1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/marshal/primitive"
"gvisor.dev/gvisor/pkg/sentry/kernel/futex"
"gvisor.dev/gvisor/pkg/usermem"
)
// Futex returns t's futex manager.
//
// Preconditions: The caller must be running on the task goroutine, or t.mu
// must be locked.
func (t *Task) Futex() *futex.Manager {
return t.image.fu
}
// SwapUint32 implements futex.Target.SwapUint32.
func (t *Task) SwapUint32(addr hostarch.Addr, new uint32) (uint32, error) {
return t.MemoryManager().SwapUint32(t, addr, new, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// CompareAndSwapUint32 implements futex.Target.CompareAndSwapUint32.
func (t *Task) CompareAndSwapUint32(addr hostarch.Addr, old, new uint32) (uint32, error) {
return t.MemoryManager().CompareAndSwapUint32(t, addr, old, new, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// LoadUint32 implements futex.Target.LoadUint32.
func (t *Task) LoadUint32(addr hostarch.Addr) (uint32, error) {
return t.MemoryManager().LoadUint32(t, addr, usermem.IOOpts{
AddressSpaceActive: true,
})
}
// GetSharedKey implements futex.Target.GetSharedKey.
func (t *Task) GetSharedKey(addr hostarch.Addr) (futex.Key, error) {
return t.MemoryManager().GetSharedFutexKey(t, addr)
}
// GetRobustList sets the robust futex list for the task.
func (t *Task) GetRobustList() hostarch.Addr {
t.mu.Lock()
addr := t.robustList
t.mu.Unlock()
return addr
}
// SetRobustList sets the robust futex list for the task.
func (t *Task) SetRobustList(addr hostarch.Addr) {
t.mu.Lock()
t.robustList = addr
t.mu.Unlock()
}
// exitRobustList walks the robust futex list, marking locks dead and notifying
// wakers. It corresponds to Linux's exit_robust_list(). Following Linux,
// errors are silently ignored.
func (t *Task) exitRobustList() {
t.mu.Lock()
addr := t.robustList
t.robustList = 0
t.mu.Unlock()
if addr == 0 {
return
}
var rl linux.RobustListHead
if _, err := rl.CopyIn(t, hostarch.Addr(addr)); err != nil {
return
}
next := primitive.Uint64(rl.List)
done := 0
var pendingLockAddr hostarch.Addr
if rl.ListOpPending != 0 {
pendingLockAddr = hostarch.Addr(rl.ListOpPending + rl.FutexOffset)
}
// Wake up normal elements.
for hostarch.Addr(next) != addr {
// We traverse to the next element of the list before we
// actually wake anything. This prevents the race where waking
// this futex causes a modification of the list.
thisLockAddr := hostarch.Addr(uint64(next) + rl.FutexOffset)
// Try to decode the next element in the list before waking the
// current futex. But don't check the error until after we've
// woken the current futex. Linux does it in this order too
_, nextErr := next.CopyIn(t, hostarch.Addr(next))
// Wakeup the current futex if it's not pending.
if thisLockAddr != pendingLockAddr {
t.wakeRobustListOne(thisLockAddr)
}
// If there was an error copying the next futex, we must bail.
if nextErr != nil {
break
}
// This is a user structure, so it could be a massive list, or
// even contain a loop if they are trying to mess with us. We
// cap traversal to prevent that.
done++
if done >= linux.ROBUST_LIST_LIMIT {
break
}
}
// Is there a pending entry to wake?
if pendingLockAddr != 0 {
t.wakeRobustListOne(pendingLockAddr)
}
}
// wakeRobustListOne wakes a single futex from the robust list.
func (t *Task) wakeRobustListOne(addr hostarch.Addr) {
// Bit 0 in address signals PI futex.
pi := addr&1 == 1
addr = addr &^ 1
// Load the futex.
f, err := t.LoadUint32(addr)
if err != nil {
// Can't read this single value? Ignore the problem.
// We can wake the other futexes in the list.
return
}
tid := uint32(t.ThreadID())
for {
// Is this held by someone else?
if f&linux.FUTEX_TID_MASK != tid {
return
}
// This thread is dying and it's holding this futex. We need to
// set the owner died bit and wake up any waiters.
newF := (f & linux.FUTEX_WAITERS) | linux.FUTEX_OWNER_DIED
if curF, err := t.CompareAndSwapUint32(addr, f, newF); err != nil {
return
} else if curF != f {
// Futex changed out from under us. Try again...
f = curF
continue
}
// Wake waiters if there are any.
if f&linux.FUTEX_WAITERS != 0 {
private := f&linux.FUTEX_PRIVATE_FLAG != 0
if pi {
t.Futex().UnlockPI(t, addr, tid, private)
return
}
t.Futex().Wake(t, addr, private, linux.FUTEX_BITSET_MATCH_ANY, 1)
}
// Done.
return
}
}
|