1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
// CPU scheduling, real and fake.
import (
"fmt"
"math/rand"
"time"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/sentry/hostcpu"
"gvisor.dev/gvisor/pkg/sentry/kernel/sched"
ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
"gvisor.dev/gvisor/pkg/sentry/limits"
"gvisor.dev/gvisor/pkg/sentry/usage"
)
// TaskGoroutineState is a coarse representation of the current execution
// status of a kernel.Task goroutine.
type TaskGoroutineState int
const (
// TaskGoroutineNonexistent indicates that the task goroutine has either
// not yet been created by Task.Start() or has returned from Task.run().
// This must be the zero value for TaskGoroutineState.
TaskGoroutineNonexistent TaskGoroutineState = iota
// TaskGoroutineRunningSys indicates that the task goroutine is executing
// sentry code.
TaskGoroutineRunningSys
// TaskGoroutineRunningApp indicates that the task goroutine is executing
// application code.
TaskGoroutineRunningApp
// TaskGoroutineBlockedInterruptible indicates that the task goroutine is
// blocked in Task.block(), and hence may be woken by Task.interrupt()
// (e.g. due to signal delivery).
TaskGoroutineBlockedInterruptible
// TaskGoroutineBlockedUninterruptible indicates that the task goroutine is
// stopped outside of Task.block() and Task.doStop(), and hence cannot be
// woken by Task.interrupt().
TaskGoroutineBlockedUninterruptible
// TaskGoroutineStopped indicates that the task goroutine is blocked in
// Task.doStop(). TaskGoroutineStopped is similar to
// TaskGoroutineBlockedUninterruptible, but is a separate state to make it
// possible to determine when Task.stop is meaningful.
TaskGoroutineStopped
)
// TaskGoroutineSchedInfo contains task goroutine scheduling state which must
// be read and updated atomically.
//
// +stateify savable
type TaskGoroutineSchedInfo struct {
// Timestamp was the value of Kernel.cpuClock when this
// TaskGoroutineSchedInfo was last updated.
Timestamp uint64
// State is the current state of the task goroutine.
State TaskGoroutineState
// UserTicks is the amount of time the task goroutine has spent executing
// its associated Task's application code, in units of linux.ClockTick.
UserTicks uint64
// SysTicks is the amount of time the task goroutine has spent executing in
// the sentry, in units of linux.ClockTick.
SysTicks uint64
}
// userTicksAt returns the extrapolated value of ts.UserTicks after
// Kernel.CPUClockNow() indicates a time of now.
//
// Preconditions: now <= Kernel.CPUClockNow(). (Since Kernel.cpuClock is
// monotonic, this is satisfied if now is the result of a previous call to
// Kernel.CPUClockNow().) This requirement exists because otherwise a racing
// change to t.gosched can cause userTicksAt to adjust stats by too much,
// making the observed stats non-monotonic.
func (ts *TaskGoroutineSchedInfo) userTicksAt(now uint64) uint64 {
if ts.Timestamp < now && ts.State == TaskGoroutineRunningApp {
// Update stats to reflect execution since the last update.
return ts.UserTicks + (now - ts.Timestamp)
}
return ts.UserTicks
}
// sysTicksAt returns the extrapolated value of ts.SysTicks after
// Kernel.CPUClockNow() indicates a time of now.
//
// Preconditions: As for userTicksAt.
func (ts *TaskGoroutineSchedInfo) sysTicksAt(now uint64) uint64 {
if ts.Timestamp < now && ts.State == TaskGoroutineRunningSys {
return ts.SysTicks + (now - ts.Timestamp)
}
return ts.SysTicks
}
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) accountTaskGoroutineEnter(state TaskGoroutineState) {
now := t.k.CPUClockNow()
if t.gosched.State != TaskGoroutineRunningSys {
panic(fmt.Sprintf("Task goroutine switching from state %v (expected %v) to %v", t.gosched.State, TaskGoroutineRunningSys, state))
}
t.goschedSeq.BeginWrite()
// This function is very hot; avoid defer.
t.gosched.SysTicks += now - t.gosched.Timestamp
t.gosched.Timestamp = now
t.gosched.State = state
t.goschedSeq.EndWrite()
if state != TaskGoroutineRunningApp {
// Task is blocking/stopping.
t.k.decRunningTasks()
}
}
// Preconditions:
// - The caller must be running on the task goroutine
// - The caller must be leaving a state indicated by a previous call to
// t.accountTaskGoroutineEnter(state).
func (t *Task) accountTaskGoroutineLeave(state TaskGoroutineState) {
if state != TaskGoroutineRunningApp {
// Task is unblocking/continuing.
t.k.incRunningTasks()
}
now := t.k.CPUClockNow()
if t.gosched.State != state {
panic(fmt.Sprintf("Task goroutine switching from state %v (expected %v) to %v", t.gosched.State, state, TaskGoroutineRunningSys))
}
t.goschedSeq.BeginWrite()
// This function is very hot; avoid defer.
if state == TaskGoroutineRunningApp {
t.gosched.UserTicks += now - t.gosched.Timestamp
}
t.gosched.Timestamp = now
t.gosched.State = TaskGoroutineRunningSys
t.goschedSeq.EndWrite()
}
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) accountTaskGoroutineRunning() {
now := t.k.CPUClockNow()
if t.gosched.State != TaskGoroutineRunningSys {
panic(fmt.Sprintf("Task goroutine in state %v (expected %v)", t.gosched.State, TaskGoroutineRunningSys))
}
t.goschedSeq.BeginWrite()
t.gosched.SysTicks += now - t.gosched.Timestamp
t.gosched.Timestamp = now
t.goschedSeq.EndWrite()
}
// TaskGoroutineSchedInfo returns a copy of t's task goroutine scheduling info.
// Most clients should use t.CPUStats() instead.
func (t *Task) TaskGoroutineSchedInfo() TaskGoroutineSchedInfo {
return SeqAtomicLoadTaskGoroutineSchedInfo(&t.goschedSeq, &t.gosched)
}
// CPUStats returns the CPU usage statistics of t.
func (t *Task) CPUStats() usage.CPUStats {
return t.cpuStatsAt(t.k.CPUClockNow())
}
// Preconditions: As for TaskGoroutineSchedInfo.userTicksAt.
func (t *Task) cpuStatsAt(now uint64) usage.CPUStats {
tsched := t.TaskGoroutineSchedInfo()
return usage.CPUStats{
UserTime: time.Duration(tsched.userTicksAt(now) * uint64(linux.ClockTick)),
SysTime: time.Duration(tsched.sysTicksAt(now) * uint64(linux.ClockTick)),
VoluntarySwitches: t.yieldCount.Load(),
}
}
// CPUStats returns the combined CPU usage statistics of all past and present
// threads in tg.
func (tg *ThreadGroup) CPUStats() usage.CPUStats {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
// Hack to get a pointer to the Kernel.
if tg.leader == nil {
// Per comment on tg.leader, this is only possible if nothing in the
// ThreadGroup has ever executed anyway.
return usage.CPUStats{}
}
return tg.cpuStatsAtLocked(tg.leader.k.CPUClockNow())
}
// Preconditions: Same as TaskGoroutineSchedInfo.userTicksAt, plus:
// - The TaskSet mutex must be locked.
func (tg *ThreadGroup) cpuStatsAtLocked(now uint64) usage.CPUStats {
stats := tg.exitedCPUStats
// Account for live tasks.
for t := tg.tasks.Front(); t != nil; t = t.Next() {
stats.Accumulate(t.cpuStatsAt(now))
}
return stats
}
// JoinedChildCPUStats implements the semantics of RUSAGE_CHILDREN: "Return
// resource usage statistics for all children of [tg] that have terminated and
// been waited for. These statistics will include the resources used by
// grandchildren, and further removed descendants, if all of the intervening
// descendants waited on their terminated children."
func (tg *ThreadGroup) JoinedChildCPUStats() usage.CPUStats {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.childCPUStats
}
// taskClock is a ktime.Clock that measures the time that a task has spent
// executing. taskClock is primarily used to implement CLOCK_THREAD_CPUTIME_ID.
//
// +stateify savable
type taskClock struct {
t *Task
// If includeSys is true, the taskClock includes both time spent executing
// application code as well as time spent in the sentry. Otherwise, the
// taskClock includes only time spent executing application code.
includeSys bool
// Implements waiter.Waitable. TimeUntil wouldn't change its estimation
// based on either of the clock events, so there's no event to be
// notified for.
ktime.NoClockEvents `state:"nosave"`
// Implements ktime.Clock.WallTimeUntil.
//
// As an upper bound, a task's clock cannot advance faster than CPU
// time. It would have to execute at a rate of more than 1 task-second
// per 1 CPU-second, which isn't possible.
ktime.WallRateClock `state:"nosave"`
}
// UserCPUClock returns a clock measuring the CPU time the task has spent
// executing application code.
func (t *Task) UserCPUClock() ktime.Clock {
return &taskClock{t: t, includeSys: false}
}
// CPUClock returns a clock measuring the CPU time the task has spent executing
// application and "kernel" code.
func (t *Task) CPUClock() ktime.Clock {
return &taskClock{t: t, includeSys: true}
}
// Now implements ktime.Clock.Now.
func (tc *taskClock) Now() ktime.Time {
stats := tc.t.CPUStats()
if tc.includeSys {
return ktime.FromNanoseconds((stats.UserTime + stats.SysTime).Nanoseconds())
}
return ktime.FromNanoseconds(stats.UserTime.Nanoseconds())
}
// tgClock is a ktime.Clock that measures the time a thread group has spent
// executing. tgClock is primarily used to implement CLOCK_PROCESS_CPUTIME_ID.
//
// +stateify savable
type tgClock struct {
tg *ThreadGroup
// If includeSys is true, the tgClock includes both time spent executing
// application code as well as time spent in the sentry. Otherwise, the
// tgClock includes only time spent executing application code.
includeSys bool
// Implements waiter.Waitable.
ktime.ClockEventsQueue `state:"nosave"`
}
// Now implements ktime.Clock.Now.
func (tgc *tgClock) Now() ktime.Time {
stats := tgc.tg.CPUStats()
if tgc.includeSys {
return ktime.FromNanoseconds((stats.UserTime + stats.SysTime).Nanoseconds())
}
return ktime.FromNanoseconds(stats.UserTime.Nanoseconds())
}
// WallTimeUntil implements ktime.Clock.WallTimeUntil.
func (tgc *tgClock) WallTimeUntil(t, now ktime.Time) time.Duration {
// Thread group CPU time should not exceed wall time * live tasks, since
// task goroutines exit after the transition to TaskExitZombie in
// runExitNotify.
tgc.tg.pidns.owner.mu.RLock()
n := tgc.tg.liveTasks
tgc.tg.pidns.owner.mu.RUnlock()
if n == 0 {
if t.Before(now) {
return 0
}
// The timer tick raced with thread group exit, after which no more
// tasks can enter the thread group. So tgc.Now() will never advance
// again. Return a large delay; the timer should be stopped long before
// it comes again anyway.
return time.Hour
}
// This is a lower bound on the amount of time that can elapse before an
// associated timer expires, so returning this value tends to result in a
// sequence of closely-spaced ticks just before timer expiry. To avoid
// this, round up to the nearest ClockTick; CPU usage measurements are
// limited to this resolution anyway.
remaining := time.Duration(t.Sub(now).Nanoseconds()/int64(n)) * time.Nanosecond
return ((remaining + (linux.ClockTick - time.Nanosecond)) / linux.ClockTick) * linux.ClockTick
}
// UserCPUClock returns a ktime.Clock that measures the time that a thread
// group has spent executing.
func (tg *ThreadGroup) UserCPUClock() ktime.Clock {
return &tgClock{tg: tg, includeSys: false}
}
// CPUClock returns a ktime.Clock that measures the time that a thread group
// has spent executing, including sentry time.
func (tg *ThreadGroup) CPUClock() ktime.Clock {
return &tgClock{tg: tg, includeSys: true}
}
func (k *Kernel) runCPUClockTicker() {
rng := rand.New(rand.NewSource(rand.Int63()))
var tgs []*ThreadGroup
for {
// Stop the CPU clock while nothing is running.
if k.runningTasks.Load() == 0 {
k.runningTasksMu.Lock()
if k.runningTasks.Load() == 0 {
k.cpuClockTickerRunning = false
k.cpuClockTickerStopCond.Broadcast()
k.runningTasksCond.Wait()
// k.cpuClockTickerRunning was set to true by our waker
// (Kernel.incRunningTasks()). For reasons described there, we must
// process at least one CPU clock tick between calls to
// k.runningTasksCond.Wait().
}
k.runningTasksMu.Unlock()
}
// Wait for the next CPU clock tick.
select {
case <-k.cpuClockTickTimer.C:
k.cpuClockTickTimer.Reset(linux.ClockTick)
case <-k.cpuClockTickerWakeCh:
continue
}
// Advance the CPU clock, and timers based on the CPU clock, atomically
// under cpuClockMu.
k.cpuClockMu.Lock()
now := k.cpuClock.Add(1)
// Check thread group CPU timers.
tgs = k.tasks.Root.ThreadGroupsAppend(tgs)
for _, tg := range tgs {
if tg.cpuTimersEnabled.Load() == 0 {
continue
}
k.tasks.mu.RLock()
if tg.leader == nil {
// No tasks have ever run in this thread group.
k.tasks.mu.RUnlock()
continue
}
// Accumulate thread group CPU stats, and randomly select running tasks
// using reservoir sampling to receive CPU timer signals.
var virtReceiver *Task
nrVirtCandidates := 0
var profReceiver *Task
nrProfCandidates := 0
tgUserTime := tg.exitedCPUStats.UserTime
tgSysTime := tg.exitedCPUStats.SysTime
for t := tg.tasks.Front(); t != nil; t = t.Next() {
tsched := t.TaskGoroutineSchedInfo()
tgUserTime += time.Duration(tsched.userTicksAt(now) * uint64(linux.ClockTick))
tgSysTime += time.Duration(tsched.sysTicksAt(now) * uint64(linux.ClockTick))
switch tsched.State {
case TaskGoroutineRunningApp:
// Considered by ITIMER_VIRT, ITIMER_PROF, and RLIMIT_CPU
// timers.
nrVirtCandidates++
if int(randInt31n(rng, int32(nrVirtCandidates))) == 0 {
virtReceiver = t
}
fallthrough
case TaskGoroutineRunningSys:
// Considered by ITIMER_PROF and RLIMIT_CPU timers.
nrProfCandidates++
if int(randInt31n(rng, int32(nrProfCandidates))) == 0 {
profReceiver = t
}
}
}
tgVirtNow := ktime.FromNanoseconds(tgUserTime.Nanoseconds())
tgProfNow := ktime.FromNanoseconds((tgUserTime + tgSysTime).Nanoseconds())
// All of the following are standard (not real-time) signals, which are
// automatically deduplicated, so we ignore the number of expirations.
tg.signalHandlers.mu.Lock()
// It should only be possible for these timers to advance if we found
// at least one running task.
if virtReceiver != nil {
// ITIMER_VIRTUAL
newItimerVirtSetting, exp := tg.itimerVirtSetting.At(tgVirtNow)
tg.itimerVirtSetting = newItimerVirtSetting
if exp != 0 {
virtReceiver.sendSignalLocked(SignalInfoPriv(linux.SIGVTALRM), true)
}
}
if profReceiver != nil {
// ITIMER_PROF
newItimerProfSetting, exp := tg.itimerProfSetting.At(tgProfNow)
tg.itimerProfSetting = newItimerProfSetting
if exp != 0 {
profReceiver.sendSignalLocked(SignalInfoPriv(linux.SIGPROF), true)
}
// RLIMIT_CPU soft limit
newRlimitCPUSoftSetting, exp := tg.rlimitCPUSoftSetting.At(tgProfNow)
tg.rlimitCPUSoftSetting = newRlimitCPUSoftSetting
if exp != 0 {
profReceiver.sendSignalLocked(SignalInfoPriv(linux.SIGXCPU), true)
}
// RLIMIT_CPU hard limit
rlimitCPUMax := tg.limits.Get(limits.CPU).Max
if rlimitCPUMax != limits.Infinity && !tgProfNow.Before(ktime.FromSeconds(int64(rlimitCPUMax))) {
profReceiver.sendSignalLocked(SignalInfoPriv(linux.SIGKILL), true)
}
}
tg.signalHandlers.mu.Unlock()
k.tasks.mu.RUnlock()
}
k.cpuClockMu.Unlock()
// Retain tgs between calls to Notify to reduce allocations.
for i := range tgs {
tgs[i] = nil
}
tgs = tgs[:0]
}
}
// randInt31n returns a random integer in [0, n).
//
// randInt31n is equivalent to math/rand.Rand.int31n(), which is unexported.
// See that function for details.
func randInt31n(rng *rand.Rand, n int32) int32 {
v := rng.Uint32()
prod := uint64(v) * uint64(n)
low := uint32(prod)
if low < uint32(n) {
thresh := uint32(-n) % uint32(n)
for low < thresh {
v = rng.Uint32()
prod = uint64(v) * uint64(n)
low = uint32(prod)
}
}
return int32(prod >> 32)
}
// NotifyRlimitCPUUpdated is called by setrlimit.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) NotifyRlimitCPUUpdated() {
t.k.cpuClockMu.Lock()
defer t.k.cpuClockMu.Unlock()
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
rlimitCPU := t.tg.limits.Get(limits.CPU)
t.tg.rlimitCPUSoftSetting = ktime.Setting{
Enabled: rlimitCPU.Cur != limits.Infinity,
Next: ktime.FromNanoseconds((time.Duration(rlimitCPU.Cur) * time.Second).Nanoseconds()),
Period: time.Second,
}
if rlimitCPU.Max != limits.Infinity {
// Check if tg is already over the hard limit.
tgcpu := t.tg.cpuStatsAtLocked(t.k.CPUClockNow())
tgProfNow := ktime.FromNanoseconds((tgcpu.UserTime + tgcpu.SysTime).Nanoseconds())
if !tgProfNow.Before(ktime.FromSeconds(int64(rlimitCPU.Max))) {
t.sendSignalLocked(SignalInfoPriv(linux.SIGKILL), true)
}
}
t.tg.updateCPUTimersEnabledLocked()
}
// Preconditions: The signal mutex must be locked.
func (tg *ThreadGroup) updateCPUTimersEnabledLocked() {
rlimitCPU := tg.limits.Get(limits.CPU)
if tg.itimerVirtSetting.Enabled || tg.itimerProfSetting.Enabled || tg.rlimitCPUSoftSetting.Enabled || rlimitCPU.Max != limits.Infinity {
tg.cpuTimersEnabled.Store(1)
} else {
tg.cpuTimersEnabled.Store(0)
}
}
// StateStatus returns a string representation of the task's current state,
// appropriate for /proc/[pid]/status.
func (t *Task) StateStatus() string {
switch s := t.TaskGoroutineSchedInfo().State; s {
case TaskGoroutineNonexistent, TaskGoroutineRunningSys:
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
switch t.exitState {
case TaskExitZombie:
return "Z (zombie)"
case TaskExitDead:
return "X (dead)"
default:
// The task goroutine can't exit before passing through
// runExitNotify, so if s == TaskGoroutineNonexistent, the task has
// been created but the task goroutine hasn't yet started. The
// Linux equivalent is struct task_struct::state == TASK_NEW
// (kernel/fork.c:copy_process() =>
// kernel/sched/core.c:sched_fork()), but the TASK_NEW bit is
// masked out by TASK_REPORT for /proc/[pid]/status, leaving only
// TASK_RUNNING.
return "R (running)"
}
case TaskGoroutineRunningApp:
return "R (running)"
case TaskGoroutineBlockedInterruptible:
return "S (sleeping)"
case TaskGoroutineStopped:
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
switch t.stop.(type) {
case *groupStop:
return "T (stopped)"
case *ptraceStop:
return "t (tracing stop)"
}
fallthrough
case TaskGoroutineBlockedUninterruptible:
// This is the name Linux uses for TASK_UNINTERRUPTIBLE and
// TASK_KILLABLE (= TASK_UNINTERRUPTIBLE | TASK_WAKEKILL):
// fs/proc/array.c:task_state_array.
return "D (disk sleep)"
default:
panic(fmt.Sprintf("Invalid TaskGoroutineState: %v", s))
}
}
// CPUMask returns a copy of t's allowed CPU mask.
func (t *Task) CPUMask() sched.CPUSet {
t.mu.Lock()
defer t.mu.Unlock()
return t.allowedCPUMask.Copy()
}
// SetCPUMask sets t's allowed CPU mask based on mask. It takes ownership of
// mask.
//
// Preconditions: mask.Size() ==
// sched.CPUSetSize(t.Kernel().ApplicationCores()).
func (t *Task) SetCPUMask(mask sched.CPUSet) error {
if want := sched.CPUSetSize(t.k.applicationCores); mask.Size() != want {
panic(fmt.Sprintf("Invalid CPUSet %v (expected %d bytes)", mask, want))
}
// Remove CPUs in mask above Kernel.applicationCores.
mask.ClearAbove(t.k.applicationCores)
// Ensure that at least 1 CPU is still allowed.
if mask.NumCPUs() == 0 {
return linuxerr.EINVAL
}
if t.k.useHostCores {
// No-op; pretend the mask was immediately changed back.
return nil
}
t.tg.pidns.owner.mu.RLock()
rootTID := t.tg.pidns.owner.Root.tids[t]
t.tg.pidns.owner.mu.RUnlock()
t.mu.Lock()
defer t.mu.Unlock()
t.allowedCPUMask = mask
t.cpu.Store(assignCPU(mask, rootTID))
return nil
}
// CPU returns the cpu id for a given task.
func (t *Task) CPU() int32 {
if t.k.useHostCores {
return int32(hostcpu.GetCPU())
}
return t.cpu.Load()
}
// assignCPU returns the virtualized CPU number for the task with global TID
// tid and allowedCPUMask allowed.
func assignCPU(allowed sched.CPUSet, tid ThreadID) (cpu int32) {
// To pretend that threads are evenly distributed to allowed CPUs, choose n
// to be less than the number of CPUs in allowed ...
n := int(tid) % int(allowed.NumCPUs())
// ... then pick the nth CPU in allowed.
allowed.ForEachCPU(func(c uint) {
if n--; n == 0 {
cpu = int32(c)
}
})
return cpu
}
// Niceness returns t's niceness.
func (t *Task) Niceness() int {
t.mu.Lock()
defer t.mu.Unlock()
return t.niceness
}
// Priority returns t's priority.
func (t *Task) Priority() int {
t.mu.Lock()
defer t.mu.Unlock()
return t.niceness + 20
}
// SetNiceness sets t's niceness to n.
func (t *Task) SetNiceness(n int) {
t.mu.Lock()
defer t.mu.Unlock()
t.niceness = n
}
// NumaPolicy returns t's current numa policy.
func (t *Task) NumaPolicy() (policy linux.NumaPolicy, nodeMask uint64) {
t.mu.Lock()
defer t.mu.Unlock()
return t.numaPolicy, t.numaNodeMask
}
// SetNumaPolicy sets t's numa policy.
func (t *Task) SetNumaPolicy(policy linux.NumaPolicy, nodeMask uint64) {
t.mu.Lock()
defer t.mu.Unlock()
t.numaPolicy = policy
t.numaNodeMask = nodeMask
}
|