path, and the task is no longer eligible to participate in group stops
// or group signal handling. TaskExitInitiated is analogous to Linux's
// PF_EXITING.
TaskExitInitiated
// TaskExitZombie indicates that the task has released its resources, and
// the task no longer prevents a sibling thread from completing execve.
TaskExitZombie
// TaskExitDead indicates that the task's thread IDs have been released,
// and the task no longer prevents its thread group leader from being
// reaped. ("Reaping" refers to the transitioning of a task from
// TaskExitZombie to TaskExitDead.)
TaskExitDead
)
// String implements fmt.Stringer.
func (t TaskExitState) String() string {
switch t {
case TaskExitNone:
return "TaskExitNone"
case TaskExitInitiated:
return "TaskExitInitiated"
case TaskExitZombie:
return "TaskExitZombie"
case TaskExitDead:
return "TaskExitDead"
default:
return strconv.Itoa(int(t))
}
}
// killLocked marks t as killed by enqueueing a SIGKILL, without causing the
// thread-group-affecting side effects SIGKILL usually has.
//
// Preconditions: The signal mutex must be locked.
func (t *Task) killLocked() {
// Clear killable stops.
if t.stop != nil && t.stop.Killable() {
t.endInternalStopLocked()
}
t.pendingSignals.enqueue(&linux.SignalInfo{
Signo: int32(linux.SIGKILL),
// Linux just sets SIGKILL in the pending signal bitmask without
// enqueueing an actual siginfo, such that
// kernel/signal.c:collect_signal() initializes si_code to SI_USER.
Code: linux.SI_USER,
}, nil)
t.interrupt()
}
// killed returns true if t has a SIGKILL pending. killed is analogous to
// Linux's fatal_signal_pending().
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) killed() bool {
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
return t.killedLocked()
}
func (t *Task) killedLocked() bool {
return t.pendingSignals.pendingSet&linux.SignalSetOf(linux.SIGKILL) != 0
}
// PrepareExit indicates an exit with the given status.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) PrepareExit(ws linux.WaitStatus) {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
last := t.tg.activeTasks == 1
if last {
t.prepareGroupExitLocked(ws)
return
}
t.exitStatus = ws
}
// PrepareGroupExit indicates a group exit with status es to t's thread group.
//
// PrepareGroupExit is analogous to Linux's do_group_exit(), except that it
// does not tail-call do_exit(), except that it *does* set Task.exitStatus.
// (Linux does not do so until within do_exit(), since it reuses exit_code for
// ptrace.)
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) PrepareGroupExit(ws linux.WaitStatus) {
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
t.prepareGroupExitLocked(ws)
}
// Preconditions:
// - The caller must be running on the task goroutine.
// - The signal mutex must be locked.
func (t *Task) prepareGroupExitLocked(ws linux.WaitStatus) {
if t.tg.exiting || t.tg.execing != nil {
// Note that if t.tg.exiting is false but t.tg.execing is not nil, i.e.
// this "group exit" is being executed by the killed sibling of an
// execing task, then Task.Execve never set t.tg.exitStatus, so it's
// still the zero value. This is consistent with Linux, both in intent
// ("all other threads ... report death as if they exited via _exit(2)
// with exit code 0" - ptrace(2), "execve under ptrace") and in
// implementation (compare fs/exec.c:de_thread() =>
// kernel/signal.c:zap_other_threads() and
// kernel/exit.c:do_group_exit() =>
// include/linux/sched.h:signal_group_exit()).
t.exitStatus = t.tg.exitStatus
return
}
t.tg.exiting = true
t.tg.exitStatus = ws
t.exitStatus = ws
for sibling := t.tg.tasks.Front(); sibling != nil; sibling = sibling.Next() {
if sibling != t {
sibling.killLocked()
}
}
}
// Kill requests that all tasks in ts exit as if group exiting with status ws.
// Kill does not wait for tasks to exit.
//
// Kill has no analogue in Linux; it's provided for save/restore only.
func (ts *TaskSet) Kill(ws linux.WaitStatus) {
ts.mu.Lock()
defer ts.mu.Unlock()
ts.Root.exiting = true
for t := range ts.Root.tids {
t.tg.signalHandlers.mu.Lock()
if !t.tg.exiting {
t.tg.exiting = true
t.tg.exitStatus = ws
}
t.killLocked()
t.tg.signalHandlers.mu.Unlock()
}
}
// advanceExitStateLocked checks that t's current exit state is oldExit, then
// sets it to newExit. If t's current exit state is not oldExit,
// advanceExitStateLocked panics.
//
// Preconditions: The TaskSet mutex must be locked.
func (t *Task) advanceExitStateLocked(oldExit, newExit TaskExitState) {
if t.exitState != oldExit {
panic(fmt.Sprintf("Transitioning from exit state %v to %v: unexpected preceding state %v", oldExit, newExit, t.exitState))
}
t.Debugf("Transitioning from exit state %v to %v", oldExit, newExit)
t.exitState = newExit
}
// runExit is the entry point into the task exit path.
//
// +stateify savable
type runExit struct{}
func (*runExit) execute(t *Task) taskRunState {
t.ptraceExit()
return (*runExitMain)(nil)
}
// +stateify savable
type runExitMain struct{}
func (*runExitMain) execute(t *Task) taskRunState {
t.traceExitEvent()
if seccheck.Global.Enabled(seccheck.PointTaskExit) {
info := &pb.TaskExit{
ExitStatus: int32(t.tg.exitStatus),
}
fields := seccheck.Global.GetFieldSet(seccheck.PointTaskExit)
if !fields.Context.Empty() {
info.ContextData = &pb.ContextData{}
LoadSeccheckData(t, fields.Context, info.ContextData)
}
seccheck.Global.SentToSinks(func(c seccheck.Sink) error {
return c.TaskExit(t, fields, info)
})
}
lastExiter := t.exitThreadGroup()
t.ResetKcov()
// If the task has a cleartid, and the thread group wasn't killed by a
// signal, handle that before releasing the MM.
if t.cleartid != 0 {
t.tg.signalHandlers.mu.Lock()
signaled := t.tg.exiting && t.tg.exitStatus.Signaled()
t.tg.signalHandlers.mu.Unlock()
if !signaled {
zero := ThreadID(0)
if _, err := zero.CopyOut(t, t.cleartid); err == nil {
t.Futex().Wake(t, t.cleartid, false, ^uint32(0), 1)
}
// If the CopyOut fails, there's nothing we can do.
}
}
// Handle the robust futex list.
t.exitRobustList()
// Deactivate the address space and update max RSS before releasing the
// task's MM.
t.Deactivate()
t.tg.pidns.owner.mu.Lock()
t.updateRSSLocked()
t.tg.pidns.owner.mu.Unlock()
// Release the task image resources. Accessing these fields must be
// done with t.mu held, but the mm.DecUsers() call must be done outside
// of that lock.
t.mu.Lock()
mm := t.image.MemoryManager
t.image.MemoryManager = nil
t.image.fu = nil
t.mu.Unlock()
mm.DecUsers(t)
// Releasing the MM unblocks a blocked CLONE_VFORK parent.
t.unstopVforkParent()
t.fsContext.DecRef(t)
t.fdTable.DecRef(t)
// Detach task from all cgroups. This must happen before potentially the
// last ref to the cgroupfs mount is dropped below.
t.LeaveCgroups()
t.mu.Lock()
mntns := t.mountNamespace
t.mountNamespace = nil
ipcns := t.ipcns
netns := t.NetworkNamespace()
t.mu.Unlock()
if mntns != nil {
mntns.DecRef(t)
}
ipcns.DecRef(t)
netns.DecRef()
// If this is the last task to exit from the thread group, release the
// thread group's resources.
if lastExiter {
t.tg.Release(t)
}
// Detach tracees.
t.exitPtrace()
// Reparent the task's children.
t.exitChildren()
// Don't tail-call runExitNotify, as exitChildren may have initiated a stop
// to wait for a PID namespace to die.
return (*runExitNotify)(nil)
}
// exitThreadGroup transitions t to TaskExitInitiated, indicating to t's thread
// group that it is no longer eligible to participate in group activities. It
// returns true if t is the last task in its thread group to call
// exitThreadGroup.
func (t *Task) exitThreadGroup() bool {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
t.tg.signalHandlers.mu.Lock()
// Can't defer unlock: see below.
t.advanceExitStateLocked(TaskExitNone, TaskExitInitiated)
t.tg.activeTasks--
last := t.tg.activeTasks == 0
// Ensure that someone will handle the signals we can't.
t.setSignalMaskLocked(^linux.SignalSet(0))
// Check if this task's exit interacts with an initiated group stop.
if !t.groupStopPending {
t.tg.signalHandlers.mu.Unlock()
return last
}
t.groupStopPending = false
sig := t.tg.groupStopSignal
notifyParent := t.participateGroupStopLocked()
// signalStop must be called with t's signal mutex unlocked.
t.tg.signalHandlers.mu.Unlock()
if notifyParent && t.tg.leader.parent != nil {
t.tg.leader.parent.signalStop(t, linux.CLD_STOPPED, int32(sig))
t.tg.leader.parent.tg.eventQueue.Notify(EventChildGroupStop)
}
return last
}
func (t *Task) exitChildren() {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
newParent := t.findReparentTargetLocked()
if newParent == nil {
// "If the init process of a PID namespace terminates, the kernel
// terminates all of the processes in the namespace via a SIGKILL
// signal." - pid_namespaces(7)
t.Debugf("Init process terminating, killing namespace")
t.tg.pidns.exiting = true
for other := range t.tg.pidns.tgids {
if other == t.tg {
continue
}
other.signalHandlers.mu.Lock()
other.leader.sendSignalLocked(&linux.SignalInfo{
Signo: int32(linux.SIGKILL),
}, true /* group */)
other.signalHandlers.mu.Unlock()
}
// TODO(b/37722272): The init process waits for all processes in the
// namespace to exit before completing its own exit
// (kernel/pid_namespace.c:zap_pid_ns_processes()). Stop until all
// other tasks in the namespace are dead, except possibly for this
// thread group's leader (which can't be reaped until this task exits).
}
// This is correct even if newParent is nil (it ensures that children don't
// wait for a parent to reap them.)
for c := range t.children {
if sig := c.ParentDeathSignal(); sig != 0 {
siginfo := &linux.SignalInfo{
Signo: int32(sig),
Code: linux.SI_USER,
}
siginfo.SetPID(int32(c.tg.pidns.tids[t]))
siginfo.SetUID(int32(t.Credentials().RealKUID.In(c.UserNamespace()).OrOverflow()))
c.tg.signalHandlers.mu.Lock()
c.sendSignalLocked(siginfo, true /* group */)
c.tg.signalHandlers.mu.Unlock()
}
c.reparentLocked(newParent)
if newParent != nil {
newParent.children[c] = struct{}{}
}
}
}
// findReparentTargetLocked returns the task to which t's children should be
// reparented. If no such task exists, findNewParentLocked returns nil.
//
// Preconditions: The TaskSet mutex must be locked.
func (t *Task) findReparentTargetLocked() *Task {
// Reparent to any sibling in the same thread group that hasn't begun
// exiting.
if t2 := t.tg.anyNonExitingTaskLocked(); t2 != nil {
return t2
}
// "A child process that is orphaned within the namespace will be
// reparented to [the init process for the namespace] ..." -
// pid_namespaces(7)
if init := t.tg.pidns.tasks[InitTID]; init != nil {
return init.tg.anyNonExitingTaskLocked()
}
return nil
}
func (tg *ThreadGroup) anyNonExitingTaskLocked() *Task {
for t := tg.tasks.Front(); t != nil; t = t.Next() {
if t.exitState == TaskExitNone {
return t
}
}
return nil
}
// reparentLocked changes t's parent. The new parent may be nil.
//
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) reparentLocked(parent *Task) {
oldParent := t.parent
t.parent = parent
if oldParent != nil {
delete(oldParent.children, t)
}
if parent != nil {
parent.children[t] = struct{}{}
}
// If a thread group leader's parent changes, reset the thread group's
// termination signal to SIGCHLD and re-check exit notification. (Compare
// kernel/exit.c:reparent_leader().)
if t != t.tg.leader {
return
}
if oldParent == nil && parent == nil {
return
}
if oldParent != nil && parent != nil && oldParent.tg == parent.tg {
return
}
t.tg.terminationSignal = linux.SIGCHLD
if t.exitParentNotified && !t.exitParentAcked {
t.exitParentNotified = false
t.exitNotifyLocked(false)
}
}
// When a task exits, other tasks in the system, notably the task's parent and
// ptracer, may want to be notified. The exit notification system ensures that
// interested tasks receive signals and/or are woken from blocking calls to
// wait*() syscalls; these notifications must be resolved before exiting tasks
// can be reaped and disappear from the system.
//
// Each task may have a parent task and/or a tracer task. If both a parent and
// a tracer exist, they may be the same task, different tasks in the same
// thread group, or tasks in different thread groups. (In the last case, Linux
// refers to the task as being ptrace-reparented due to an implementation
// detail; we avoid this terminology to avoid confusion.)
//
// A thread group is *empty* if all non-leader tasks in the thread group are
// dead, and the leader is either a zombie or dead. The exit of a thread group
// leader is never waitable - by either the parent or tracer - until the thread
// group is empty.
//
// There are a few ways for an exit notification to be resolved:
//
// - The exit notification may be acknowledged by a call to Task.Wait with
// WaitOptions.ConsumeEvent set (e.g. due to a wait4() syscall).
//
// - If the notified party is the parent, and the parent thread group is not
// also the tracer thread group, and the notification signal is SIGCHLD, the
// parent may explicitly ignore the notification (see quote in exitNotify).
// Note that it's possible for the notified party to ignore the signal in other
// cases, but the notification is only resolved under the above conditions.
// (Actually, there is one exception; see the last paragraph of the "leader,
// has tracer, tracer thread group is parent thread group" case below.)
//
// - If the notified party is the parent, and the parent does not exist, the
// notification is resolved as if ignored. (This is only possible in the
// sentry. In Linux, the only task / thread group without a parent is global
// init, and killing global init causes a kernel panic.)
//
// - If the notified party is a tracer, the tracer may detach the traced task.
// (Zombie tasks cannot be ptrace-attached, so the reverse is not possible.)
//
// In addition, if the notified party is the parent, the parent may exit and
// cause the notifying task to be reparented to another thread group. This does
// not resolve the notification; instead, the notification must be resent to
// the new parent.
//
// The series of notifications generated for a given task's exit depend on
// whether it is a thread group leader; whether the task is ptraced; and, if
// so, whether the tracer thread group is the same as the parent thread group.
//
// - Non-leader, no tracer: No notification is generated; the task is reaped
// immediately.
//
// - Non-leader, has tracer: SIGCHLD is sent to the tracer. When the tracer
// notification is resolved (by waiting or detaching), the task is reaped. (For
// non-leaders, whether the tracer and parent thread groups are the same is
// irrelevant.)
//
// - Leader, no tracer: The task remains a zombie, with no notification sent,
// until all other tasks in the thread group are dead. (In Linux terms, this
// condition is indicated by include/linux/sched.h:thread_group_empty(); tasks
// are removed from their thread_group list in kernel/exit.c:release_task() =>
// __exit_signal() => __unhash_process().) Then the thread group's termination
// signal is sent to the parent. When the parent notification is resolved (by
// waiting or ignoring), the task is reaped.
//
// - Leader, has tracer, tracer thread group is not parent thread group:
// SIGCHLD is sent to the tracer. When the tracer notification is resolved (by
// waiting or detaching), and all other tasks in the thread group are dead, the
// thread group's termination signal is sent to the parent. (Note that the
// tracer cannot resolve the exit notification by waiting until the thread
// group is empty.) When the parent notification is resolved, the task is
// reaped.
//
// - Leader, has tracer, tracer thread group is parent thread group:
//
// If all other tasks in the thread group are dead, the thread group's
// termination signal is sent to the parent. At this point, the notification
// can only be resolved by waiting. If the parent detaches from the task as a
// tracer, the notification is not resolved, but the notification can now be
// resolved by waiting or ignoring. When the parent notification is resolved,
// the task is reaped.
//
// If at least one task in the thread group is not dead, SIGCHLD is sent to the
// parent. At this point, the notification cannot be resolved at all; once the
// thread group becomes empty, it can be resolved only by waiting. If the
// parent detaches from the task as a tracer before all remaining tasks die,
// then exit notification proceeds as in the case where the leader never had a
// tracer. If the parent detaches from the task as a tracer after all remaining
// tasks die, the notification is not resolved, but the notification can now be
// resolved by waiting or ignoring. When the parent notification is resolved,
// the task is reaped.
//
// In both of the above cases, when the parent detaches from the task as a
// tracer while the thread group is empty, whether or not the parent resolves
// the notification by ignoring it is based on the parent's SIGCHLD signal
// action, whether or not the thread group's termination signal is SIGCHLD
// (Linux: kernel/ptrace.c:__ptrace_detach() => ignoring_children()).
//
// There is one final wrinkle: A leader can become a non-leader due to a
// sibling execve. In this case, the execing thread detaches the leader's
// tracer (if one exists) and reaps the leader immediately. In Linux, this is
// in fs/exec.c:de_thread(); in the sentry, this is in Task.promoteLocked().
// +stateify savable
type runExitNotify struct{}
func (*runExitNotify) execute(t *Task) taskRunState {
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
t.advanceExitStateLocked(TaskExitInitiated, TaskExitZombie)
t.tg.liveTasks--
// Check if this completes a sibling's execve.
if t.tg.execing != nil && t.tg.liveTasks == 1 {
// execing blocks the addition of new tasks to the thread group, so
// the sole living task must be the execing one.
e := t.tg.execing
e.tg.signalHandlers.mu.Lock()
if _, ok := e.stop.(*execStop); ok {
e.endInternalStopLocked()
}
e.tg.signalHandlers.mu.Unlock()
}
t.exitNotifyLocked(false)
// The task goroutine will now exit.
return nil
}
// exitNotifyLocked is called after changes to t's state that affect exit
// notification.
//
// If fromPtraceDetach is true, the caller is ptraceDetach or exitPtrace;
// thanks to Linux's haphazard implementation of this functionality, such cases
// determine whether parent notifications are ignored based on the parent's
// handling of SIGCHLD, regardless of what the exited task's thread group's
// termination signal is.
//
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) exitNotifyLocked(fromPtraceDetach bool) {
if t.exitState != TaskExitZombie {
return
}
if !t.exitTracerNotified {
t.exitTracerNotified = true
tracer := t.Tracer()
if tracer == nil {
t.exitTracerAcked = true
} else if t != t.tg.leader || t.parent == nil || tracer.tg != t.parent.tg {
// Don't set exitParentNotified if t is non-leader, even if the
// tracer is in the parent thread group, so that if the parent
// detaches the following call to exitNotifyLocked passes through
// the !exitParentNotified case below and causes t to be reaped
// immediately.
//
// Tracer notification doesn't care about about
// SIG_IGN/SA_NOCLDWAIT.
tracer.tg.signalHandlers.mu.Lock()
tracer.sendSignalLocked(t.exitNotificationSignal(linux.SIGCHLD, tracer), true /* group */)
tracer.tg.signalHandlers.mu.Unlock()
// Wake EventTraceeStop waiters as well since this task will never
// ptrace-stop again.
tracer.tg.eventQueue.Notify(EventExit | EventTraceeStop)
} else {
// t is a leader and the tracer is in the parent thread group.
t.exitParentNotified = true
sig := linux.SIGCHLD
if t.tg.tasksCount == 1 {
sig = t.tg.terminationSignal
}
// This notification doesn't care about SIG_IGN/SA_NOCLDWAIT either
// (in Linux, the check in do_notify_parent() is gated by
// !tsk->ptrace.)
t.parent.tg.signalHandlers.mu.Lock()
t.parent.sendSignalLocked(t.exitNotificationSignal(sig, t.parent), true /* group */)
t.parent.tg.signalHandlers.mu.Unlock()
// See below for rationale for this event mask.
t.parent.tg.eventQueue.Notify(EventExit | EventChildGroupStop | EventGroupContinue)
}
}
if t.exitTracerAcked && !t.exitParentNotified {
if t != t.tg.leader {
t.exitParentNotified = true
t.exitParentAcked = true
} else if t.tg.tasksCount == 1 {
t.exitParentNotified = true
if t.parent == nil {
t.exitParentAcked = true
} else {
// "POSIX.1-2001 specifies that if the disposition of SIGCHLD is
// set to SIG_IGN or the SA_NOCLDWAIT flag is set for SIGCHLD (see
// sigaction(2)), then children that terminate do not become
// zombies and a call to wait() or waitpid() will block until all
// children have terminated, and then fail with errno set to
// ECHILD. (The original POSIX standard left the behavior of
// setting SIGCHLD to SIG_IGN unspecified. Note that even though
// the default disposition of SIGCHLD is "ignore", explicitly
// setting the disposition to SIG_IGN results in different
// treatment of zombie process children.) Linux 2.6 conforms to
// this specification." - wait(2)
//
// Some undocumented Linux-specific details:
//
// - All of the above is ignored if the termination signal isn't
// SIGCHLD.
//
// - SA_NOCLDWAIT causes the leader to be immediately reaped, but
// does not suppress the SIGCHLD.
signalParent := t.tg.terminationSignal.IsValid()
t.parent.tg.signalHandlers.mu.Lock()
if t.tg.terminationSignal == linux.SIGCHLD || fromPtraceDetach {
if act, ok := t.parent.tg.signalHandlers.actions[linux.SIGCHLD]; ok {
if act.Handler == linux.SIG_IGN {
t.exitParentAcked = true
signalParent = false
} else if act.Flags&linux.SA_NOCLDWAIT != 0 {
t.exitParentAcked = true
}
}
}
if signalParent {
t.parent.tg.leader.sendSignalLocked(t.exitNotificationSignal(t.tg.terminationSignal, t.parent), true /* group */)
}
t.parent.tg.signalHandlers.mu.Unlock()
// If a task in the parent was waiting for a child group stop
// or continue, it needs to be notified of the exit, because
// there may be no remaining eligible tasks (so that wait
// should return ECHILD).
t.parent.tg.eventQueue.Notify(EventExit | EventChildGroupStop | EventGroupContinue)
}
// We don't send exit events for the root process because we don't send
// Clone or Exec events for the initial process.
if t.tg != t.k.globalInit && seccheck.Global.Enabled(seccheck.PointExitNotifyParent) {
mask, info := getExitNotifyParentSeccheckInfo(t)
if err := seccheck.Global.SentToSinks(func(c seccheck.Sink) error {
return c.ExitNotifyParent(t, mask, info)
}); err != nil {
log.Infof("Ignoring error from ExitNotifyParent point: %v", err)
}
}
}
}
if t.exitTracerAcked && t.exitParentAcked {
t.advanceExitStateLocked(TaskExitZombie, TaskExitDead)
for ns := t.tg.pidns; ns != nil; ns = ns.parent {
ns.deleteTask(t)
}
t.userCounters.decRLimitNProc()
t.tg.exitedCPUStats.Accumulate(t.CPUStats())
t.tg.ioUsage.Accumulate(t.ioUsage)
t.tg.signalHandlers.mu.Lock()
t.tg.tasks.Remove(t)
t.tg.tasksCount--
tc := t.tg.tasksCount
t.tg.signalHandlers.mu.Unlock()
if tc == 1 && t != t.tg.leader {
// Our fromPtraceDetach doesn't matter here (in Linux terms, this
// is via a call to release_task()).
t.tg.leader.exitNotifyLocked(false)
} else if tc == 0 {
t.tg.pidWithinNS.Store(0)
t.tg.processGroup.decRefWithParent(t.tg.parentPG())
}
if t.parent != nil {
delete(t.parent.children, t)
// Do not clear t.parent. It may be still be needed after the task has exited
// (for example, to perform ptrace access checks on /proc/[pid] files).
}
}
}
// Preconditions: The TaskSet mutex must be locked.
func (t *Task) exitNotificationSignal(sig linux.Signal, receiver *Task) *linux.SignalInfo {
info := &linux.SignalInfo{
Signo: int32(sig),
}
info.SetPID(int32(receiver.tg.pidns.tids[t]))
info.SetUID(int32(t.Credentials().RealKUID.In(receiver.UserNamespace()).OrOverflow()))
if t.exitStatus.Signaled() {
info.Code = linux.CLD_KILLED
info.SetStatus(int32(t.exitStatus.TerminationSignal()))
} else {
info.Code = linux.CLD_EXITED
info.SetStatus(int32(t.exitStatus.ExitStatus()))
}
// TODO(b/72102453): Set utime, stime.
return info
}
// Preconditions: The TaskSet mutex must be locked.
func getExitNotifyParentSeccheckInfo(t *Task) (seccheck.FieldSet, *pb.ExitNotifyParentInfo) {
fields := seccheck.Global.GetFieldSet(seccheck.PointExitNotifyParent)
info := &pb.ExitNotifyParentInfo{
ExitStatus: int32(t.tg.exitStatus),
}
if !fields.Context.Empty() {
info.ContextData = &pb.ContextData{}
LoadSeccheckDataLocked(t, fields.Context, info.ContextData)
}
return fields, info
}
// ExitStatus returns t's exit status, which is only guaranteed to be
// meaningful if t.ExitState() != TaskExitNone.
func (t *Task) ExitStatus() linux.WaitStatus {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
return t.exitStatus
}
// ExitStatus returns the exit status that would be returned by a consuming
// wait*() on tg.
func (tg *ThreadGroup) ExitStatus() linux.WaitStatus {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
tg.signalHandlers.mu.Lock()
defer tg.signalHandlers.mu.Unlock()
if tg.exiting {
return tg.exitStatus
}
return tg.leader.exitStatus
}
// TerminationSignal returns the thread group's termination signal, which is
// the signal that will be sent to its leader's parent when all threads have
// exited.
func (tg *ThreadGroup) TerminationSignal() linux.Signal {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.terminationSignal
}
// Task events that can be waited for.
const (
// EventExit represents an exit notification generated for a child thread
// group leader or a tracee under the conditions specified in the comment
// above runExitNotify.
EventExit waiter.EventMask = 1 << iota
// EventChildGroupStop occurs when a child thread group completes a group
// stop (i.e. all tasks in the child thread group have entered a stopped
// state as a result of a group stop).
EventChildGroupStop
// EventTraceeStop occurs when a task that is ptraced by a task in the
// notified thread group enters a ptrace stop (see ptrace(2)).
EventTraceeStop
// EventGroupContinue occurs when a child thread group, or a thread group
// whose leader is ptraced by a task in the notified thread group, that had
// initiated or completed a group stop leaves the group stop, due to the
// child thread group or any task in the child thread group being sent
// SIGCONT.
EventGroupContinue
)
// WaitOptions controls the behavior of Task.Wait.
type WaitOptions struct {
// If SpecificTID is non-zero, only events from the task with thread ID
// SpecificTID are eligible to be waited for. SpecificTID is resolved in
// the PID namespace of the waiter (the method receiver of Task.Wait). If
// no such task exists, or that task would not otherwise be eligible to be
// waited for by the waiting task, then there are no waitable tasks and
// Wait will return ECHILD.
SpecificTID ThreadID
// If SpecificPGID is non-zero, only events from ThreadGroups with a
// matching ProcessGroupID are eligible to be waited for. (Same
// constraints as SpecificTID apply.)
SpecificPGID ProcessGroupID
// Terminology note: Per waitpid(2), "a clone child is one which delivers
// no signal, or a signal other than SIGCHLD to its parent upon
// termination." In Linux, termination signal is technically a per-task
// property rather than a per-thread-group property. However, clone()
// forces no termination signal for tasks created with CLONE_THREAD, and
// execve() resets the termination signal to SIGCHLD, so all
// non-group-leader threads have no termination signal and are therefore
// "clone tasks".
// If NonCloneTasks is true, events from non-clone tasks are eligible to be
// waited for.
NonCloneTasks bool
// If CloneTasks is true, events from clone tasks are eligible to be waited
// for.
CloneTasks bool
// If SiblingChildren is true, events from children tasks of any task
// in the thread group of the waiter are eligible to be waited for.
SiblingChildren bool
// Events is a bitwise combination of the events defined above that specify
// what events are of interest to the call to Wait.
Events waiter.EventMask
// If ConsumeEvent is true, the Wait should consume the event such that it
// cannot be returned by a future Wait. Note that if a task exit is
// consumed in this way, in most cases the task will be reaped.
ConsumeEvent bool
// If BlockInterruptErr is not nil, Wait will block until either an event
// is available or there are no tasks that could produce a waitable event;
// if that blocking is interrupted, Wait returns BlockInterruptErr. If
// BlockInterruptErr is nil, Wait will not block.
BlockInterruptErr error
}
// Preconditions: The TaskSet mutex must be locked (for reading or writing).
func (o *WaitOptions) matchesTask(t *Task, pidns *PIDNamespace, tracee bool) bool {
if o.SpecificTID != 0 && o.SpecificTID != pidns.tids[t] {
return false
}
if o.SpecificPGID != 0 && o.SpecificPGID != pidns.pgids[t.tg.processGroup] {
return false
}
// Tracees are always eligible.
if tracee {
return true
}
if t == t.tg.leader && t.tg.terminationSignal == linux.SIGCHLD {
return o.NonCloneTasks
}
return o.CloneTasks
}
// ErrNoWaitableEvent is returned by non-blocking Task.Waits (e.g.
// waitpid(WNOHANG)) that find no waitable events, but determine that waitable
// events may exist in the future. (In contrast, if a non-blocking or blocking
// Wait determines that there are no tasks that can produce a waitable event,
// Task.Wait returns ECHILD.)
var ErrNoWaitableEvent = errors.New("non-blocking Wait found eligible threads but no waitable events")
// WaitResult contains information about a waited-for event.
type WaitResult struct {
// Task is the task that reported the event.
Task *Task
// TID is the thread ID of Task in the PID namespace of the task that
// called Wait (that is, the method receiver of the call to Task.Wait). TID
// is provided because consuming exit waits cause the thread ID to be
// deallocated.
TID ThreadID
// UID is the real UID of Task in the user namespace of the task that
// called Wait.
UID auth.UID
// Event is exactly one of the events defined above.
Event waiter.EventMask
// Status is the wait status associated with the event.
Status linux.WaitStatus
}
// Wait waits for an event from a thread group that is a child of t's thread
// group, or a task in such a thread group, or a task that is ptraced by t,
// subject to the options specified in opts.
func (t *Task) Wait(opts *WaitOptions) (*WaitResult, error) {
if opts.BlockInterruptErr == nil {
return t.waitOnce(opts)
}
w, ch := waiter.NewChannelEntry(opts.Events)
t.tg.eventQueue.EventRegister(&w)
defer t.tg.eventQueue.EventUnregister(&w)
for {
wr, err := t.waitOnce(opts)
if err != ErrNoWaitableEvent {
// This includes err == nil.
return wr, err
}
if err := t.Block(ch); err != nil {
return wr, linuxerr.ConvertIntr(err, opts.BlockInterruptErr)
}
}
}
func (t *Task) waitOnce(opts *WaitOptions) (*WaitResult, error) {
anyWaitableTasks := false
t.tg.pidns.owner.mu.Lock()
defer t.tg.pidns.owner.mu.Unlock()
if opts.SiblingChildren {
// We can wait on the children and tracees of any task in the
// same thread group.
for parent := t.tg.tasks.Front(); parent != nil; parent = parent.Next() {
wr, any := t.waitParentLocked(opts, parent)
if wr != nil {
return wr, nil
}
anyWaitableTasks = anyWaitableTasks || any
}
} else {
// We can only wait on this task.
var wr *WaitResult
wr, anyWaitableTasks = t.waitParentLocked(opts, t)
if wr != nil {
return wr, nil
}
}
if anyWaitableTasks {
return nil, ErrNoWaitableEvent
}
return nil, linuxerr.ECHILD
}
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) waitParentLocked(opts *WaitOptions, parent *Task) (*WaitResult, bool) {
anyWaitableTasks := false
for child := range parent.children {
if !opts.matchesTask(child, parent.tg.pidns, false) {
continue
}
// Non-leaders don't notify parents on exit and aren't eligible to
// be waited on.
if opts.Events&EventExit != 0 && child == child.tg.leader && !child.exitParentAcked {
anyWaitableTasks = true
if wr := t.waitCollectZombieLocked(child, opts, false); wr != nil {
return wr, anyWaitableTasks
}
}
// Check for group stops and continues. Tasks that have passed
// TaskExitInitiated can no longer participate in group stops.
if opts.Events&(EventChildGroupStop|EventGroupContinue) == 0 {
continue
}
if child.exitState >= TaskExitInitiated {
continue
}
// If the waiter is in the same thread group as the task's
// tracer, do not report its group stops; they will be reported
// as ptrace stops instead. This also skips checking for group
// continues, but they'll be checked for when scanning tracees
// below. (Per kernel/exit.c:wait_consider_task(): "If a
// ptracer wants to distinguish the two events for its own
// children, it should create a separate process which takes
// the role of real parent.")
if tracer := child.Tracer(); tracer != nil && tracer.tg == parent.tg {
continue
}
anyWaitableTasks = true
if opts.Events&EventChildGroupStop != 0 {
if wr := t.waitCollectChildGroupStopLocked(child, opts); wr != nil {
return wr, anyWaitableTasks
}
}
if opts.Events&EventGroupContinue != 0 {
if wr := t.waitCollectGroupContinueLocked(child, opts); wr != nil {
return wr, anyWaitableTasks
}
}
}
for tracee := range parent.ptraceTracees {
if !opts.matchesTask(tracee, parent.tg.pidns, true) {
continue
}
// Non-leaders do notify tracers on exit.
if opts.Events&EventExit != 0 && !tracee.exitTracerAcked {
anyWaitableTasks = true
if wr := t.waitCollectZombieLocked(tracee, opts, true); wr != nil {
return wr, anyWaitableTasks
}
}
if opts.Events&(EventTraceeStop|EventGroupContinue) == 0 {
continue
}
if tracee.exitState >= TaskExitInitiated {
continue
}
anyWaitableTasks = true
if opts.Events&EventTraceeStop != 0 {
if wr := t.waitCollectTraceeStopLocked(tracee, opts); wr != nil {
return wr, anyWaitableTasks
}
}
if opts.Events&EventGroupContinue != 0 {
if wr := t.waitCollectGroupContinueLocked(tracee, opts); wr != nil {
return wr, anyWaitableTasks
}
}
}
return nil, anyWaitableTasks
}
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) waitCollectZombieLocked(target *Task, opts *WaitOptions, asPtracer bool) *WaitResult {
if asPtracer && !target.exitTracerNotified {
return nil
}
if !asPtracer && !target.exitParentNotified {
return nil
}
// Zombied thread group leaders are never waitable until their thread group
// is otherwise empty. Usually this is caught by the
// target.exitParentNotified check above, but if t is both (in the thread
// group of) target's tracer and parent, asPtracer may be true.
if target == target.tg.leader && target.tg.tasksCount != 1 {
return nil
}
pid := t.tg.pidns.tids[target]
uid := target.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()
status := target.exitStatus
if !opts.ConsumeEvent {
return &WaitResult{
Task: target,
TID: pid,
UID: uid,
Event: EventExit,
Status: status,
}
}
// Surprisingly, the exit status reported by a non-consuming wait can
// differ from that reported by a consuming wait; the latter will return
// the group exit code if one is available.
if target.tg.exiting {
status = target.tg.exitStatus
}
// t may be (in the thread group of) target's parent, tracer, or both. We
// don't need to check for !exitTracerAcked because tracees are detached
// here, and we don't need to check for !exitParentAcked because zombies
// will be reaped here.
if tracer := target.Tracer(); tracer != nil && tracer.tg == t.tg && target.exitTracerNotified {
target.exitTracerAcked = true
target.ptraceTracer.Store((*Task)(nil))
delete(t.ptraceTracees, target)
}
if target.parent != nil && target.parent.tg == t.tg && target.exitParentNotified {
target.exitParentAcked = true
if target == target.tg.leader {
// target.tg.exitedCPUStats doesn't include target.CPUStats() yet,
// and won't until after target.exitNotifyLocked() (maybe). Include
// target.CPUStats() explicitly. This is consistent with Linux,
// which accounts an exited task's cputime to its thread group in
// kernel/exit.c:release_task() => __exit_signal(), and uses
// thread_group_cputime_adjusted() in wait_task_zombie().
t.tg.childCPUStats.Accumulate(target.CPUStats())
t.tg.childCPUStats.Accumulate(target.tg.exitedCPUStats)
t.tg.childCPUStats.Accumulate(target.tg.childCPUStats)
// Update t's child max resident set size. The size will be the maximum
// of this thread's size and all its childrens' sizes.
if t.tg.childMaxRSS < target.tg.maxRSS {
t.tg.childMaxRSS = target.tg.maxRSS
}
if t.tg.childMaxRSS < target.tg.childMaxRSS {
t.tg.childMaxRSS = target.tg.childMaxRSS
}
}
}
target.exitNotifyLocked(false)
return &WaitResult{
Task: target,
TID: pid,
UID: uid,
Event: EventExit,
Status: status,
}
}
// updateRSSLocked updates t.tg.maxRSS.
//
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) updateRSSLocked() {
if mmMaxRSS := t.MemoryManager().MaxResidentSetSize(); t.tg.maxRSS < mmMaxRSS {
t.tg.maxRSS = mmMaxRSS
}
}
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) waitCollectChildGroupStopLocked(target *Task, opts *WaitOptions) *WaitResult {
target.tg.signalHandlers.mu.Lock()
defer target.tg.signalHandlers.mu.Unlock()
if !target.tg.groupStopWaitable {
return nil
}
pid := t.tg.pidns.tids[target]
uid := target.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()
sig := target.tg.groupStopSignal
if opts.ConsumeEvent {
target.tg.groupStopWaitable = false
}
return &WaitResult{
Task: target,
TID: pid,
UID: uid,
Event: EventChildGroupStop,
Status: linux.WaitStatusStopped(uint32(sig)),
}
}
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) waitCollectGroupContinueLocked(target *Task, opts *WaitOptions) *WaitResult {
target.tg.signalHandlers.mu.Lock()
defer target.tg.signalHandlers.mu.Unlock()
if !target.tg.groupContWaitable {
return nil
}
pid := t.tg.pidns.tids[target]
uid := target.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()
if opts.ConsumeEvent {
target.tg.groupContWaitable = false
}
return &WaitResult{
Task: target,
TID: pid,
UID: uid,
Event: EventGroupContinue,
Status: linux.WaitStatusContinued(),
}
}
// Preconditions: The TaskSet mutex must be locked for writing.
func (t *Task) waitCollectTraceeStopLocked(target *Task, opts *WaitOptions) *WaitResult {
target.tg.signalHandlers.mu.Lock()
defer target.tg.signalHandlers.mu.Unlock()
if target.stop == nil {
return nil
}
if _, ok := target.stop.(*ptraceStop); !ok {
return nil
}
if target.ptraceCode == 0 {
return nil
}
pid := t.tg.pidns.tids[target]
uid := target.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()
code := target.ptraceCode
if opts.ConsumeEvent {
target.ptraceCode = 0
}
return &WaitResult{
Task: target,
TID: pid,
UID: uid,
Event: EventTraceeStop,
Status: linux.WaitStatusStopped(uint32(code)),
}
}
// ExitState returns t's current progress through the exit path.
func (t *Task) ExitState() TaskExitState {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
return t.exitState
}
// ParentDeathSignal returns t's parent death signal.
func (t *Task) ParentDeathSignal() linux.Signal {
t.mu.Lock()
defer t.mu.Unlock()
return t.parentDeathSignal
}
// SetParentDeathSignal sets t's parent death signal.
func (t *Task) SetParentDeathSignal(sig linux.Signal) {
t.mu.Lock()
defer t.mu.Unlock()
t.parentDeathSignal = sig
}
|