1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"sync/atomic"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
"gvisor.dev/gvisor/pkg/sentry/limits"
"gvisor.dev/gvisor/pkg/sentry/usage"
"gvisor.dev/gvisor/pkg/sync"
)
// A ThreadGroup is a logical grouping of tasks that has widespread
// significance to other kernel features (e.g. signal handling). ("Thread
// groups" are usually called "processes" in userspace documentation.)
//
// ThreadGroup is a superset of Linux's struct signal_struct.
//
// +stateify savable
type ThreadGroup struct {
threadGroupNode
// signalHandlers is the set of signal handlers used by every task in this
// thread group. (signalHandlers may also be shared with other thread
// groups.)
//
// signalHandlers.mu (hereafter "the signal mutex") protects state related
// to signal handling, as well as state that usually needs to be atomic
// with signal handling, for all ThreadGroups and Tasks using
// signalHandlers. (This is analogous to Linux's use of struct
// sighand_struct::siglock.)
//
// The signalHandlers pointer can only be mutated during an execve
// (Task.finishExec). Consequently, when it's possible for a task in the
// thread group to be completing an execve, signalHandlers is protected by
// the owning TaskSet.mu. Otherwise, it is possible to read the
// signalHandlers pointer without synchronization. In particular,
// completing an execve requires that all other tasks in the thread group
// have exited, so task goroutines do not need the owning TaskSet.mu to
// read the signalHandlers pointer of their thread groups.
signalHandlers *SignalHandlers
// pendingSignals is the set of pending signals that may be handled by any
// task in this thread group.
//
// pendingSignals is protected by the signal mutex.
pendingSignals pendingSignals
// If groupStopDequeued is true, a task in the thread group has dequeued a
// stop signal, but has not yet initiated the group stop.
//
// groupStopDequeued is analogous to Linux's JOBCTL_STOP_DEQUEUED.
//
// groupStopDequeued is protected by the signal mutex.
groupStopDequeued bool
// groupStopSignal is the signal that caused a group stop to be initiated.
//
// groupStopSignal is protected by the signal mutex.
groupStopSignal linux.Signal
// groupStopPendingCount is the number of active tasks in the thread group
// for which Task.groupStopPending is set.
//
// groupStopPendingCount is analogous to Linux's
// signal_struct::group_stop_count.
//
// groupStopPendingCount is protected by the signal mutex.
groupStopPendingCount int
// If groupStopComplete is true, groupStopPendingCount transitioned from
// non-zero to zero without an intervening SIGCONT.
//
// groupStopComplete is analogous to Linux's SIGNAL_STOP_STOPPED.
//
// groupStopComplete is protected by the signal mutex.
groupStopComplete bool
// If groupStopWaitable is true, the thread group is indicating a waitable
// group stop event (as defined by EventChildGroupStop).
//
// Linux represents the analogous state as SIGNAL_STOP_STOPPED being set
// and group_exit_code being non-zero.
//
// groupStopWaitable is protected by the signal mutex.
groupStopWaitable bool
// If groupContNotify is true, then a SIGCONT has recently ended a group
// stop on this thread group, and the first task to observe it should
// notify its parent. groupContInterrupted is true iff SIGCONT ended an
// incomplete group stop. If groupContNotify is false, groupContInterrupted is
// meaningless.
//
// Analogues in Linux:
//
// - groupContNotify && groupContInterrupted is represented by
// SIGNAL_CLD_STOPPED.
//
// - groupContNotify && !groupContInterrupted is represented by
// SIGNAL_CLD_CONTINUED.
//
// - !groupContNotify is represented by neither flag being set.
//
// groupContNotify and groupContInterrupted are protected by the signal
// mutex.
groupContNotify bool
groupContInterrupted bool
// If groupContWaitable is true, the thread group is indicating a waitable
// continue event (as defined by EventGroupContinue).
//
// groupContWaitable is analogous to Linux's SIGNAL_STOP_CONTINUED.
//
// groupContWaitable is protected by the signal mutex.
groupContWaitable bool
// exiting is true if all tasks in the ThreadGroup should exit. exiting is
// analogous to Linux's SIGNAL_GROUP_EXIT.
//
// exiting is protected by the signal mutex. exiting can only transition
// from false to true.
exiting bool
// exitStatus is the thread group's exit status.
//
// While exiting is false, exitStatus is protected by the signal mutex.
// When exiting becomes true, exitStatus becomes immutable.
exitStatus linux.WaitStatus
// terminationSignal is the signal that this thread group's leader will
// send to its parent when it exits.
//
// terminationSignal is protected by the TaskSet mutex.
terminationSignal linux.Signal
// liveGoroutines is the number of non-exited task goroutines in the thread
// group.
//
// liveGoroutines is not saved; it is reset as task goroutines are
// restarted by Task.Start.
liveGoroutines sync.WaitGroup `state:"nosave"`
timerMu threadGroupTimerMutex `state:"nosave"`
// itimerRealTimer implements ITIMER_REAL for the thread group.
itimerRealTimer *ktime.Timer
// itimerVirtSetting is the ITIMER_VIRTUAL setting for the thread group.
//
// itimerVirtSetting is protected by the signal mutex.
itimerVirtSetting ktime.Setting
// itimerProfSetting is the ITIMER_PROF setting for the thread group.
//
// itimerProfSetting is protected by the signal mutex.
itimerProfSetting ktime.Setting
// rlimitCPUSoftSetting is the setting for RLIMIT_CPU soft limit
// notifications for the thread group.
//
// rlimitCPUSoftSetting is protected by the signal mutex.
rlimitCPUSoftSetting ktime.Setting
// cpuTimersEnabled is non-zero if itimerVirtSetting.Enabled is true,
// itimerProfSetting.Enabled is true, rlimitCPUSoftSetting.Enabled is true,
// or limits.Get(CPU) is finite.
//
// cpuTimersEnabled is protected by the signal mutex.
cpuTimersEnabled atomicbitops.Uint32
// timers is the thread group's POSIX interval timers. nextTimerID is the
// TimerID at which allocation should begin searching for an unused ID.
//
// timers and nextTimerID are protected by timerMu.
timers map[linux.TimerID]*IntervalTimer
nextTimerID linux.TimerID
// exitedCPUStats is the CPU usage for all exited tasks in the thread
// group. exitedCPUStats is protected by the TaskSet mutex.
exitedCPUStats usage.CPUStats
// childCPUStats is the CPU usage of all joined descendants of this thread
// group. childCPUStats is protected by the TaskSet mutex.
childCPUStats usage.CPUStats
// ioUsage is the I/O usage for all exited tasks in the thread group.
// The ioUsage pointer is immutable.
ioUsage *usage.IO
// maxRSS is the historical maximum resident set size of the thread group, updated when:
//
// - A task in the thread group exits, since after all tasks have
// exited the MemoryManager is no longer reachable.
//
// - The thread group completes an execve, since this changes
// MemoryManagers.
//
// maxRSS is protected by the TaskSet mutex.
maxRSS uint64
// childMaxRSS is the maximum resident set size in bytes of all joined
// descendants of this thread group.
//
// childMaxRSS is protected by the TaskSet mutex.
childMaxRSS uint64
// Resource limits for this ThreadGroup. The limits pointer is immutable.
limits *limits.LimitSet
// processGroup is the processGroup for this thread group.
//
// processGroup is protected by the TaskSet mutex.
processGroup *ProcessGroup
// execed indicates an exec has occurred since creation. This will be
// set by finishExec, and new TheadGroups will have this field cleared.
// When execed is set, the processGroup may no longer be changed.
//
// execed is protected by the TaskSet mutex.
execed bool
// oldRSeqCritical is the thread group's old rseq critical region.
oldRSeqCritical atomic.Value `state:".(*OldRSeqCriticalRegion)"`
// tty is the thread group's controlling terminal. If nil, there is no
// controlling terminal.
//
// tty is protected by the signal mutex.
tty *TTY
// oomScoreAdj is the thread group's OOM score adjustment. This is
// currently not used but is maintained for consistency.
// TODO(gvisor.dev/issue/1967)
oomScoreAdj atomicbitops.Int32
}
// NewThreadGroup returns a new, empty thread group in PID namespace pidns. The
// thread group leader will send its parent terminationSignal when it exits.
// The new thread group isn't visible to the system until a task has been
// created inside of it by a successful call to TaskSet.NewTask.
func (k *Kernel) NewThreadGroup(pidns *PIDNamespace, sh *SignalHandlers, terminationSignal linux.Signal, limits *limits.LimitSet) *ThreadGroup {
tg := &ThreadGroup{
threadGroupNode: threadGroupNode{
pidns: pidns,
},
signalHandlers: sh,
terminationSignal: terminationSignal,
ioUsage: &usage.IO{},
limits: limits,
}
tg.itimerRealTimer = ktime.NewTimer(k.timekeeper.monotonicClock, &itimerRealListener{tg: tg})
tg.timers = make(map[linux.TimerID]*IntervalTimer)
tg.oldRSeqCritical.Store(&OldRSeqCriticalRegion{})
return tg
}
// saveOldRSeqCritical is invoked by stateify.
func (tg *ThreadGroup) saveOldRSeqCritical() *OldRSeqCriticalRegion {
return tg.oldRSeqCritical.Load().(*OldRSeqCriticalRegion)
}
// loadOldRSeqCritical is invoked by stateify.
func (tg *ThreadGroup) loadOldRSeqCritical(r *OldRSeqCriticalRegion) {
tg.oldRSeqCritical.Store(r)
}
// SignalHandlers returns the signal handlers used by tg.
//
// Preconditions: The caller must provide the synchronization required to read
// tg.signalHandlers, as described in the field's comment.
func (tg *ThreadGroup) SignalHandlers() *SignalHandlers {
return tg.signalHandlers
}
// Limits returns tg's limits.
func (tg *ThreadGroup) Limits() *limits.LimitSet {
return tg.limits
}
// Release releases the thread group's resources.
func (tg *ThreadGroup) Release(ctx context.Context) {
// Timers must be destroyed without holding the TaskSet or signal mutexes
// since timers send signals with Timer.mu locked.
tg.itimerRealTimer.Destroy()
var its []*IntervalTimer
tg.pidns.owner.mu.Lock()
tg.signalHandlers.mu.Lock()
for _, it := range tg.timers {
its = append(its, it)
}
tg.timers = make(map[linux.TimerID]*IntervalTimer) // nil maps can't be saved
tg.signalHandlers.mu.Unlock()
tg.pidns.owner.mu.Unlock()
for _, it := range its {
it.DestroyTimer()
}
}
// forEachChildThreadGroupLocked indicates over all child ThreadGroups.
//
// Precondition: TaskSet.mu must be held.
func (tg *ThreadGroup) forEachChildThreadGroupLocked(fn func(*ThreadGroup)) {
for t := tg.tasks.Front(); t != nil; t = t.Next() {
for child := range t.children {
if child == child.tg.leader {
fn(child.tg)
}
}
}
}
// SetControllingTTY sets tty as the controlling terminal of tg.
func (tg *ThreadGroup) SetControllingTTY(tty *TTY, steal bool, isReadable bool) error {
tty.mu.Lock()
defer tty.mu.Unlock()
// We might be asked to set the controlling terminal of multiple
// processes, so we lock both the TaskSet and SignalHandlers.
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
tg.signalHandlers.mu.Lock()
defer tg.signalHandlers.mu.Unlock()
// "The calling process must be a session leader and not have a
// controlling terminal already." - tty_ioctl(4)
if tg.processGroup.session.leader != tg || tg.tty != nil {
return linuxerr.EINVAL
}
creds := auth.CredentialsFromContext(tg.leader)
hasAdmin := creds.HasCapabilityIn(linux.CAP_SYS_ADMIN, creds.UserNamespace.Root())
// "If this terminal is already the controlling terminal of a different
// session group, then the ioctl fails with EPERM, unless the caller
// has the CAP_SYS_ADMIN capability and arg equals 1, in which case the
// terminal is stolen, and all processes that had it as controlling
// terminal lose it." - tty_ioctl(4)
if tty.tg != nil && tg.processGroup.session != tty.tg.processGroup.session {
// Stealing requires CAP_SYS_ADMIN in the root user namespace.
if !hasAdmin || !steal {
return linuxerr.EPERM
}
// Steal the TTY away. Unlike TIOCNOTTY, don't send signals.
for othertg := range tg.pidns.owner.Root.tgids {
// This won't deadlock by locking tg.signalHandlers
// because at this point:
// - We only lock signalHandlers if it's in the same
// session as the tty's controlling thread group.
// - We know that the calling thread group is not in
// the same session as the tty's controlling thread
// group.
if othertg.processGroup.session == tty.tg.processGroup.session {
othertg.signalHandlers.mu.NestedLock(signalHandlersLockTg)
othertg.tty = nil
othertg.signalHandlers.mu.NestedUnlock(signalHandlersLockTg)
}
}
}
if !isReadable && !hasAdmin {
return linuxerr.EPERM
}
// Set the controlling terminal and foreground process group.
tg.tty = tty
tg.processGroup.session.foreground = tg.processGroup
// Set this as the controlling process of the terminal.
tty.tg = tg
return nil
}
// ReleaseControllingTTY gives up tty as the controlling tty of tg.
func (tg *ThreadGroup) ReleaseControllingTTY(tty *TTY) error {
tty.mu.Lock()
defer tty.mu.Unlock()
// We might be asked to set the controlling terminal of multiple
// processes, so we lock both the TaskSet and SignalHandlers.
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
// Just below, we may re-lock signalHandlers in order to send signals.
// Thus we can't defer Unlock here.
tg.signalHandlers.mu.Lock()
if tg.tty == nil || tg.tty != tty {
tg.signalHandlers.mu.Unlock()
return linuxerr.ENOTTY
}
// "If the process was session leader, then send SIGHUP and SIGCONT to
// the foreground process group and all processes in the current
// session lose their controlling terminal." - tty_ioctl(4)
// Remove tty as the controlling tty for each process in the session,
// then send them SIGHUP and SIGCONT.
// If we're not the session leader, we don't have to do much.
if tty.tg != tg {
tg.tty = nil
tg.signalHandlers.mu.Unlock()
return nil
}
tg.signalHandlers.mu.Unlock()
// We're the session leader. SIGHUP and SIGCONT the foreground process
// group and remove all controlling terminals in the session.
var lastErr error
for othertg := range tg.pidns.owner.Root.tgids {
if othertg.processGroup.session == tg.processGroup.session {
othertg.signalHandlers.mu.Lock()
othertg.tty = nil
if othertg.processGroup == tg.processGroup.session.foreground {
if err := othertg.leader.sendSignalLocked(&linux.SignalInfo{Signo: int32(linux.SIGHUP)}, true /* group */); err != nil {
lastErr = err
}
if err := othertg.leader.sendSignalLocked(&linux.SignalInfo{Signo: int32(linux.SIGCONT)}, true /* group */); err != nil {
lastErr = err
}
}
othertg.signalHandlers.mu.Unlock()
}
}
return lastErr
}
// ForegroundProcessGroup returns the process group ID of the foreground
// process group.
func (tg *ThreadGroup) ForegroundProcessGroup(tty *TTY) (int32, error) {
tty.mu.Lock()
defer tty.mu.Unlock()
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
tg.signalHandlers.mu.Lock()
defer tg.signalHandlers.mu.Unlock()
// "When fd does not refer to the controlling terminal of the calling
// process, -1 is returned" - tcgetpgrp(3)
if tg.tty != tty {
return -1, linuxerr.ENOTTY
}
return int32(tg.processGroup.session.foreground.id), nil
}
// SetForegroundProcessGroup sets the foreground process group of tty to pgid.
func (tg *ThreadGroup) SetForegroundProcessGroup(tty *TTY, pgid ProcessGroupID) (int32, error) {
tty.mu.Lock()
defer tty.mu.Unlock()
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
tg.signalHandlers.mu.Lock()
defer tg.signalHandlers.mu.Unlock()
// tty must be the controlling terminal.
if tg.tty != tty {
return -1, linuxerr.ENOTTY
}
// pgid must be positive.
if pgid < 0 {
return -1, linuxerr.EINVAL
}
// pg must not be empty. Empty process groups are removed from their
// pid namespaces.
pg, ok := tg.pidns.processGroups[pgid]
if !ok {
return -1, linuxerr.ESRCH
}
// pg must be part of this process's session.
if tg.processGroup.session != pg.session {
return -1, linuxerr.EPERM
}
signalAction := tg.signalHandlers.actions[linux.SIGTTOU]
// If the calling process is a member of a background group, a SIGTTOU
// signal is sent to all members of this background process group.
// We need also need to check whether it is ignoring or blocking SIGTTOU.
ignored := signalAction.Handler == linux.SIG_IGN
blocked := (linux.SignalSet(tg.leader.signalMask.RacyLoad()) & linux.SignalSetOf(linux.SIGTTOU)) != 0
if tg.processGroup.id != tg.processGroup.session.foreground.id && !ignored && !blocked {
tg.leader.sendSignalLocked(SignalInfoPriv(linux.SIGTTOU), true)
return -1, linuxerr.ERESTARTSYS
}
tg.processGroup.session.foreground.id = pgid
return 0, nil
}
// itimerRealListener implements ktime.Listener for ITIMER_REAL expirations.
//
// +stateify savable
type itimerRealListener struct {
tg *ThreadGroup
}
// NotifyTimer implements ktime.TimerListener.NotifyTimer.
func (l *itimerRealListener) NotifyTimer(exp uint64, setting ktime.Setting) (ktime.Setting, bool) {
l.tg.SendSignal(SignalInfoPriv(linux.SIGALRM))
return ktime.Setting{}, false
}
|