1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/mm"
)
// Credentials returns t's credentials.
//
// This value must be considered immutable.
func (t *Task) Credentials() *auth.Credentials {
return t.creds.Load()
}
// UserNamespace returns the user namespace associated with the task.
func (t *Task) UserNamespace() *auth.UserNamespace {
return t.Credentials().UserNamespace
}
// HasCapabilityIn checks if the task has capability cp in user namespace ns.
func (t *Task) HasCapabilityIn(cp linux.Capability, ns *auth.UserNamespace) bool {
return t.Credentials().HasCapabilityIn(cp, ns)
}
// HasCapability checks if the task has capability cp in its user namespace.
func (t *Task) HasCapability(cp linux.Capability) bool {
return t.Credentials().HasCapability(cp)
}
// SetUID implements the semantics of setuid(2).
func (t *Task) SetUID(uid auth.UID) error {
// setuid considers -1 to be invalid.
if !uid.Ok() {
return linuxerr.EINVAL
}
t.mu.Lock()
defer t.mu.Unlock()
creds := t.Credentials()
kuid := creds.UserNamespace.MapToKUID(uid)
if !kuid.Ok() {
return linuxerr.EINVAL
}
// "setuid() sets the effective user ID of the calling process. If the
// effective UID of the caller is root (more precisely: if the caller has
// the CAP_SETUID capability), the real UID and saved set-user-ID are also
// set." - setuid(2)
if creds.HasCapability(linux.CAP_SETUID) {
t.setKUIDsUncheckedLocked(kuid, kuid, kuid)
return nil
}
// "EPERM: The user is not privileged (Linux: does not have the CAP_SETUID
// capability) and uid does not match the real UID or saved set-user-ID of
// the calling process."
if kuid != creds.RealKUID && kuid != creds.SavedKUID {
return linuxerr.EPERM
}
t.setKUIDsUncheckedLocked(creds.RealKUID, kuid, creds.SavedKUID)
return nil
}
// SetREUID implements the semantics of setreuid(2).
func (t *Task) SetREUID(r, e auth.UID) error {
t.mu.Lock()
defer t.mu.Unlock()
// "Supplying a value of -1 for either the real or effective user ID forces
// the system to leave that ID unchanged." - setreuid(2)
creds := t.Credentials()
newR := creds.RealKUID
if r.Ok() {
newR = creds.UserNamespace.MapToKUID(r)
if !newR.Ok() {
return linuxerr.EINVAL
}
}
newE := creds.EffectiveKUID
if e.Ok() {
newE = creds.UserNamespace.MapToKUID(e)
if !newE.Ok() {
return linuxerr.EINVAL
}
}
if !creds.HasCapability(linux.CAP_SETUID) {
// "Unprivileged processes may only set the effective user ID to the
// real user ID, the effective user ID, or the saved set-user-ID."
if newE != creds.RealKUID && newE != creds.EffectiveKUID && newE != creds.SavedKUID {
return linuxerr.EPERM
}
// "Unprivileged users may only set the real user ID to the real user
// ID or the effective user ID."
if newR != creds.RealKUID && newR != creds.EffectiveKUID {
return linuxerr.EPERM
}
}
// "If the real user ID is set (i.e., ruid is not -1) or the effective user
// ID is set to a value not equal to the previous real user ID, the saved
// set-user-ID will be set to the new effective user ID."
newS := creds.SavedKUID
if r.Ok() || (e.Ok() && newE != creds.EffectiveKUID) {
newS = newE
}
t.setKUIDsUncheckedLocked(newR, newE, newS)
return nil
}
// SetRESUID implements the semantics of the setresuid(2) syscall.
func (t *Task) SetRESUID(r, e, s auth.UID) error {
t.mu.Lock()
defer t.mu.Unlock()
// "Unprivileged user processes may change the real UID, effective UID, and
// saved set-user-ID, each to one of: the current real UID, the current
// effective UID or the current saved set-user-ID. Privileged processes (on
// Linux, those having the CAP_SETUID capability) may set the real UID,
// effective UID, and saved set-user-ID to arbitrary values. If one of the
// arguments equals -1, the corresponding value is not changed." -
// setresuid(2)
var err error
creds := t.Credentials()
newR := creds.RealKUID
if r.Ok() {
newR, err = creds.UseUID(r)
if err != nil {
return err
}
}
newE := creds.EffectiveKUID
if e.Ok() {
newE, err = creds.UseUID(e)
if err != nil {
return err
}
}
newS := creds.SavedKUID
if s.Ok() {
newS, err = creds.UseUID(s)
if err != nil {
return err
}
}
t.setKUIDsUncheckedLocked(newR, newE, newS)
return nil
}
// Preconditions: t.mu must be locked.
func (t *Task) setKUIDsUncheckedLocked(newR, newE, newS auth.KUID) {
creds := t.Credentials().Fork() // The credentials object is immutable. See doc for creds.
root := creds.UserNamespace.MapToKUID(auth.RootUID)
oldR, oldE, oldS := creds.RealKUID, creds.EffectiveKUID, creds.SavedKUID
creds.RealKUID, creds.EffectiveKUID, creds.SavedKUID = newR, newE, newS
// "1. If one or more of the real, effective or saved set user IDs was
// previously 0, and as a result of the UID changes all of these IDs have a
// nonzero value, then all capabilities are cleared from the permitted and
// effective capability sets." - capabilities(7)
if (oldR == root || oldE == root || oldS == root) && (newR != root && newE != root && newS != root) {
// prctl(2): "PR_SET_KEEPCAP: Set the state of the calling thread's
// "keep capabilities" flag, which determines whether the thread's permitted
// capability set is cleared when a change is made to the
// thread's user IDs such that the thread's real UID, effective
// UID, and saved set-user-ID all become nonzero when at least
// one of them previously had the value 0. By default, the
// permitted capability set is cleared when such a change is
// made; setting the "keep capabilities" flag prevents it from
// being cleared." (A thread's effective capability set is always
// cleared when such a credential change is made,
// regardless of the setting of the "keep capabilities" flag.)
if !creds.KeepCaps {
creds.PermittedCaps = 0
creds.EffectiveCaps = 0
}
}
// """
// 2. If the effective user ID is changed from 0 to nonzero, then all
// capabilities are cleared from the effective set.
//
// 3. If the effective user ID is changed from nonzero to 0, then the
// permitted set is copied to the effective set.
// """
if oldE == root && newE != root {
creds.EffectiveCaps = 0
} else if oldE != root && newE == root {
creds.EffectiveCaps = creds.PermittedCaps
}
// "4. If the filesystem user ID is changed from 0 to nonzero (see
// setfsuid(2)), then the following capabilities are cleared from the
// effective set: ..."
// (filesystem UIDs aren't implemented, nor are any of the capabilities in
// question)
if oldE != newE {
// "[dumpability] is reset to the current value contained in
// the file /proc/sys/fs/suid_dumpable (which by default has
// the value 0), in the following circumstances: The process's
// effective user or group ID is changed." - prctl(2)
//
// (suid_dumpable isn't implemented, so we just use the
// default.
t.MemoryManager().SetDumpability(mm.NotDumpable)
// Not documented, but compare Linux's kernel/cred.c:commit_creds().
t.parentDeathSignal = 0
}
t.creds.Store(creds)
}
// SetGID implements the semantics of setgid(2).
func (t *Task) SetGID(gid auth.GID) error {
if !gid.Ok() {
return linuxerr.EINVAL
}
t.mu.Lock()
defer t.mu.Unlock()
creds := t.Credentials()
kgid := creds.UserNamespace.MapToKGID(gid)
if !kgid.Ok() {
return linuxerr.EINVAL
}
if creds.HasCapability(linux.CAP_SETGID) {
t.setKGIDsUncheckedLocked(kgid, kgid, kgid)
return nil
}
if kgid != creds.RealKGID && kgid != creds.SavedKGID {
return linuxerr.EPERM
}
t.setKGIDsUncheckedLocked(creds.RealKGID, kgid, creds.SavedKGID)
return nil
}
// SetREGID implements the semantics of setregid(2).
func (t *Task) SetREGID(r, e auth.GID) error {
t.mu.Lock()
defer t.mu.Unlock()
creds := t.Credentials()
newR := creds.RealKGID
if r.Ok() {
newR = creds.UserNamespace.MapToKGID(r)
if !newR.Ok() {
return linuxerr.EINVAL
}
}
newE := creds.EffectiveKGID
if e.Ok() {
newE = creds.UserNamespace.MapToKGID(e)
if !newE.Ok() {
return linuxerr.EINVAL
}
}
if !creds.HasCapability(linux.CAP_SETGID) {
if newE != creds.RealKGID && newE != creds.EffectiveKGID && newE != creds.SavedKGID {
return linuxerr.EPERM
}
if newR != creds.RealKGID && newR != creds.EffectiveKGID {
return linuxerr.EPERM
}
}
newS := creds.SavedKGID
if r.Ok() || (e.Ok() && newE != creds.EffectiveKGID) {
newS = newE
}
t.setKGIDsUncheckedLocked(newR, newE, newS)
return nil
}
// SetRESGID implements the semantics of the setresgid(2) syscall.
func (t *Task) SetRESGID(r, e, s auth.GID) error {
var err error
t.mu.Lock()
defer t.mu.Unlock()
creds := t.Credentials()
newR := creds.RealKGID
if r.Ok() {
newR, err = creds.UseGID(r)
if err != nil {
return err
}
}
newE := creds.EffectiveKGID
if e.Ok() {
newE, err = creds.UseGID(e)
if err != nil {
return err
}
}
newS := creds.SavedKGID
if s.Ok() {
newS, err = creds.UseGID(s)
if err != nil {
return err
}
}
t.setKGIDsUncheckedLocked(newR, newE, newS)
return nil
}
func (t *Task) setKGIDsUncheckedLocked(newR, newE, newS auth.KGID) {
creds := t.Credentials().Fork() // The credentials object is immutable. See doc for creds.
oldE := creds.EffectiveKGID
creds.RealKGID, creds.EffectiveKGID, creds.SavedKGID = newR, newE, newS
if oldE != newE {
// "[dumpability] is reset to the current value contained in
// the file /proc/sys/fs/suid_dumpable (which by default has
// the value 0), in the following circumstances: The process's
// effective user or group ID is changed." - prctl(2)
//
// (suid_dumpable isn't implemented, so we just use the
// default.
t.MemoryManager().SetDumpability(mm.NotDumpable)
// Not documented, but compare Linux's
// kernel/cred.c:commit_creds().
t.parentDeathSignal = 0
}
t.creds.Store(creds)
}
// SetExtraGIDs attempts to change t's supplemental groups. All IDs are
// interpreted as being in t's user namespace.
func (t *Task) SetExtraGIDs(gids []auth.GID) error {
t.mu.Lock()
defer t.mu.Unlock()
creds := t.Credentials()
if !creds.HasCapability(linux.CAP_SETGID) {
return linuxerr.EPERM
}
kgids := make([]auth.KGID, len(gids))
for i, gid := range gids {
kgid := creds.UserNamespace.MapToKGID(gid)
if !kgid.Ok() {
return linuxerr.EINVAL
}
kgids[i] = kgid
}
creds = creds.Fork() // The credentials object is immutable. See doc for creds.
creds.ExtraKGIDs = kgids
t.creds.Store(creds)
return nil
}
// SetCapabilitySets attempts to change t's permitted, inheritable, and
// effective capability sets.
func (t *Task) SetCapabilitySets(permitted, inheritable, effective auth.CapabilitySet) error {
t.mu.Lock()
defer t.mu.Unlock()
// "Permitted: This is a limiting superset for the effective capabilities
// that the thread may assume." - capabilities(7)
if effective & ^permitted != 0 {
return linuxerr.EPERM
}
creds := t.Credentials()
// "It is also a limiting superset for the capabilities that may be added
// to the inheritable set by a thread that does not have the CAP_SETPCAP
// capability in its effective set."
if !creds.HasCapability(linux.CAP_SETPCAP) && (inheritable & ^(creds.InheritableCaps|creds.PermittedCaps) != 0) {
return linuxerr.EPERM
}
// "If a thread drops a capability from its permitted set, it can never
// reacquire that capability (unless it execve(2)s ..."
if permitted & ^creds.PermittedCaps != 0 {
return linuxerr.EPERM
}
// "... if a capability is not in the bounding set, then a thread can't add
// this capability to its inheritable set, even if it was in its permitted
// capabilities ..."
if inheritable & ^(creds.InheritableCaps|creds.BoundingCaps) != 0 {
return linuxerr.EPERM
}
creds = creds.Fork() // The credentials object is immutable. See doc for creds.
creds.PermittedCaps = permitted
creds.InheritableCaps = inheritable
creds.EffectiveCaps = effective
t.creds.Store(creds)
return nil
}
// DropBoundingCapability attempts to drop capability cp from t's capability
// bounding set.
func (t *Task) DropBoundingCapability(cp linux.Capability) error {
t.mu.Lock()
defer t.mu.Unlock()
creds := t.Credentials()
if !creds.HasCapability(linux.CAP_SETPCAP) {
return linuxerr.EPERM
}
creds = creds.Fork() // The credentials object is immutable. See doc for creds.
creds.BoundingCaps &^= auth.CapabilitySetOf(cp)
t.creds.Store(creds)
return nil
}
// SetUserNamespace attempts to move c into ns.
func (t *Task) SetUserNamespace(ns *auth.UserNamespace) error {
t.mu.Lock()
defer t.mu.Unlock()
creds := t.Credentials()
// "A process reassociating itself with a user namespace must have the
// CAP_SYS_ADMIN capability in the target user namespace." - setns(2)
//
// If t just created ns, then t.creds is guaranteed to have CAP_SYS_ADMIN
// in ns (by rule 3 in auth.Credentials.HasCapability).
if !creds.HasCapabilityIn(linux.CAP_SYS_ADMIN, ns) {
return linuxerr.EPERM
}
creds = creds.Fork() // The credentials object is immutable. See doc for creds.
creds.UserNamespace = ns
// "The child process created by clone(2) with the CLONE_NEWUSER flag
// starts out with a complete set of capabilities in the new user
// namespace. Likewise, a process that creates a new user namespace using
// unshare(2) or joins an existing user namespace using setns(2) gains a
// full set of capabilities in that namespace."
creds.PermittedCaps = auth.AllCapabilities
creds.InheritableCaps = 0
creds.EffectiveCaps = auth.AllCapabilities
creds.BoundingCaps = auth.AllCapabilities
// "A call to clone(2), unshare(2), or setns(2) using the CLONE_NEWUSER
// flag sets the "securebits" flags (see capabilities(7)) to their default
// values (all flags disabled) in the child (for clone(2)) or caller (for
// unshare(2), or setns(2)." - user_namespaces(7)
creds.KeepCaps = false
t.creds.Store(creds)
return nil
}
// SetKeepCaps will set the keep capabilities flag PR_SET_KEEPCAPS.
func (t *Task) SetKeepCaps(k bool) {
t.mu.Lock()
defer t.mu.Unlock()
creds := t.Credentials().Fork() // The credentials object is immutable. See doc for creds.
creds.KeepCaps = k
t.creds.Store(creds)
}
// updateCredsForExecLocked updates t.creds to reflect an execve().
//
// NOTE(b/30815691): We currently do not implement privileged executables
// (set-user/group-ID bits and file capabilities). This allows us to make a lot
// of simplifying assumptions:
//
// - We assume the no_new_privs bit (set by prctl(SET_NO_NEW_PRIVS)), which
// disables the features we don't support anyway, is always set. This
// drastically simplifies this function.
//
// - We don't set AT_SECURE = 1, because no_new_privs always being set means
// that the conditions that require AT_SECURE = 1 never arise. (Compare Linux's
// security/commoncap.c:cap_bprm_set_creds() and cap_bprm_secureexec().)
//
// - We don't check for CAP_SYS_ADMIN in prctl(PR_SET_SECCOMP), since
// seccomp-bpf is also allowed if the task has no_new_privs set.
//
// - Task.ptraceAttach does not serialize with execve as it does in Linux,
// since no_new_privs being set has the same effect as the presence of an
// unprivileged tracer.
//
// Preconditions: t.mu must be locked.
func (t *Task) updateCredsForExecLocked() {
// """
// During an execve(2), the kernel calculates the new capabilities of
// the process using the following algorithm:
//
// P'(permitted) = (P(inheritable) & F(inheritable)) |
// (F(permitted) & cap_bset)
//
// P'(effective) = F(effective) ? P'(permitted) : 0
//
// P'(inheritable) = P(inheritable) [i.e., unchanged]
//
// where:
//
// P denotes the value of a thread capability set before the
// execve(2)
//
// P' denotes the value of a thread capability set after the
// execve(2)
//
// F denotes a file capability set
//
// cap_bset is the value of the capability bounding set
//
// ...
//
// In order to provide an all-powerful root using capability sets, during
// an execve(2):
//
// 1. If a set-user-ID-root program is being executed, or the real user ID
// of the process is 0 (root) then the file inheritable and permitted sets
// are defined to be all ones (i.e. all capabilities enabled).
//
// 2. If a set-user-ID-root program is being executed, then the file
// effective bit is defined to be one (enabled).
//
// The upshot of the above rules, combined with the capabilities
// transformations described above, is that when a process execve(2)s a
// set-user-ID-root program, or when a process with an effective UID of 0
// execve(2)s a program, it gains all capabilities in its permitted and
// effective capability sets, except those masked out by the capability
// bounding set.
// """ - capabilities(7)
// (ambient capability sets omitted)
//
// As the last paragraph implies, the case of "a set-user-ID root program
// is being executed" also includes the case where (namespace) root is
// executing a non-set-user-ID program; the actual check is just based on
// the effective user ID.
var newPermitted auth.CapabilitySet // since F(inheritable) == F(permitted) == 0
fileEffective := false
creds := t.Credentials()
root := creds.UserNamespace.MapToKUID(auth.RootUID)
if creds.EffectiveKUID == root || creds.RealKUID == root {
newPermitted = creds.InheritableCaps | creds.BoundingCaps
if creds.EffectiveKUID == root {
fileEffective = true
}
}
creds = creds.Fork() // The credentials object is immutable. See doc for creds.
// Now we enter poorly-documented, somewhat confusing territory. (The
// accompanying comment in Linux's security/commoncap.c:cap_bprm_set_creds
// is not very helpful.) My reading of it is:
//
// If at least one of the following is true:
//
// A1. The execing task is ptraced, and the tracer did not have
// CAP_SYS_PTRACE in the execing task's user namespace at the time of
// PTRACE_ATTACH.
//
// A2. The execing task shares its FS context with at least one task in
// another thread group.
//
// A3. The execing task has no_new_privs set.
//
// AND at least one of the following is true:
//
// B1. The new effective user ID (which may come from set-user-ID, or be the
// execing task's existing effective user ID) is not equal to the task's
// real UID.
//
// B2. The new effective group ID (which may come from set-group-ID, or be
// the execing task's existing effective group ID) is not equal to the
// task's real GID.
//
// B3. The new permitted capability set contains capabilities not in the
// task's permitted capability set.
//
// Then:
//
// C1. Limit the new permitted capability set to the task's permitted
// capability set.
//
// C2. If either the task does not have CAP_SETUID in its user namespace, or
// the task has no_new_privs set, force the new effective UID and GID to
// the task's real UID and GID.
//
// But since no_new_privs is always set (A3 is always true), this becomes
// much simpler. If B1 and B2 are false, C2 is a no-op. If B3 is false, C1
// is a no-op. So we can just do C1 and C2 unconditionally.
if creds.EffectiveKUID != creds.RealKUID || creds.EffectiveKGID != creds.RealKGID {
creds.EffectiveKUID = creds.RealKUID
creds.EffectiveKGID = creds.RealKGID
t.parentDeathSignal = 0
}
// (Saved set-user-ID is always set to the new effective user ID, and saved
// set-group-ID is always set to the new effective group ID, regardless of
// the above.)
creds.SavedKUID = creds.RealKUID
creds.SavedKGID = creds.RealKGID
creds.PermittedCaps &= newPermitted
if fileEffective {
creds.EffectiveCaps = creds.PermittedCaps
} else {
creds.EffectiveCaps = 0
}
// prctl(2): The "keep capabilities" value will be reset to 0 on subsequent
// calls to execve(2).
creds.KeepCaps = false
// "The bounding set is inherited at fork(2) from the thread's parent, and
// is preserved across an execve(2)". So we're done.
t.creds.Store(creds)
}
|