1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
// This file defines the behavior of task signal handling.
import (
"fmt"
"time"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/eventchannel"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
ucspb "gvisor.dev/gvisor/pkg/sentry/kernel/uncaught_signal_go_proto"
"gvisor.dev/gvisor/pkg/waiter"
)
// SignalAction is an internal signal action.
type SignalAction int
// Available signal actions.
// Note that although we refer the complete set internally,
// the application is only capable of using the Default and
// Ignore actions from the system call interface.
const (
SignalActionTerm SignalAction = iota
SignalActionCore
SignalActionStop
SignalActionIgnore
SignalActionHandler
)
// Default signal handler actions. Note that for most signals,
// (except SIGKILL and SIGSTOP) these can be overridden by the app.
var defaultActions = map[linux.Signal]SignalAction{
// POSIX.1-1990 standard.
linux.SIGHUP: SignalActionTerm,
linux.SIGINT: SignalActionTerm,
linux.SIGQUIT: SignalActionCore,
linux.SIGILL: SignalActionCore,
linux.SIGABRT: SignalActionCore,
linux.SIGFPE: SignalActionCore,
linux.SIGKILL: SignalActionTerm, // but see ThreadGroup.applySignalSideEffects
linux.SIGSEGV: SignalActionCore,
linux.SIGPIPE: SignalActionTerm,
linux.SIGALRM: SignalActionTerm,
linux.SIGTERM: SignalActionTerm,
linux.SIGUSR1: SignalActionTerm,
linux.SIGUSR2: SignalActionTerm,
linux.SIGCHLD: SignalActionIgnore,
linux.SIGCONT: SignalActionIgnore, // but see ThreadGroup.applySignalSideEffects
linux.SIGSTOP: SignalActionStop,
linux.SIGTSTP: SignalActionStop,
linux.SIGTTIN: SignalActionStop,
linux.SIGTTOU: SignalActionStop,
// POSIX.1-2001 standard.
linux.SIGBUS: SignalActionCore,
linux.SIGPROF: SignalActionTerm,
linux.SIGSYS: SignalActionCore,
linux.SIGTRAP: SignalActionCore,
linux.SIGURG: SignalActionIgnore,
linux.SIGVTALRM: SignalActionTerm,
linux.SIGXCPU: SignalActionCore,
linux.SIGXFSZ: SignalActionCore,
// The rest on linux.
linux.SIGSTKFLT: SignalActionTerm,
linux.SIGIO: SignalActionTerm,
linux.SIGPWR: SignalActionTerm,
linux.SIGWINCH: SignalActionIgnore,
}
// computeAction figures out what to do given a signal number
// and an linux.SigAction. SIGSTOP always results in a SignalActionStop,
// and SIGKILL always results in a SignalActionTerm.
// Signal 0 is always ignored as many programs use it for various internal functions
// and don't expect it to do anything.
//
// In the event the signal is not one of these, act.Handler determines what
// happens next.
// If act.Handler is:
// 0, the default action is taken;
// 1, the signal is ignored;
// anything else, the function returns SignalActionHandler.
func computeAction(sig linux.Signal, act linux.SigAction) SignalAction {
switch sig {
case linux.SIGSTOP:
return SignalActionStop
case linux.SIGKILL:
return SignalActionTerm
case linux.Signal(0):
return SignalActionIgnore
}
switch act.Handler {
case linux.SIG_DFL:
return defaultActions[sig]
case linux.SIG_IGN:
return SignalActionIgnore
default:
return SignalActionHandler
}
}
// UnblockableSignals contains the set of signals which cannot be blocked.
var UnblockableSignals = linux.MakeSignalSet(linux.SIGKILL, linux.SIGSTOP)
// StopSignals is the set of signals whose default action is SignalActionStop.
var StopSignals = linux.MakeSignalSet(linux.SIGSTOP, linux.SIGTSTP, linux.SIGTTIN, linux.SIGTTOU)
// dequeueSignalLocked returns a pending signal that is *not* included in mask.
// If there are no pending unmasked signals, dequeueSignalLocked returns nil.
//
// Preconditions: t.tg.signalHandlers.mu must be locked.
func (t *Task) dequeueSignalLocked(mask linux.SignalSet) *linux.SignalInfo {
if info := t.pendingSignals.dequeue(mask); info != nil {
return info
}
return t.tg.pendingSignals.dequeue(mask)
}
// discardSpecificLocked removes all instances of the given signal from all
// signal queues in tg.
//
// Preconditions: The signal mutex must be locked.
func (tg *ThreadGroup) discardSpecificLocked(sig linux.Signal) {
tg.pendingSignals.discardSpecific(sig)
for t := tg.tasks.Front(); t != nil; t = t.Next() {
t.pendingSignals.discardSpecific(sig)
}
}
// PendingSignals returns the set of pending signals.
func (t *Task) PendingSignals() linux.SignalSet {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
return t.pendingSignals.pendingSet | t.tg.pendingSignals.pendingSet
}
// deliverSignal delivers the given signal and returns the following run state.
func (t *Task) deliverSignal(info *linux.SignalInfo, act linux.SigAction) taskRunState {
sig := linux.Signal(info.Signo)
sigact := computeAction(sig, act)
if t.haveSyscallReturn {
if sre, ok := linuxerr.SyscallRestartErrorFromReturn(t.Arch().Return()); ok {
// Signals that are ignored, cause a thread group stop, or
// terminate the thread group do not interact with interrupted
// syscalls; in Linux terms, they are never returned to the signal
// handling path from get_signal => get_signal_to_deliver. The
// behavior of an interrupted syscall is determined by the first
// signal that is actually handled (by userspace).
if sigact == SignalActionHandler {
switch {
case sre == linuxerr.ERESTARTNOHAND:
fallthrough
case sre == linuxerr.ERESTART_RESTARTBLOCK:
fallthrough
case (sre == linuxerr.ERESTARTSYS && act.Flags&linux.SA_RESTART == 0):
t.Debugf("Not restarting syscall %d after errno %d: interrupted by signal %d", t.Arch().SyscallNo(), sre, info.Signo)
t.Arch().SetReturn(uintptr(-ExtractErrno(linuxerr.EINTR, -1)))
default:
t.Debugf("Restarting syscall %d: interrupted by signal %d", t.Arch().SyscallNo(), info.Signo)
t.Arch().RestartSyscall()
}
}
}
}
switch sigact {
case SignalActionTerm, SignalActionCore:
// "Default action is to terminate the process." - signal(7)
t.Debugf("Signal %d: terminating thread group", info.Signo)
// Emit an event channel messages related to this uncaught signal.
ucs := &ucspb.UncaughtSignal{
Tid: int32(t.Kernel().TaskSet().Root.IDOfTask(t)),
Pid: int32(t.Kernel().TaskSet().Root.IDOfThreadGroup(t.ThreadGroup())),
Registers: t.Arch().StateData().Proto(),
SignalNumber: info.Signo,
}
// Attach an fault address if appropriate.
switch sig {
case linux.SIGSEGV, linux.SIGFPE, linux.SIGILL, linux.SIGTRAP, linux.SIGBUS:
ucs.FaultAddr = info.Addr()
}
eventchannel.Emit(ucs)
t.PrepareGroupExit(linux.WaitStatusTerminationSignal(sig))
return (*runExit)(nil)
case SignalActionStop:
// "Default action is to stop the process."
t.initiateGroupStop(info)
case SignalActionIgnore:
// "Default action is to ignore the signal."
t.Debugf("Signal %d: ignored", info.Signo)
case SignalActionHandler:
// Try to deliver the signal to the user-configured handler.
t.Debugf("Signal %d: delivering to handler", info.Signo)
if err := t.deliverSignalToHandler(info, act); err != nil {
// This is not a warning, it can occur during normal operation.
t.Debugf("Failed to deliver signal %+v to user handler: %v", info, err)
// Send a forced SIGSEGV. If the signal that couldn't be delivered
// was a SIGSEGV, force the handler to SIG_DFL.
t.forceSignal(linux.SIGSEGV, sig == linux.SIGSEGV /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
}
default:
panic(fmt.Sprintf("Unknown signal action %+v, %d?", info, computeAction(sig, act)))
}
return (*runInterrupt)(nil)
}
// deliverSignalToHandler changes the task's userspace state to enter the given
// user-configured handler for the given signal.
func (t *Task) deliverSignalToHandler(info *linux.SignalInfo, act linux.SigAction) error {
// Signal delivery to an application handler interrupts restartable
// sequences.
t.rseqInterrupt()
// Are executing on the main stack,
// or the provided alternate stack?
sp := hostarch.Addr(t.Arch().Stack())
// N.B. This is a *copy* of the alternate stack that the user's signal
// handler expects to see in its ucontext (even if it's not in use).
alt := t.signalStack
if act.Flags&linux.SA_ONSTACK != 0 && alt.IsEnabled() {
alt.Flags |= linux.SS_ONSTACK
if !alt.Contains(sp) {
sp = hostarch.Addr(alt.Top())
}
}
mm := t.MemoryManager()
// Set up the signal handler. If we have a saved signal mask, the signal
// handler should run with the current mask, but sigreturn should restore
// the saved one.
st := &arch.Stack{
Arch: t.Arch(),
IO: mm,
Bottom: sp,
}
mask := linux.SignalSet(t.signalMask.Load())
if t.haveSavedSignalMask {
mask = t.savedSignalMask
}
// Set up the restorer.
// x86-64 should always uses SA_RESTORER, but this flag is optional on other platforms.
// Please see the linux code as reference:
// linux/arch/x86/kernel/signal.c:__setup_rt_frame()
// If SA_RESTORER is not configured, we can use the sigreturn trampolines
// the vdso provides instead.
// Please see the linux code as reference:
// linux/arch/arm64/kernel/signal.c:setup_return()
if act.Flags&linux.SA_RESTORER == 0 {
act.Restorer = mm.VDSOSigReturn()
}
if err := t.Arch().SignalSetup(st, &act, info, &alt, mask, t.k.featureSet); err != nil {
return err
}
t.p.FullStateChanged()
t.haveSavedSignalMask = false
// Add our signal mask.
newMask := linux.SignalSet(t.signalMask.Load()) | act.Mask
if act.Flags&linux.SA_NODEFER == 0 {
newMask |= linux.SignalSetOf(linux.Signal(info.Signo))
}
t.SetSignalMask(newMask)
return nil
}
var ctrlResume = &SyscallControl{ignoreReturn: true}
// SignalReturn implements sigreturn(2) (if rt is false) or rt_sigreturn(2) (if
// rt is true).
func (t *Task) SignalReturn(rt bool) (*SyscallControl, error) {
st := t.Stack()
sigset, alt, err := t.Arch().SignalRestore(st, rt, t.k.featureSet)
if err != nil {
// sigreturn syscalls never return errors.
t.Debugf("failed to restore from a signal frame: %v", err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return nil, err
}
// Attempt to record the given signal stack. Note that we silently
// ignore failures here, as does Linux. Only an EFAULT may be
// generated, but SignalRestore has already deserialized the entire
// frame successfully.
t.SetSignalStack(alt)
// Restore our signal mask. SIGKILL and SIGSTOP should not be blocked.
t.SetSignalMask(sigset &^ UnblockableSignals)
t.p.FullStateChanged()
return ctrlResume, nil
}
// Sigtimedwait implements the semantics of sigtimedwait(2).
//
// Preconditions:
// - The caller must be running on the task goroutine.
// - t.exitState < TaskExitZombie.
func (t *Task) Sigtimedwait(set linux.SignalSet, timeout time.Duration) (*linux.SignalInfo, error) {
// set is the set of signals we're interested in; invert it to get the set
// of signals to block.
mask := ^(set &^ UnblockableSignals)
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
if info := t.dequeueSignalLocked(mask); info != nil {
return info, nil
}
if timeout == 0 {
return nil, linuxerr.EAGAIN
}
// Unblock signals we're waiting for. Remember the original signal mask so
// that Task.sendSignalTimerLocked doesn't discard ignored signals that
// we're temporarily unblocking.
t.realSignalMask = linux.SignalSet(t.signalMask.RacyLoad())
t.setSignalMaskLocked(t.realSignalMask & mask)
// Wait for a timeout or new signal.
t.tg.signalHandlers.mu.Unlock()
_, err := t.BlockWithTimeout(nil, true, timeout)
t.tg.signalHandlers.mu.Lock()
// Restore the original signal mask.
t.setSignalMaskLocked(t.realSignalMask)
t.realSignalMask = 0
if info := t.dequeueSignalLocked(mask); info != nil {
return info, nil
}
if err == linuxerr.ETIMEDOUT {
return nil, linuxerr.EAGAIN
}
return nil, err
}
// SendSignal sends the given signal to t.
//
// The following errors may be returned:
//
// linuxerr.ESRCH - The task has exited.
// linuxerr.EINVAL - The signal is not valid.
// linuxerr.EAGAIN - THe signal is realtime, and cannot be queued.
func (t *Task) SendSignal(info *linux.SignalInfo) error {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
return t.sendSignalLocked(info, false /* group */)
}
// SendGroupSignal sends the given signal to t's thread group.
func (t *Task) SendGroupSignal(info *linux.SignalInfo) error {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
return t.sendSignalLocked(info, true /* group */)
}
// SendSignal sends the given signal to tg, using tg's leader to determine if
// the signal is blocked.
func (tg *ThreadGroup) SendSignal(info *linux.SignalInfo) error {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
tg.signalHandlers.mu.Lock()
defer tg.signalHandlers.mu.Unlock()
return tg.leader.sendSignalLocked(info, true /* group */)
}
func (t *Task) sendSignalLocked(info *linux.SignalInfo, group bool) error {
return t.sendSignalTimerLocked(info, group, nil)
}
func (t *Task) sendSignalTimerLocked(info *linux.SignalInfo, group bool, timer *IntervalTimer) error {
if t.exitState == TaskExitDead {
return linuxerr.ESRCH
}
sig := linux.Signal(info.Signo)
if sig == 0 {
return nil
}
if !sig.IsValid() {
return linuxerr.EINVAL
}
// Signal side effects apply even if the signal is ultimately discarded.
t.tg.applySignalSideEffectsLocked(sig)
// TODO: "Only signals for which the "init" process has established a
// signal handler can be sent to the "init" process by other members of the
// PID namespace. This restriction applies even to privileged processes,
// and prevents other members of the PID namespace from accidentally
// killing the "init" process." - pid_namespaces(7). We don't currently do
// this for child namespaces, though we should; we also don't do this for
// the root namespace (the same restriction applies to global init on
// Linux), where whether or not we should is much murkier. In practice,
// most sandboxed applications are not prepared to function as an init
// process.
// Unmasked, ignored signals are discarded without being queued, unless
// they will be visible to a tracer. Even for group signals, it's the
// originally-targeted task's signal mask and tracer that matter; compare
// Linux's kernel/signal.c:__send_signal() => prepare_signal() =>
// sig_ignored().
ignored := computeAction(sig, t.tg.signalHandlers.actions[sig]) == SignalActionIgnore
if sigset := linux.SignalSetOf(sig); sigset&linux.SignalSet(t.signalMask.RacyLoad()) == 0 && sigset&t.realSignalMask == 0 && ignored && !t.hasTracer() {
t.Debugf("Discarding ignored signal %d", sig)
if timer != nil {
timer.signalRejectedLocked()
}
return nil
}
q := &t.pendingSignals
if group {
q = &t.tg.pendingSignals
}
if !q.enqueue(info, timer) {
if sig.IsRealtime() {
return linuxerr.EAGAIN
}
t.Debugf("Discarding duplicate signal %d", sig)
if timer != nil {
timer.signalRejectedLocked()
}
return nil
}
// Find a receiver to notify. Note that the task we choose to notify, if
// any, may not be the task that actually dequeues and handles the signal;
// e.g. a racing signal mask change may cause the notified task to become
// ineligible, or a racing sibling task may dequeue the signal first.
if t.canReceiveSignalLocked(sig) {
t.Debugf("Notified of signal %d", sig)
t.interrupt()
return nil
}
if group {
if nt := t.tg.findSignalReceiverLocked(sig); nt != nil {
nt.Debugf("Notified of group signal %d", sig)
nt.interrupt()
return nil
}
}
t.Debugf("No task notified of signal %d", sig)
return nil
}
func (tg *ThreadGroup) applySignalSideEffectsLocked(sig linux.Signal) {
switch {
case linux.SignalSetOf(sig)&StopSignals != 0:
// Stop signals cause all prior SIGCONT to be discarded. (This is
// despite the fact this has little effect since SIGCONT's most
// important effect is applied when the signal is sent in the branch
// below, not when the signal is delivered.)
tg.discardSpecificLocked(linux.SIGCONT)
case sig == linux.SIGCONT:
// "The SIGCONT signal has a side effect of waking up (all threads of)
// a group-stopped process. This side effect happens before
// signal-delivery-stop. The tracer can't suppress this side effect (it
// can only suppress signal injection, which only causes the SIGCONT
// handler to not be executed in the tracee, if such a handler is
// installed." - ptrace(2)
tg.endGroupStopLocked(true)
case sig == linux.SIGKILL:
// "SIGKILL does not generate signal-delivery-stop and therefore the
// tracer can't suppress it. SIGKILL kills even within system calls
// (syscall-exit-stop is not generated prior to death by SIGKILL)." -
// ptrace(2)
//
// Note that this differs from ThreadGroup.requestExit in that it
// ignores tg.execing.
if !tg.exiting {
tg.exiting = true
tg.exitStatus = linux.WaitStatusTerminationSignal(linux.SIGKILL)
}
for t := tg.tasks.Front(); t != nil; t = t.Next() {
t.killLocked()
}
}
}
// canReceiveSignalLocked returns true if t should be interrupted to receive
// the given signal. canReceiveSignalLocked is analogous to Linux's
// kernel/signal.c:wants_signal(), but see below for divergences.
//
// Preconditions: The signal mutex must be locked.
func (t *Task) canReceiveSignalLocked(sig linux.Signal) bool {
// Notify that the signal is queued.
t.signalQueue.Notify(waiter.EventMask(linux.MakeSignalSet(sig)))
// - Do not choose tasks that are blocking the signal.
if linux.SignalSetOf(sig)&linux.SignalSet(t.signalMask.RacyLoad()) != 0 {
return false
}
// - No need to check Task.exitState, as the exit path sets every bit in the
// signal mask when it transitions from TaskExitNone to TaskExitInitiated.
// - No special case for SIGKILL: SIGKILL already interrupted all tasks in the
// task group via applySignalSideEffects => killLocked.
// - Do not choose stopped tasks, which cannot handle signals.
if t.stop != nil {
return false
}
// - Do not choose tasks that have already been interrupted, as they may be
// busy handling another signal.
if len(t.interruptChan) != 0 {
return false
}
return true
}
// findSignalReceiverLocked returns a task in tg that should be interrupted to
// receive the given signal. If no such task exists, findSignalReceiverLocked
// returns nil.
//
// Linux actually records curr_target to balance the group signal targets.
//
// Preconditions: The signal mutex must be locked.
func (tg *ThreadGroup) findSignalReceiverLocked(sig linux.Signal) *Task {
for t := tg.tasks.Front(); t != nil; t = t.Next() {
if t.canReceiveSignalLocked(sig) {
return t
}
}
return nil
}
// forceSignal ensures that the task is not ignoring or blocking the given
// signal. If unconditional is true, forceSignal takes action even if the
// signal isn't being ignored or blocked.
func (t *Task) forceSignal(sig linux.Signal, unconditional bool) {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
t.forceSignalLocked(sig, unconditional)
}
func (t *Task) forceSignalLocked(sig linux.Signal, unconditional bool) {
blocked := linux.SignalSetOf(sig)&linux.SignalSet(t.signalMask.RacyLoad()) != 0
act := t.tg.signalHandlers.actions[sig]
ignored := act.Handler == linux.SIG_IGN
if blocked || ignored || unconditional {
act.Handler = linux.SIG_DFL
t.tg.signalHandlers.actions[sig] = act
if blocked {
t.setSignalMaskLocked(linux.SignalSet(t.signalMask.RacyLoad()) &^ linux.SignalSetOf(sig))
}
}
}
// SignalMask returns a copy of t's signal mask.
func (t *Task) SignalMask() linux.SignalSet {
return linux.SignalSet(t.signalMask.Load())
}
// SetSignalMask sets t's signal mask.
//
// Preconditions:
// - The caller must be running on the task goroutine.
// - t.exitState < TaskExitZombie.
func (t *Task) SetSignalMask(mask linux.SignalSet) {
// By precondition, t prevents t.tg from completing an execve and mutating
// t.tg.signalHandlers, so we can skip the TaskSet mutex.
t.tg.signalHandlers.mu.Lock()
t.setSignalMaskLocked(mask)
t.tg.signalHandlers.mu.Unlock()
}
// Preconditions: The signal mutex must be locked.
func (t *Task) setSignalMaskLocked(mask linux.SignalSet) {
oldMask := linux.SignalSet(t.signalMask.RacyLoad())
t.signalMask.Store(uint64(mask))
// If the new mask blocks any signals that were not blocked by the old
// mask, and at least one such signal is pending in tg.pendingSignals, and
// t has been woken, it could be the case that t was woken to handle that
// signal, but will no longer do so as a result of its new signal mask, so
// we have to pick a replacement.
blocked := mask &^ oldMask
blockedGroupPending := blocked & t.tg.pendingSignals.pendingSet
if blockedGroupPending != 0 && t.interrupted() {
linux.ForEachSignal(blockedGroupPending, func(sig linux.Signal) {
if nt := t.tg.findSignalReceiverLocked(sig); nt != nil {
nt.interrupt()
return
}
})
}
// Conversely, if the new mask unblocks any signals that were blocked by
// the old mask, and at least one such signal is pending, we may now need
// to handle that signal.
unblocked := oldMask &^ mask
unblockedPending := unblocked & (t.pendingSignals.pendingSet | t.tg.pendingSignals.pendingSet)
if unblockedPending != 0 {
t.interruptSelf()
}
}
// SetSavedSignalMask sets the saved signal mask (see Task.savedSignalMask's
// comment).
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) SetSavedSignalMask(mask linux.SignalSet) {
t.savedSignalMask = mask
t.haveSavedSignalMask = true
}
// SignalStack returns the task-private signal stack.
func (t *Task) SignalStack() linux.SignalStack {
t.p.PullFullState(t.MemoryManager().AddressSpace(), t.Arch())
alt := t.signalStack
if t.onSignalStack(alt) {
alt.Flags |= linux.SS_ONSTACK
}
return alt
}
// onSignalStack returns true if the task is executing on the given signal stack.
func (t *Task) onSignalStack(alt linux.SignalStack) bool {
sp := hostarch.Addr(t.Arch().Stack())
return alt.Contains(sp)
}
// SetSignalStack sets the task-private signal stack.
//
// This value may not be changed if the task is currently executing on the
// signal stack, i.e. if t.onSignalStack returns true. In this case, this
// function will return false. Otherwise, true is returned.
func (t *Task) SetSignalStack(alt linux.SignalStack) bool {
// Check that we're not executing on the stack.
if t.onSignalStack(t.signalStack) {
return false
}
if alt.Flags&linux.SS_DISABLE != 0 {
// Don't record anything beyond the flags.
t.signalStack = linux.SignalStack{
Flags: linux.SS_DISABLE,
}
} else {
// Mask out irrelevant parts: only disable matters.
alt.Flags &= linux.SS_DISABLE
t.signalStack = alt
}
return true
}
// SetSigAction atomically sets the thread group's signal action for signal sig
// to *actptr (if actptr is not nil) and returns the old signal action.
func (tg *ThreadGroup) SetSigAction(sig linux.Signal, actptr *linux.SigAction) (linux.SigAction, error) {
if !sig.IsValid() {
return linux.SigAction{}, linuxerr.EINVAL
}
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
sh := tg.signalHandlers
sh.mu.Lock()
defer sh.mu.Unlock()
oldact := sh.actions[sig]
if actptr != nil {
if sig == linux.SIGKILL || sig == linux.SIGSTOP {
return oldact, linuxerr.EINVAL
}
act := *actptr
act.Mask &^= UnblockableSignals
sh.actions[sig] = act
// From POSIX, by way of Linux:
//
// "Setting a signal action to SIG_IGN for a signal that is pending
// shall cause the pending signal to be discarded, whether or not it is
// blocked."
//
// "Setting a signal action to SIG_DFL for a signal that is pending and
// whose default action is to ignore the signal (for example, SIGCHLD),
// shall cause the pending signal to be discarded, whether or not it is
// blocked."
if computeAction(sig, act) == SignalActionIgnore {
tg.discardSpecificLocked(sig)
}
}
return oldact, nil
}
// groupStop is a TaskStop placed on tasks that have received a stop signal
// (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU). (The term "group-stop" originates from
// the ptrace man page.)
//
// +stateify savable
type groupStop struct{}
// Killable implements TaskStop.Killable.
func (*groupStop) Killable() bool { return true }
// initiateGroupStop attempts to initiate a group stop based on a
// previously-dequeued stop signal.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) initiateGroupStop(info *linux.SignalInfo) {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
if t.groupStopPending {
t.Debugf("Signal %d: not stopping thread group: lost to racing stop signal", info.Signo)
return
}
if !t.tg.groupStopDequeued {
t.Debugf("Signal %d: not stopping thread group: lost to racing SIGCONT", info.Signo)
return
}
if t.tg.exiting {
t.Debugf("Signal %d: not stopping thread group: lost to racing group exit", info.Signo)
return
}
if t.tg.execing != nil {
t.Debugf("Signal %d: not stopping thread group: lost to racing execve", info.Signo)
return
}
if !t.tg.groupStopComplete {
t.tg.groupStopSignal = linux.Signal(info.Signo)
}
t.tg.groupStopPendingCount = 0
for t2 := t.tg.tasks.Front(); t2 != nil; t2 = t2.Next() {
if t2.killedLocked() || t2.exitState >= TaskExitInitiated {
t2.groupStopPending = false
continue
}
t2.groupStopPending = true
t2.groupStopAcknowledged = false
if t2.ptraceSeized {
t2.trapNotifyPending = true
if s, ok := t2.stop.(*ptraceStop); ok && s.listen {
t2.endInternalStopLocked()
}
}
t2.interrupt()
t.tg.groupStopPendingCount++
}
t.Debugf("Signal %d: stopping %d threads in thread group", info.Signo, t.tg.groupStopPendingCount)
}
// endGroupStopLocked ensures that all prior stop signals received by tg are
// not stopping tg and will not stop tg in the future. If broadcast is true,
// parent and tracer notification will be scheduled if appropriate.
//
// Preconditions: The signal mutex must be locked.
func (tg *ThreadGroup) endGroupStopLocked(broadcast bool) {
// Discard all previously-queued stop signals.
linux.ForEachSignal(StopSignals, tg.discardSpecificLocked)
if tg.groupStopPendingCount == 0 && !tg.groupStopComplete {
return
}
completeStr := "incomplete"
if tg.groupStopComplete {
completeStr = "complete"
}
tg.leader.Debugf("Ending %s group stop with %d threads pending", completeStr, tg.groupStopPendingCount)
for t := tg.tasks.Front(); t != nil; t = t.Next() {
t.groupStopPending = false
if t.ptraceSeized {
t.trapNotifyPending = true
if s, ok := t.stop.(*ptraceStop); ok && s.listen {
t.endInternalStopLocked()
}
} else {
if _, ok := t.stop.(*groupStop); ok {
t.endInternalStopLocked()
}
}
}
if broadcast {
// Instead of notifying the parent here, set groupContNotify so that
// one of the continuing tasks does so. (Linux does something similar.)
// The reason we do this is to keep locking sane. In order to send a
// signal to the parent, we need to lock its signal mutex, but we're
// already holding tg's signal mutex, and the TaskSet mutex must be
// locked for writing for us to hold two signal mutexes. Since we don't
// want to require this for endGroupStopLocked (which is called from
// signal-sending paths), nor do we want to lose atomicity by releasing
// the mutexes we're already holding, just let the continuing thread
// group deal with it.
tg.groupContNotify = true
tg.groupContInterrupted = !tg.groupStopComplete
tg.groupContWaitable = true
}
// Unsetting groupStopDequeued will cause racing calls to initiateGroupStop
// to recognize that the group stop has been cancelled.
tg.groupStopDequeued = false
tg.groupStopSignal = 0
tg.groupStopPendingCount = 0
tg.groupStopComplete = false
tg.groupStopWaitable = false
}
// participateGroupStopLocked is called to handle thread group side effects
// after t unsets t.groupStopPending. The caller must handle task side effects
// (e.g. placing the task goroutine into the group stop). It returns true if
// the caller must notify t.tg.leader's parent of a completed group stop (which
// participateGroupStopLocked cannot do due to holding the wrong locks).
//
// Preconditions: The signal mutex must be locked.
func (t *Task) participateGroupStopLocked() bool {
if t.groupStopAcknowledged {
return false
}
t.groupStopAcknowledged = true
t.tg.groupStopPendingCount--
if t.tg.groupStopPendingCount != 0 {
return false
}
if t.tg.groupStopComplete {
return false
}
t.Debugf("Completing group stop")
t.tg.groupStopComplete = true
t.tg.groupStopWaitable = true
t.tg.groupContNotify = false
t.tg.groupContWaitable = false
return true
}
// signalStop sends a signal to t's thread group of a new group stop, group
// continue, or ptrace stop, if appropriate. code and status are set in the
// signal sent to tg, if any.
//
// Preconditions: The TaskSet mutex must be locked (for reading or writing).
func (t *Task) signalStop(target *Task, code int32, status int32) {
t.tg.signalHandlers.mu.Lock()
defer t.tg.signalHandlers.mu.Unlock()
act, ok := t.tg.signalHandlers.actions[linux.SIGCHLD]
if !ok || (act.Handler != linux.SIG_IGN && act.Flags&linux.SA_NOCLDSTOP == 0) {
sigchld := &linux.SignalInfo{
Signo: int32(linux.SIGCHLD),
Code: code,
}
sigchld.SetPID(int32(t.tg.pidns.tids[target]))
sigchld.SetUID(int32(target.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()))
sigchld.SetStatus(status)
// TODO(b/72102453): Set utime, stime.
t.sendSignalLocked(sigchld, true /* group */)
}
}
// The runInterrupt state handles conditions indicated by interrupts.
//
// +stateify savable
type runInterrupt struct{}
func (*runInterrupt) execute(t *Task) taskRunState {
// Interrupts are de-duplicated (t.unsetInterrupted() will undo the effect
// of all previous calls to t.interrupted() regardless of how many such
// calls there have been), so early exits from this function must re-enter
// the runInterrupt state to check for more interrupt-signaled conditions.
t.tg.signalHandlers.mu.Lock()
// Did we just leave a group stop?
if t.tg.groupContNotify {
t.tg.groupContNotify = false
sig := t.tg.groupStopSignal
intr := t.tg.groupContInterrupted
t.tg.signalHandlers.mu.Unlock()
t.tg.pidns.owner.mu.RLock()
// For consistency with Linux, if the parent and (thread group
// leader's) tracer are in the same thread group, deduplicate
// notifications.
notifyParent := t.tg.leader.parent != nil
if tracer := t.tg.leader.Tracer(); tracer != nil {
if notifyParent && tracer.tg == t.tg.leader.parent.tg {
notifyParent = false
}
// Sending CLD_STOPPED to the tracer doesn't really make any sense;
// the thread group leader may have already entered the stop and
// notified its tracer accordingly. But it's consistent with
// Linux...
if intr {
tracer.signalStop(t.tg.leader, linux.CLD_STOPPED, int32(sig))
if !notifyParent {
tracer.tg.eventQueue.Notify(EventGroupContinue | EventTraceeStop | EventChildGroupStop)
} else {
tracer.tg.eventQueue.Notify(EventGroupContinue | EventTraceeStop)
}
} else {
tracer.signalStop(t.tg.leader, linux.CLD_CONTINUED, int32(sig))
tracer.tg.eventQueue.Notify(EventGroupContinue)
}
}
if notifyParent {
// If groupContInterrupted, do as Linux does and pretend the group
// stop completed just before it ended. The theoretical behavior in
// this case would be to send a SIGCHLD indicating the completed
// stop, followed by a SIGCHLD indicating the continue. However,
// SIGCHLD is a standard signal, so the latter would always be
// dropped. Hence sending only the former is equivalent.
if intr {
t.tg.leader.parent.signalStop(t.tg.leader, linux.CLD_STOPPED, int32(sig))
t.tg.leader.parent.tg.eventQueue.Notify(EventGroupContinue | EventChildGroupStop)
} else {
t.tg.leader.parent.signalStop(t.tg.leader, linux.CLD_CONTINUED, int32(sig))
t.tg.leader.parent.tg.eventQueue.Notify(EventGroupContinue)
}
}
t.tg.pidns.owner.mu.RUnlock()
return (*runInterrupt)(nil)
}
// Do we need to enter a group stop or related ptrace stop? This path is
// analogous to Linux's kernel/signal.c:get_signal() => do_signal_stop()
// (with ptrace enabled) and do_jobctl_trap().
if t.groupStopPending || t.trapStopPending || t.trapNotifyPending {
sig := t.tg.groupStopSignal
notifyParent := false
if t.groupStopPending {
t.groupStopPending = false
// We care about t.tg.groupStopSignal (for tracer notification)
// even if this doesn't complete a group stop, so keep the
// value of sig we've already read.
notifyParent = t.participateGroupStopLocked()
}
t.trapStopPending = false
t.trapNotifyPending = false
// Drop the signal mutex so we can take the TaskSet mutex.
t.tg.signalHandlers.mu.Unlock()
t.tg.pidns.owner.mu.RLock()
if t.tg.leader.parent == nil {
notifyParent = false
}
if tracer := t.Tracer(); tracer != nil {
if t.ptraceSeized {
if sig == 0 {
sig = linux.SIGTRAP
}
// "If tracee was attached using PTRACE_SEIZE, group-stop is
// indicated by PTRACE_EVENT_STOP: status>>16 ==
// PTRACE_EVENT_STOP. This allows detection of group-stops
// without requiring an extra PTRACE_GETSIGINFO call." -
// "Group-stop", ptrace(2)
t.ptraceCode = int32(sig) | linux.PTRACE_EVENT_STOP<<8
t.ptraceSiginfo = &linux.SignalInfo{
Signo: int32(sig),
Code: t.ptraceCode,
}
t.ptraceSiginfo.SetPID(int32(t.tg.pidns.tids[t]))
t.ptraceSiginfo.SetUID(int32(t.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()))
} else {
t.ptraceCode = int32(sig)
t.ptraceSiginfo = nil
}
if t.beginPtraceStopLocked() {
tracer.signalStop(t, linux.CLD_STOPPED, int32(sig))
// For consistency with Linux, if the parent and tracer are in the
// same thread group, deduplicate notification signals.
if notifyParent && tracer.tg == t.tg.leader.parent.tg {
notifyParent = false
tracer.tg.eventQueue.Notify(EventChildGroupStop | EventTraceeStop)
} else {
tracer.tg.eventQueue.Notify(EventTraceeStop)
}
}
} else {
t.tg.signalHandlers.mu.Lock()
if !t.killedLocked() {
t.beginInternalStopLocked((*groupStop)(nil))
}
t.tg.signalHandlers.mu.Unlock()
}
if notifyParent {
t.tg.leader.parent.signalStop(t.tg.leader, linux.CLD_STOPPED, int32(sig))
t.tg.leader.parent.tg.eventQueue.Notify(EventChildGroupStop)
}
t.tg.pidns.owner.mu.RUnlock()
return (*runInterrupt)(nil)
}
// Are there signals pending?
if info := t.dequeueSignalLocked(linux.SignalSet(t.signalMask.RacyLoad())); info != nil {
t.p.PullFullState(t.MemoryManager().AddressSpace(), t.Arch())
if linux.SignalSetOf(linux.Signal(info.Signo))&StopSignals != 0 {
// Indicate that we've dequeued a stop signal before unlocking the
// signal mutex; initiateGroupStop will check for races with
// endGroupStopLocked after relocking it.
t.tg.groupStopDequeued = true
}
if t.ptraceSignalLocked(info) {
// Dequeueing the signal action must wait until after the
// signal-delivery-stop ends since the tracer can change or
// suppress the signal.
t.tg.signalHandlers.mu.Unlock()
return (*runInterruptAfterSignalDeliveryStop)(nil)
}
act := t.tg.signalHandlers.dequeueAction(linux.Signal(info.Signo))
t.tg.signalHandlers.mu.Unlock()
return t.deliverSignal(info, act)
}
t.unsetInterrupted()
t.tg.signalHandlers.mu.Unlock()
return (*runApp)(nil)
}
// +stateify savable
type runInterruptAfterSignalDeliveryStop struct{}
func (*runInterruptAfterSignalDeliveryStop) execute(t *Task) taskRunState {
t.tg.pidns.owner.mu.Lock()
// Can't defer unlock: deliverSignal must be called without holding TaskSet
// mutex.
sig := linux.Signal(t.ptraceCode)
defer func() {
t.ptraceSiginfo = nil
}()
if !sig.IsValid() {
t.tg.pidns.owner.mu.Unlock()
return (*runInterrupt)(nil)
}
info := t.ptraceSiginfo
if sig != linux.Signal(info.Signo) {
info.Signo = int32(sig)
info.Errno = 0
info.Code = linux.SI_USER
// pid isn't a valid field for all signal numbers, but Linux
// doesn't care (kernel/signal.c:ptrace_signal()).
//
// Linux uses t->parent for the tid and uid here, which is the tracer
// if it hasn't detached or the real parent otherwise.
parent := t.parent
if tracer := t.Tracer(); tracer != nil {
parent = tracer
}
if parent == nil {
// Tracer has detached and t was created by Kernel.CreateProcess().
// Pretend the parent is in an ancestor PID + user namespace.
info.SetPID(0)
info.SetUID(int32(auth.OverflowUID))
} else {
info.SetPID(int32(t.tg.pidns.tids[parent]))
info.SetUID(int32(parent.Credentials().RealKUID.In(t.UserNamespace()).OrOverflow()))
}
}
t.tg.signalHandlers.mu.Lock()
t.tg.pidns.owner.mu.Unlock()
// If the signal is masked, re-queue it.
if linux.SignalSetOf(sig)&linux.SignalSet(t.signalMask.RacyLoad()) != 0 {
t.sendSignalLocked(info, false /* group */)
t.tg.signalHandlers.mu.Unlock()
return (*runInterrupt)(nil)
}
act := t.tg.signalHandlers.dequeueAction(linux.Signal(info.Signo))
t.tg.signalHandlers.mu.Unlock()
return t.deliverSignal(info, act)
}
// SignalRegister registers a waiter for pending signals.
func (t *Task) SignalRegister(e *waiter.Entry) {
t.tg.signalHandlers.mu.Lock()
t.signalQueue.EventRegister(e)
t.tg.signalHandlers.mu.Unlock()
}
// SignalUnregister unregisters a waiter for pending signals.
func (t *Task) SignalUnregister(e *waiter.Entry) {
t.tg.signalHandlers.mu.Lock()
t.signalQueue.EventUnregister(e)
t.tg.signalHandlers.mu.Unlock()
}
|