1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"fmt"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/waiter"
)
// TasksLimit is the maximum number of threads for untrusted application.
// Linux doesn't really limit this directly, rather it is limited by total
// memory size, stacks allocated and a global maximum. There's no real reason
// for us to limit it either, (esp. since threads are backed by go routines),
// and we would expect to hit resource limits long before hitting this number.
// However, for correctness, we still check that the user doesn't exceed this
// number.
//
// Note that because of the way futexes are implemented, there *are* in fact
// serious restrictions on valid thread IDs. They are limited to 2^30 - 1
// (kernel/fork.c:MAX_THREADS).
const TasksLimit = (1 << 16)
// ThreadID is a generic thread identifier.
//
// +marshal
type ThreadID int32
// String returns a decimal representation of the ThreadID.
func (tid ThreadID) String() string {
return fmt.Sprintf("%d", tid)
}
// InitTID is the TID given to the first task added to each PID namespace. The
// thread group led by InitTID is called the namespace's init process. The
// death of a PID namespace's init process causes all tasks visible in that
// namespace to be killed.
const InitTID ThreadID = 1
// A TaskSet comprises all tasks in a system.
//
// +stateify savable
type TaskSet struct {
// mu protects all relationships between tasks and thread groups in the
// TaskSet. (mu is approximately equivalent to Linux's tasklist_lock.)
mu taskSetRWMutex `state:"nosave"`
// Root is the root PID namespace, in which all tasks in the TaskSet are
// visible. The Root pointer is immutable.
Root *PIDNamespace
// sessions is the set of all sessions.
sessions sessionList
// stopCount is the number of active external stops applicable to all tasks
// in the TaskSet (calls to TaskSet.BeginExternalStop that have not been
// paired with a call to TaskSet.EndExternalStop). stopCount is protected
// by mu.
//
// stopCount is not saved for the same reason as Task.stopCount; it is
// always reset to zero after restore.
stopCount int32 `state:"nosave"`
// liveGoroutines is the number of non-exited task goroutines in the
// TaskSet.
//
// liveGoroutines is not saved; it is reset as task goroutines are
// restarted by Task.Start.
liveGoroutines sync.WaitGroup `state:"nosave"`
// runningGoroutines is the number of running task goroutines in the
// TaskSet.
//
// runningGoroutines is not saved; its counter value is required to be zero
// at time of save (but note that this is not necessarily the same thing as
// sync.WaitGroup's zero value).
runningGoroutines sync.WaitGroup `state:"nosave"`
// aioGoroutines is the number of goroutines running async I/O
// callbacks.
//
// aioGoroutines is not saved but is required to be zero at the time of
// save.
aioGoroutines sync.WaitGroup `state:"nosave"`
}
// newTaskSet returns a new, empty TaskSet.
func newTaskSet(pidns *PIDNamespace) *TaskSet {
ts := &TaskSet{Root: pidns}
pidns.owner = ts
return ts
}
// forEachThreadGroupLocked applies f to each thread group in ts.
//
// Preconditions: ts.mu must be locked (for reading or writing).
func (ts *TaskSet) forEachThreadGroupLocked(f func(tg *ThreadGroup)) {
for tg := range ts.Root.tgids {
f(tg)
}
}
// forEachTaskLocked applies f to each Task in ts.
//
// Preconditions: ts.mu must be locked (for reading or writing).
func (ts *TaskSet) forEachTaskLocked(f func(t *Task)) {
for t := range ts.Root.tids {
f(t)
}
}
// A PIDNamespace represents a PID namespace, a bimap between thread IDs and
// tasks. See the pid_namespaces(7) man page for further details.
//
// N.B. A task is said to be visible in a PID namespace if the PID namespace
// contains a thread ID that maps to that task.
//
// +stateify savable
type PIDNamespace struct {
// owner is the TaskSet that this PID namespace belongs to. The owner
// pointer is immutable.
owner *TaskSet
// parent is the PID namespace of the process that created this one. If
// this is the root PID namespace, parent is nil. The parent pointer is
// immutable.
//
// Invariant: All tasks that are visible in this namespace are also visible
// in all ancestor namespaces.
parent *PIDNamespace
// userns is the user namespace with which this PID namespace is
// associated. Privileged operations on this PID namespace must have
// appropriate capabilities in userns. The userns pointer is immutable.
userns *auth.UserNamespace
// The following fields are protected by owner.mu.
// last is the last ThreadID to be allocated in this namespace.
last ThreadID
// tasks is a mapping from ThreadIDs in this namespace to tasks visible in
// the namespace.
tasks map[ThreadID]*Task
// tids is a mapping from tasks visible in this namespace to their
// identifiers in this namespace.
tids map[*Task]ThreadID
// tgids is a mapping from thread groups visible in this namespace to
// their identifiers in this namespace.
//
// The content of tgids is equivalent to tids[tg.leader]. This exists
// primarily as an optimization to quickly find all thread groups.
tgids map[*ThreadGroup]ThreadID
// sessions is a mapping from SessionIDs in this namespace to sessions
// visible in the namespace.
sessions map[SessionID]*Session
// sids is a mapping from sessions visible in this namespace to their
// identifiers in this namespace.
sids map[*Session]SessionID
// processGroups is a mapping from ProcessGroupIDs in this namespace to
// process groups visible in the namespace.
processGroups map[ProcessGroupID]*ProcessGroup
// pgids is a mapping from process groups visible in this namespace to
// their identifiers in this namespace.
pgids map[*ProcessGroup]ProcessGroupID
// exiting indicates that the namespace's init process is exiting or has
// exited.
exiting bool
// pidNamespaceData contains additional per-PID-namespace data.
extra pidNamespaceData
}
func newPIDNamespace(ts *TaskSet, parent *PIDNamespace, userns *auth.UserNamespace) *PIDNamespace {
return &PIDNamespace{
owner: ts,
parent: parent,
userns: userns,
tasks: make(map[ThreadID]*Task),
tids: make(map[*Task]ThreadID),
tgids: make(map[*ThreadGroup]ThreadID),
sessions: make(map[SessionID]*Session),
sids: make(map[*Session]SessionID),
processGroups: make(map[ProcessGroupID]*ProcessGroup),
pgids: make(map[*ProcessGroup]ProcessGroupID),
extra: newPIDNamespaceData(),
}
}
// NewRootPIDNamespace creates the root PID namespace. 'owner' is not available
// yet when root namespace is created and must be set by caller.
func NewRootPIDNamespace(userns *auth.UserNamespace) *PIDNamespace {
return newPIDNamespace(nil, nil, userns)
}
// NewChild returns a new, empty PID namespace that is a child of ns. Authority
// over the new PID namespace is controlled by userns.
func (ns *PIDNamespace) NewChild(userns *auth.UserNamespace) *PIDNamespace {
return newPIDNamespace(ns.owner, ns, userns)
}
// TaskWithID returns the task with thread ID tid in PID namespace ns. If no
// task has that TID, TaskWithID returns nil.
func (ns *PIDNamespace) TaskWithID(tid ThreadID) *Task {
ns.owner.mu.RLock()
t := ns.tasks[tid]
ns.owner.mu.RUnlock()
return t
}
// ThreadGroupWithID returns the thread group led by the task with thread ID
// tid in PID namespace ns. If no task has that TID, or if the task with that
// TID is not a thread group leader, ThreadGroupWithID returns nil.
func (ns *PIDNamespace) ThreadGroupWithID(tid ThreadID) *ThreadGroup {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
t := ns.tasks[tid]
if t == nil {
return nil
}
if t != t.tg.leader {
return nil
}
return t.tg
}
// IDOfTask returns the TID assigned to the given task in PID namespace ns. If
// the task is not visible in that namespace, IDOfTask returns 0. (This return
// value is significant in some cases, e.g. getppid() is documented as
// returning 0 if the caller's parent is in an ancestor namespace and
// consequently not visible to the caller.) If the task is nil, IDOfTask returns
// 0.
func (ns *PIDNamespace) IDOfTask(t *Task) ThreadID {
ns.owner.mu.RLock()
id := ns.tids[t]
ns.owner.mu.RUnlock()
return id
}
// IDOfThreadGroup returns the TID assigned to tg's leader in PID namespace ns.
// If the task is not visible in that namespace, IDOfThreadGroup returns 0.
func (ns *PIDNamespace) IDOfThreadGroup(tg *ThreadGroup) ThreadID {
ns.owner.mu.RLock()
id := ns.tgids[tg]
ns.owner.mu.RUnlock()
return id
}
// Tasks returns a snapshot of the tasks in ns.
func (ns *PIDNamespace) Tasks() []*Task {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
tasks := make([]*Task, 0, len(ns.tasks))
for t := range ns.tids {
tasks = append(tasks, t)
}
return tasks
}
// NumTasks returns the number of tasks in ns.
func (ns *PIDNamespace) NumTasks() int {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
return len(ns.tids)
}
// ThreadGroups returns a snapshot of the thread groups in ns.
func (ns *PIDNamespace) ThreadGroups() []*ThreadGroup {
return ns.ThreadGroupsAppend(nil)
}
// ThreadGroupsAppend appends a snapshot of the thread groups in ns to tgs.
func (ns *PIDNamespace) ThreadGroupsAppend(tgs []*ThreadGroup) []*ThreadGroup {
ns.owner.mu.RLock()
defer ns.owner.mu.RUnlock()
for tg := range ns.tgids {
tgs = append(tgs, tg)
}
return tgs
}
// UserNamespace returns the user namespace associated with PID namespace ns.
func (ns *PIDNamespace) UserNamespace() *auth.UserNamespace {
return ns.userns
}
// Root returns the root PID namespace of ns.
func (ns *PIDNamespace) Root() *PIDNamespace {
return ns.owner.Root
}
// A threadGroupNode defines the relationship between a thread group and the
// rest of the system. Conceptually, threadGroupNode is data belonging to the
// owning TaskSet, as if TaskSet contained a field `nodes
// map[*ThreadGroup]*threadGroupNode`. However, for practical reasons,
// threadGroupNode is embedded in the ThreadGroup it represents.
// (threadGroupNode is an anonymous field in ThreadGroup; this is to expose
// threadGroupEntry's methods on ThreadGroup to make it implement
// threadGroupLinker.)
//
// +stateify savable
type threadGroupNode struct {
// pidns is the PID namespace containing the thread group and all of its
// member tasks. The pidns pointer is immutable.
pidns *PIDNamespace
// pidWithinNS the thread ID of the leader of this thread group within pidns.
// Useful to avoid using locks when determining a thread group leader's own
// TID.
pidWithinNS atomicbitops.Int32
// eventQueue is notified whenever a event of interest to Task.Wait occurs
// in a child of this thread group, or a ptrace tracee of a task in this
// thread group. Events are defined in task_exit.go.
eventQueue waiter.Queue
// leader is the thread group's leader, which is the oldest task in the
// thread group; usually the last task in the thread group to call
// execve(), or if no such task exists then the first task in the thread
// group, which was created by a call to fork() or clone() without
// CLONE_THREAD. Once a thread group has been made visible to the rest of
// the system by TaskSet.newTask, leader is never nil.
//
// Note that it's possible for the leader to exit without causing the rest
// of the thread group to exit; in such a case, leader will still be valid
// and non-nil, but leader will not be in tasks.
//
// leader is protected by the TaskSet mutex.
leader *Task
// If execing is not nil, it is a task in the thread group that has killed
// all other tasks so that it can become the thread group leader and
// perform an execve. (execing may already be the thread group leader.)
//
// execing is analogous to Linux's signal_struct::group_exit_task.
//
// execing is protected by the TaskSet mutex.
execing *Task
// tasks is all tasks in the thread group that have not yet been reaped.
//
// tasks is protected by both the TaskSet mutex and the signal mutex:
// Mutating tasks requires locking the TaskSet mutex for writing *and*
// locking the signal mutex. Reading tasks requires locking the TaskSet
// mutex *or* locking the signal mutex.
tasks taskList
// tasksCount is the number of tasks in the thread group that have not yet
// been reaped; equivalently, tasksCount is the number of tasks in tasks.
//
// tasksCount is protected by both the TaskSet mutex and the signal mutex,
// as with tasks.
tasksCount int
// liveTasks is the number of tasks in the thread group that have not yet
// reached TaskExitZombie.
//
// liveTasks is protected by the TaskSet mutex (NOT the signal mutex).
liveTasks int
// activeTasks is the number of tasks in the thread group that have not yet
// reached TaskExitInitiated.
//
// activeTasks is protected by both the TaskSet mutex and the signal mutex,
// as with tasks.
activeTasks int
}
// PIDNamespace returns the PID namespace containing tg.
func (tg *ThreadGroup) PIDNamespace() *PIDNamespace {
return tg.pidns
}
// TaskSet returns the TaskSet containing tg.
func (tg *ThreadGroup) TaskSet() *TaskSet {
return tg.pidns.owner
}
// Leader returns tg's leader.
func (tg *ThreadGroup) Leader() *Task {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.leader
}
// Count returns the number of non-exited threads in the group.
func (tg *ThreadGroup) Count() int {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
var count int
for t := tg.tasks.Front(); t != nil; t = t.Next() {
count++
}
return count
}
// MemberIDs returns a snapshot of the ThreadIDs (in PID namespace pidns) for
// all tasks in tg.
func (tg *ThreadGroup) MemberIDs(pidns *PIDNamespace) []ThreadID {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
var tasks []ThreadID
for t := tg.tasks.Front(); t != nil; t = t.Next() {
if id, ok := pidns.tids[t]; ok {
tasks = append(tasks, id)
}
}
return tasks
}
// ID returns tg's leader's thread ID in its own PID namespace.
// If tg's leader is dead, ID returns 0.
func (tg *ThreadGroup) ID() ThreadID {
return ThreadID(tg.pidWithinNS.Load())
}
// A taskNode defines the relationship between a task and the rest of the
// system. The comments on threadGroupNode also apply to taskNode.
//
// +stateify savable
type taskNode struct {
// tg is the thread group that this task belongs to. The tg pointer is
// immutable.
tg *ThreadGroup `state:"wait"`
// taskEntry links into tg.tasks. Note that this means that
// Task.Next/Prev/SetNext/SetPrev refer to sibling tasks in the same thread
// group. See threadGroupNode.tasks for synchronization info.
taskEntry
// parent is the task's parent. parent may be nil.
//
// parent is protected by the TaskSet mutex.
parent *Task
// children is this task's children.
//
// children is protected by the TaskSet mutex.
children map[*Task]struct{}
// If childPIDNamespace is not nil, all new tasks created by this task will
// be members of childPIDNamespace rather than this one. (As a corollary,
// this task becomes unable to create sibling tasks in the same thread
// group.)
//
// childPIDNamespace is exclusive to the task goroutine.
childPIDNamespace *PIDNamespace
}
// ThreadGroup returns the thread group containing t.
func (t *Task) ThreadGroup() *ThreadGroup {
return t.tg
}
// PIDNamespace returns the PID namespace containing t.
func (t *Task) PIDNamespace() *PIDNamespace {
return t.tg.pidns
}
// TaskSet returns the TaskSet containing t.
func (t *Task) TaskSet() *TaskSet {
return t.tg.pidns.owner
}
// Timekeeper returns the system Timekeeper.
func (t *Task) Timekeeper() *Timekeeper {
return t.k.timekeeper
}
// Parent returns t's parent.
func (t *Task) Parent() *Task {
t.tg.pidns.owner.mu.RLock()
defer t.tg.pidns.owner.mu.RUnlock()
return t.parent
}
// ParentLocked returns t's parent. Caller must ensure t's TaskSet mu
// is locked for at least reading.
//
// +checklocks:t.tg.pidns.owner.mu
func (t *Task) ParentLocked() *Task {
return t.parent
}
// ThreadID returns t's thread ID in its own PID namespace. If the task is
// dead, ThreadID returns 0.
func (t *Task) ThreadID() ThreadID {
return t.tg.pidns.IDOfTask(t)
}
// TGIDInRoot returns t's TGID in the root PID namespace.
func (t *Task) TGIDInRoot() ThreadID {
return t.tg.pidns.owner.Root.IDOfThreadGroup(t.tg)
}
|