1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"fmt"
"os"
"runtime/trace"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/bits"
"gvisor.dev/gvisor/pkg/errors"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/marshal"
"gvisor.dev/gvisor/pkg/metric"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/seccheck"
pb "gvisor.dev/gvisor/pkg/sentry/seccheck/points/points_go_proto"
)
// SyscallRestartBlock represents the restart block for a syscall restartable
// with a custom function. It encapsulates the state required to restart a
// syscall across a S/R.
type SyscallRestartBlock interface {
Restart(t *Task) (uintptr, error)
}
// SyscallControl is returned by syscalls to control the behavior of
// Task.doSyscallInvoke.
type SyscallControl struct {
// next is the state that the task goroutine should switch to. If next is
// nil, the task goroutine should continue to syscall exit as usual.
next taskRunState
// If ignoreReturn is true, Task.doSyscallInvoke should not store any value
// in the task's syscall return value register.
ignoreReturn bool
}
var (
// CtrlDoExit is returned by the implementations of the exit and exit_group
// syscalls to enter the task exit path directly, skipping syscall exit
// tracing.
CtrlDoExit = &SyscallControl{next: (*runExit)(nil), ignoreReturn: true}
// ctrlStopAndReinvokeSyscall is returned by syscalls using the external
// feature before syscall execution. This causes Task.doSyscallInvoke
// to return runSyscallReinvoke, allowing Task.run to check for stops
// before immediately re-invoking the syscall (skipping the re-checking
// of seccomp filters and ptrace which would confuse userspace
// tracing).
ctrlStopAndReinvokeSyscall = &SyscallControl{next: (*runSyscallReinvoke)(nil), ignoreReturn: true}
// ctrlStopBeforeSyscallExit is returned by syscalls that initiate a stop at
// their end. This causes Task.doSyscallInvoke to return runSyscallExit, rather
// than tail-calling it, allowing stops to be checked before syscall exit.
ctrlStopBeforeSyscallExit = &SyscallControl{next: (*runSyscallExit)(nil)}
)
func (t *Task) invokeExternal() {
t.BeginExternalStop()
go func() { // S/R-SAFE: External control flow.
defer t.EndExternalStop()
t.SyscallTable().External(t.Kernel())
}()
}
func (t *Task) executeSyscall(sysno uintptr, args arch.SyscallArguments) (rval uintptr, ctrl *SyscallControl, err error) {
s := t.SyscallTable()
fe := s.FeatureEnable.Word(sysno)
var straceContext any
if bits.IsAnyOn32(fe, StraceEnableBits) {
straceContext = s.Stracer.SyscallEnter(t, sysno, args, fe)
}
if bits.IsAnyOn32(fe, SecCheckRawEnter) {
info := pb.Syscall{
Sysno: uint64(sysno),
Arg1: args[0].Uint64(),
Arg2: args[1].Uint64(),
Arg3: args[2].Uint64(),
Arg4: args[3].Uint64(),
Arg5: args[4].Uint64(),
Arg6: args[5].Uint64(),
}
fields := seccheck.Global.GetFieldSet(seccheck.GetPointForSyscall(seccheck.SyscallRawEnter, sysno))
if !fields.Context.Empty() {
info.ContextData = &pb.ContextData{}
LoadSeccheckData(t, fields.Context, info.ContextData)
}
seccheck.Global.SentToSinks(func(c seccheck.Sink) error {
return c.RawSyscall(t, fields, &info)
})
}
if bits.IsAnyOn32(fe, SecCheckEnter) {
fields := seccheck.Global.GetFieldSet(seccheck.GetPointForSyscall(seccheck.SyscallEnter, sysno))
var ctxData *pb.ContextData
if !fields.Context.Empty() {
ctxData = &pb.ContextData{}
LoadSeccheckData(t, fields.Context, ctxData)
}
info := SyscallInfo{
Sysno: sysno,
Args: args,
}
cb := s.LookupSyscallToProto(sysno)
msg, msgType := cb(t, fields, ctxData, info)
seccheck.Global.SentToSinks(func(c seccheck.Sink) error {
return c.Syscall(t, fields, ctxData, msgType, msg)
})
}
if bits.IsOn32(fe, ExternalBeforeEnable) && (s.ExternalFilterBefore == nil || s.ExternalFilterBefore(t, sysno, args)) {
t.invokeExternal()
// Ensure we check for stops, then invoke the syscall again.
ctrl = ctrlStopAndReinvokeSyscall
} else {
fn := s.Lookup(sysno)
var region *trace.Region // Only non-nil if tracing == true.
if trace.IsEnabled() {
region = trace.StartRegion(t.traceContext, s.LookupName(sysno))
}
if fn != nil {
// Call our syscall implementation.
rval, ctrl, err = fn(t, args)
} else {
// Use the missing function if not found.
rval, err = t.SyscallTable().Missing(t, sysno, args)
}
if region != nil {
region.End()
}
}
if bits.IsOn32(fe, ExternalAfterEnable) && (s.ExternalFilterAfter == nil || s.ExternalFilterAfter(t, sysno, args)) {
t.invokeExternal()
// Don't reinvoke the unix.
}
if bits.IsAnyOn32(fe, StraceEnableBits) {
s.Stracer.SyscallExit(straceContext, t, sysno, rval, err)
}
if bits.IsAnyOn32(fe, SecCheckRawExit) {
info := pb.Syscall{
Sysno: uint64(sysno),
Arg1: args[0].Uint64(),
Arg2: args[1].Uint64(),
Arg3: args[2].Uint64(),
Arg4: args[3].Uint64(),
Arg5: args[4].Uint64(),
Arg6: args[5].Uint64(),
Exit: &pb.Exit{
Result: int64(rval),
Errorno: int64(ExtractErrno(err, int(sysno))),
},
}
fields := seccheck.Global.GetFieldSet(seccheck.GetPointForSyscall(seccheck.SyscallRawEnter, sysno))
if !fields.Context.Empty() {
info.ContextData = &pb.ContextData{}
LoadSeccheckData(t, fields.Context, info.ContextData)
}
seccheck.Global.SentToSinks(func(c seccheck.Sink) error {
return c.RawSyscall(t, fields, &info)
})
}
if bits.IsAnyOn32(fe, SecCheckExit) {
fields := seccheck.Global.GetFieldSet(seccheck.GetPointForSyscall(seccheck.SyscallExit, sysno))
var ctxData *pb.ContextData
if !fields.Context.Empty() {
ctxData = &pb.ContextData{}
LoadSeccheckData(t, fields.Context, ctxData)
}
info := SyscallInfo{
Exit: true,
Sysno: sysno,
Args: args,
Rval: rval,
Errno: ExtractErrno(err, int(sysno)),
}
cb := s.LookupSyscallToProto(sysno)
msg, msgType := cb(t, fields, ctxData, info)
seccheck.Global.SentToSinks(func(c seccheck.Sink) error {
return c.Syscall(t, fields, ctxData, msgType, msg)
})
}
return
}
// doSyscall is the entry point for an invocation of a system call specified by
// the current state of t's registers.
//
// The syscall path is very hot; avoid defer.
func (t *Task) doSyscall() taskRunState {
// Save value of the register which is clobbered in the following
// t.Arch().SetReturn(-ENOSYS) operation. This is dedicated to arm64.
//
// On x86, register rax was shared by syscall number and return
// value, and at the entry of the syscall handler, the rax was
// saved to regs.orig_rax which was exposed to userspace.
// But on arm64, syscall number was passed through X8, and the X0
// was shared by the first syscall argument and return value. The
// X0 was saved to regs.orig_x0 which was not exposed to userspace.
// So we have to do the same operation here to save the X0 value
// into the task context.
t.Arch().SyscallSaveOrig()
sysno := t.Arch().SyscallNo()
args := t.Arch().SyscallArgs()
// Tracers expect to see this between when the task traps into the kernel
// to perform a syscall and when the syscall is actually invoked.
// This useless-looking temporary is needed because Go.
tmp := uintptr(unix.ENOSYS)
t.Arch().SetReturn(-tmp)
// Check seccomp filters. The nil check is for performance (as seccomp use
// is rare), not needed for correctness.
if t.syscallFilters.Load() != nil {
switch r := t.checkSeccompSyscall(int32(sysno), args, hostarch.Addr(t.Arch().IP())); r {
case linux.SECCOMP_RET_ERRNO, linux.SECCOMP_RET_TRAP:
t.Debugf("Syscall %d: denied by seccomp", sysno)
return (*runSyscallExit)(nil)
case linux.SECCOMP_RET_ALLOW:
// ok
case linux.SECCOMP_RET_KILL_THREAD:
t.Debugf("Syscall %d: killed by seccomp", sysno)
t.PrepareExit(linux.WaitStatusTerminationSignal(linux.SIGSYS))
return (*runExit)(nil)
case linux.SECCOMP_RET_TRACE:
t.Debugf("Syscall %d: stopping for PTRACE_EVENT_SECCOMP", sysno)
return (*runSyscallAfterPtraceEventSeccomp)(nil)
default:
panic(fmt.Sprintf("Unknown seccomp result %d", r))
}
}
syscallCounter.Increment()
return t.doSyscallEnter(sysno, args)
}
type runSyscallAfterPtraceEventSeccomp struct{}
func (*runSyscallAfterPtraceEventSeccomp) execute(t *Task) taskRunState {
if t.killed() {
// "[S]yscall-exit-stop is not generated prior to death by SIGKILL." -
// ptrace(2)
return (*runInterrupt)(nil)
}
sysno := t.Arch().SyscallNo()
// "The tracer can skip the system call by changing the syscall number to
// -1." - Documentation/prctl/seccomp_filter.txt
if sysno == ^uintptr(0) {
return (*runSyscallExit)(nil).execute(t)
}
args := t.Arch().SyscallArgs()
return t.doSyscallEnter(sysno, args)
}
func (t *Task) doSyscallEnter(sysno uintptr, args arch.SyscallArguments) taskRunState {
if next, ok := t.ptraceSyscallEnter(); ok {
return next
}
return t.doSyscallInvoke(sysno, args)
}
// +stateify savable
type runSyscallAfterSyscallEnterStop struct{}
func (*runSyscallAfterSyscallEnterStop) execute(t *Task) taskRunState {
if sig := linux.Signal(t.ptraceCode); sig.IsValid() {
t.tg.signalHandlers.mu.Lock()
t.sendSignalLocked(SignalInfoPriv(sig), false /* group */)
t.tg.signalHandlers.mu.Unlock()
}
if t.killed() {
return (*runInterrupt)(nil)
}
sysno := t.Arch().SyscallNo()
if sysno == ^uintptr(0) {
return (*runSyscallExit)(nil)
}
args := t.Arch().SyscallArgs()
return t.doSyscallInvoke(sysno, args)
}
// +stateify savable
type runSyscallAfterSysemuStop struct{}
func (*runSyscallAfterSysemuStop) execute(t *Task) taskRunState {
if sig := linux.Signal(t.ptraceCode); sig.IsValid() {
t.tg.signalHandlers.mu.Lock()
t.sendSignalLocked(SignalInfoPriv(sig), false /* group */)
t.tg.signalHandlers.mu.Unlock()
}
if t.killed() {
return (*runInterrupt)(nil)
}
return (*runSyscallExit)(nil).execute(t)
}
func (t *Task) doSyscallInvoke(sysno uintptr, args arch.SyscallArguments) taskRunState {
rval, ctrl, err := t.executeSyscall(sysno, args)
if ctrl != nil {
if !ctrl.ignoreReturn {
t.Arch().SetReturn(rval)
}
if ctrl.next != nil {
return ctrl.next
}
} else if err != nil {
t.Arch().SetReturn(uintptr(-ExtractErrno(err, int(sysno))))
t.haveSyscallReturn = true
} else {
t.Arch().SetReturn(rval)
}
return (*runSyscallExit)(nil).execute(t)
}
// +stateify savable
type runSyscallReinvoke struct{}
func (*runSyscallReinvoke) execute(t *Task) taskRunState {
if t.killed() {
// It's possible that since the last execution, the task has
// been forcible killed. Invoking the system call here could
// result in an infinite loop if it is again preempted by an
// external stop and reinvoked.
return (*runInterrupt)(nil)
}
sysno := t.Arch().SyscallNo()
args := t.Arch().SyscallArgs()
return t.doSyscallInvoke(sysno, args)
}
// +stateify savable
type runSyscallExit struct{}
func (*runSyscallExit) execute(t *Task) taskRunState {
t.ptraceSyscallExit()
return (*runApp)(nil)
}
// doVsyscall is the entry point for a vsyscall invocation of syscall sysno, as
// indicated by an execution fault at address addr. doVsyscall returns the
// task's next run state.
func (t *Task) doVsyscall(addr hostarch.Addr, sysno uintptr) taskRunState {
metric.WeirdnessMetric.Increment("vsyscall_count")
// Grab the caller up front, to make sure there's a sensible stack.
caller := t.Arch().Native(uintptr(0))
if _, err := caller.CopyIn(t, hostarch.Addr(t.Arch().Stack())); err != nil {
t.Debugf("vsyscall %d: error reading return address from stack: %v", sysno, err)
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
return (*runApp)(nil)
}
// For _vsyscalls_, there is no need to translate System V calling convention
// to syscall ABI because they both use RDI, RSI, and RDX for the first three
// arguments and none of the vsyscalls uses more than two arguments.
args := t.Arch().SyscallArgs()
if t.syscallFilters.Load() != nil {
switch r := t.checkSeccompSyscall(int32(sysno), args, addr); r {
case linux.SECCOMP_RET_ERRNO, linux.SECCOMP_RET_TRAP:
t.Debugf("vsyscall %d, caller %x: denied by seccomp", sysno, t.Arch().Value(caller))
return (*runApp)(nil)
case linux.SECCOMP_RET_ALLOW:
// ok
case linux.SECCOMP_RET_TRACE:
t.Debugf("vsyscall %d, caller %x: stopping for PTRACE_EVENT_SECCOMP", sysno, t.Arch().Value(caller))
return &runVsyscallAfterPtraceEventSeccomp{addr, sysno, caller}
case linux.SECCOMP_RET_KILL_THREAD:
t.Debugf("vsyscall %d: killed by seccomp", sysno)
t.PrepareExit(linux.WaitStatusTerminationSignal(linux.SIGSYS))
return (*runExit)(nil)
default:
panic(fmt.Sprintf("Unknown seccomp result %d", r))
}
}
return t.doVsyscallInvoke(sysno, args, caller)
}
type runVsyscallAfterPtraceEventSeccomp struct {
addr hostarch.Addr
sysno uintptr
caller marshal.Marshallable
}
func (r *runVsyscallAfterPtraceEventSeccomp) execute(t *Task) taskRunState {
if t.killed() {
return (*runInterrupt)(nil)
}
sysno := t.Arch().SyscallNo()
// "... the syscall may not be changed to another system call using the
// orig_rax register. It may only be changed to -1 order [sic] to skip the
// currently emulated call. ... The tracer MUST NOT modify rip or rsp." -
// Documentation/prctl/seccomp_filter.txt. On Linux, changing orig_ax or ip
// causes do_exit(SIGSYS), and changing sp is ignored.
if (sysno != ^uintptr(0) && sysno != r.sysno) || hostarch.Addr(t.Arch().IP()) != r.addr {
t.PrepareExit(linux.WaitStatusTerminationSignal(linux.SIGSYS))
return (*runExit)(nil)
}
if sysno == ^uintptr(0) {
return (*runApp)(nil)
}
return t.doVsyscallInvoke(sysno, t.Arch().SyscallArgs(), r.caller)
}
func (t *Task) doVsyscallInvoke(sysno uintptr, args arch.SyscallArguments, caller marshal.Marshallable) taskRunState {
rval, ctrl, err := t.executeSyscall(sysno, args)
if ctrl != nil {
t.Debugf("vsyscall %d, caller %x: syscall control: %v", sysno, t.Arch().Value(caller), ctrl)
// Set the return value. The stack has already been adjusted.
t.Arch().SetReturn(0)
} else if err == nil {
t.Debugf("vsyscall %d, caller %x: successfully emulated syscall", sysno, t.Arch().Value(caller))
// Set the return value. The stack has already been adjusted.
t.Arch().SetReturn(uintptr(rval))
} else {
t.Debugf("vsyscall %d, caller %x: emulated syscall returned error: %v", sysno, t.Arch().Value(caller), err)
if linuxerr.Equals(linuxerr.EFAULT, err) {
t.forceSignal(linux.SIGSEGV, false /* unconditional */)
t.SendSignal(SignalInfoPriv(linux.SIGSEGV))
// A return is not emulated in this case.
return (*runApp)(nil)
}
t.Arch().SetReturn(uintptr(-ExtractErrno(err, int(sysno))))
}
t.Arch().SetIP(t.Arch().Value(caller))
t.Arch().SetStack(t.Arch().Stack() + uintptr(t.Arch().Width()))
return (*runApp)(nil)
}
// ExtractErrno extracts an integer error number from the error.
// The syscall number is purely for context in the error case. Use -1 if
// syscall number is unknown.
func ExtractErrno(err error, sysno int) int {
switch err := err.(type) {
case nil:
return 0
case unix.Errno:
return int(err)
case *errors.Error:
return int(linuxerr.ToUnix(err))
case *memmap.BusError:
// Bus errors may generate SIGBUS, but for syscalls they still
// return EFAULT. See case in task_run.go where the fault is
// handled (and the SIGBUS is delivered).
return int(unix.EFAULT)
case *os.PathError:
return ExtractErrno(err.Err, sysno)
case *os.LinkError:
return ExtractErrno(err.Err, sysno)
case *os.SyscallError:
return ExtractErrno(err.Err, sysno)
default:
if errno, ok := linuxerr.TranslateError(err); ok {
return int(linuxerr.ToUnix(errno))
}
}
panic(fmt.Sprintf("Unknown syscall %d error: %v", sysno, err))
}
|