1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package time defines the Timer type, which provides a periodic timer that
// works by sampling a user-provided clock.
package time
import (
"fmt"
"math"
"time"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/waiter"
)
// Events that may be generated by a Clock.
const (
// ClockEventSet occurs when a Clock undergoes a discontinuous change.
ClockEventSet waiter.EventMask = 1 << iota
// ClockEventRateIncrease occurs when the rate at which a Clock advances
// increases significantly, such that values returned by previous calls to
// Clock.WallTimeUntil may be too large.
ClockEventRateIncrease
)
// Time represents an instant in time with nanosecond precision.
//
// Time may represent time with respect to any clock and may not have any
// meaning in the real world.
//
// +stateify savable
type Time struct {
ns int64
}
var (
// MinTime is the zero time instant, the lowest possible time that can
// be represented by Time.
MinTime = Time{ns: math.MinInt64}
// MaxTime is the highest possible time that can be represented by
// Time.
MaxTime = Time{ns: math.MaxInt64}
// ZeroTime represents the zero time in an unspecified Clock's domain.
ZeroTime = Time{ns: 0}
)
const (
// MinDuration is the minimum duration representable by time.Duration.
MinDuration = time.Duration(math.MinInt64)
// MaxDuration is the maximum duration representable by time.Duration.
MaxDuration = time.Duration(math.MaxInt64)
)
// FromNanoseconds returns a Time representing the point ns nanoseconds after
// an unspecified Clock's zero time.
func FromNanoseconds(ns int64) Time {
return Time{ns}
}
// FromSeconds returns a Time representing the point s seconds after an
// unspecified Clock's zero time.
func FromSeconds(s int64) Time {
if s > math.MaxInt64/time.Second.Nanoseconds() {
return MaxTime
}
return Time{s * 1e9}
}
// FromUnix converts from Unix seconds and nanoseconds to Time, assuming a real
// time Unix clock domain.
func FromUnix(s int64, ns int64) Time {
if s > math.MaxInt64/time.Second.Nanoseconds() {
return MaxTime
}
t := s * 1e9
if t > math.MaxInt64-ns {
return MaxTime
}
return Time{t + ns}
}
// FromTimespec converts from Linux Timespec to Time.
func FromTimespec(ts linux.Timespec) Time {
return Time{ts.ToNsecCapped()}
}
// FromTimeval converts a Linux Timeval to Time.
func FromTimeval(tv linux.Timeval) Time {
return Time{tv.ToNsecCapped()}
}
// Nanoseconds returns nanoseconds elapsed since the zero time in t's Clock
// domain. If t represents walltime, this is nanoseconds since the Unix epoch.
func (t Time) Nanoseconds() int64 {
return t.ns
}
// Microseconds returns microseconds elapsed since the zero time in t's Clock
// domain. If t represents walltime, this is microseconds since the Unix epoch.
func (t Time) Microseconds() int64 {
return t.ns / 1000
}
// Seconds returns seconds elapsed since the zero time in t's Clock domain. If
// t represents walltime, this is seconds since Unix epoch.
func (t Time) Seconds() int64 {
return t.Nanoseconds() / time.Second.Nanoseconds()
}
// Timespec converts Time to a Linux timespec.
func (t Time) Timespec() linux.Timespec {
return linux.NsecToTimespec(t.Nanoseconds())
}
// Unix returns the (seconds, nanoseconds) representation of t such that
// seconds*1e9 + nanoseconds = t.
func (t Time) Unix() (s int64, ns int64) {
s = t.ns / 1e9
ns = t.ns % 1e9
return
}
// TimeT converts Time to a Linux time_t.
func (t Time) TimeT() linux.TimeT {
return linux.NsecToTimeT(t.Nanoseconds())
}
// Timeval converts Time to a Linux timeval.
func (t Time) Timeval() linux.Timeval {
return linux.NsecToTimeval(t.Nanoseconds())
}
// StatxTimestamp converts Time to a Linux statx_timestamp.
func (t Time) StatxTimestamp() linux.StatxTimestamp {
return linux.NsecToStatxTimestamp(t.Nanoseconds())
}
// Add adds the duration of d to t.
func (t Time) Add(d time.Duration) Time {
if t.ns > 0 && d.Nanoseconds() > math.MaxInt64-int64(t.ns) {
return MaxTime
}
if t.ns < 0 && d.Nanoseconds() < math.MinInt64-int64(t.ns) {
return MinTime
}
return Time{int64(t.ns) + d.Nanoseconds()}
}
// AddTime adds the duration of u to t.
func (t Time) AddTime(u Time) Time {
return t.Add(time.Duration(u.ns))
}
// Equal reports whether the two times represent the same instant in time.
func (t Time) Equal(u Time) bool {
return t.ns == u.ns
}
// Before reports whether the instant t is before the instant u.
func (t Time) Before(u Time) bool {
return t.ns < u.ns
}
// After reports whether the instant t is after the instant u.
func (t Time) After(u Time) bool {
return t.ns > u.ns
}
// Sub returns the duration of t - u.
//
// N.B. This measure may not make sense for every Time returned by ktime.Clock.
// Callers who need wall time duration can use ktime.Clock.WallTimeUntil to
// estimate that wall time.
func (t Time) Sub(u Time) time.Duration {
dur := time.Duration(int64(t.ns)-int64(u.ns)) * time.Nanosecond
switch {
case u.Add(dur).Equal(t):
return dur
case t.Before(u):
return MinDuration
default:
return MaxDuration
}
}
// IsMin returns whether t represents the lowest possible time instant.
func (t Time) IsMin() bool {
return t == MinTime
}
// IsZero returns whether t represents the zero time instant in t's Clock domain.
func (t Time) IsZero() bool {
return t == ZeroTime
}
// String returns the time represented in nanoseconds as a string.
func (t Time) String() string {
return fmt.Sprintf("%dns", t.Nanoseconds())
}
// A Clock is an abstract time source.
type Clock interface {
// Now returns the current time in nanoseconds according to the Clock.
Now() Time
// WallTimeUntil returns the estimated wall time until Now will return a
// value greater than or equal to t, given that a recent call to Now
// returned now. If t has already passed, WallTimeUntil may return 0 or a
// negative value.
//
// WallTimeUntil must be abstract to support Clocks that do not represent
// wall time (e.g. thread group execution timers). Clocks that represent
// wall times may embed the WallRateClock type to obtain an appropriate
// trivial implementation of WallTimeUntil.
//
// WallTimeUntil is used to determine when associated Timers should next
// check for expirations. Returning too small a value may result in
// spurious Timer goroutine wakeups, while returning too large a value may
// result in late expirations. Implementations should usually err on the
// side of underestimating.
WallTimeUntil(t, now Time) time.Duration
// Waitable methods may be used to subscribe to Clock events. Waiters will
// not be preserved by Save and must be re-established during restore.
//
// Since Clock events are transient, implementations of
// waiter.Waitable.Readiness should return 0.
waiter.Waitable
}
// WallRateClock implements Clock.WallTimeUntil for Clocks that elapse at the
// same rate as wall time.
type WallRateClock struct{}
// WallTimeUntil implements Clock.WallTimeUntil.
func (*WallRateClock) WallTimeUntil(t, now Time) time.Duration {
return t.Sub(now)
}
// NoClockEvents implements waiter.Waitable for Clocks that do not generate
// events.
type NoClockEvents struct{}
// Readiness implements waiter.Waitable.Readiness.
func (*NoClockEvents) Readiness(mask waiter.EventMask) waiter.EventMask {
return 0
}
// EventRegister implements waiter.Waitable.EventRegister.
func (*NoClockEvents) EventRegister(e *waiter.Entry) error {
return nil
}
// EventUnregister implements waiter.Waitable.EventUnregister.
func (*NoClockEvents) EventUnregister(e *waiter.Entry) {
}
// ClockEventsQueue implements waiter.Waitable by wrapping waiter.Queue and
// defining waiter.Waitable.Readiness as required by Clock.
type ClockEventsQueue struct {
waiter.Queue
}
// EventRegister implements waiter.Waitable.
func (c *ClockEventsQueue) EventRegister(e *waiter.Entry) error {
c.Queue.EventRegister(e)
return nil
}
// Readiness implements waiter.Waitable.Readiness.
func (*ClockEventsQueue) Readiness(mask waiter.EventMask) waiter.EventMask {
return 0
}
// Listener receives expirations from a Timer.
type Listener interface {
// NotifyTimer is called when its associated Timer expires. exp is the number
// of expirations. setting is the next timer Setting.
//
// Notify is called with the associated Timer's mutex locked, so Notify
// must not take any locks that precede Timer.mu in lock order.
//
// If Notify returns true, the timer will use the returned setting
// rather than the passed one.
//
// Preconditions: exp > 0.
NotifyTimer(exp uint64, setting Setting) (newSetting Setting, update bool)
}
// Setting contains user-controlled mutable Timer properties.
//
// +stateify savable
type Setting struct {
// Enabled is true if the timer is running.
Enabled bool
// Next is the time in nanoseconds of the next expiration.
Next Time
// Period is the time in nanoseconds between expirations. If Period is
// zero, the timer will not automatically restart after expiring.
//
// Invariant: Period >= 0.
Period time.Duration
}
// SettingFromSpec converts a (value, interval) pair to a Setting based on a
// reading from c. value is interpreted as a time relative to c.Now().
func SettingFromSpec(value time.Duration, interval time.Duration, c Clock) (Setting, error) {
return SettingFromSpecAt(value, interval, c.Now())
}
// SettingFromSpecAt converts a (value, interval) pair to a Setting. value is
// interpreted as a time relative to now.
func SettingFromSpecAt(value time.Duration, interval time.Duration, now Time) (Setting, error) {
if value < 0 {
return Setting{}, linuxerr.EINVAL
}
if value == 0 {
return Setting{Period: interval}, nil
}
return Setting{
Enabled: true,
Next: now.Add(value),
Period: interval,
}, nil
}
// SettingFromAbsSpec converts a (value, interval) pair to a Setting. value is
// interpreted as an absolute time.
func SettingFromAbsSpec(value Time, interval time.Duration) (Setting, error) {
if value.Before(ZeroTime) {
return Setting{}, linuxerr.EINVAL
}
if value.IsZero() {
return Setting{Period: interval}, nil
}
return Setting{
Enabled: true,
Next: value,
Period: interval,
}, nil
}
// SettingFromItimerspec converts a linux.Itimerspec to a Setting. If abs is
// true, its.Value is interpreted as an absolute time. Otherwise, it is
// interpreted as a time relative to c.Now().
func SettingFromItimerspec(its linux.Itimerspec, abs bool, c Clock) (Setting, error) {
if abs {
return SettingFromAbsSpec(FromTimespec(its.Value), its.Interval.ToDuration())
}
return SettingFromSpec(its.Value.ToDuration(), its.Interval.ToDuration(), c)
}
// SpecFromSetting converts a timestamp and a Setting to a (relative value,
// interval) pair, as used by most Linux syscalls that return a struct
// itimerval or struct itimerspec.
func SpecFromSetting(now Time, s Setting) (value, period time.Duration) {
if !s.Enabled {
return 0, s.Period
}
return s.Next.Sub(now), s.Period
}
// ItimerspecFromSetting converts a Setting to a linux.Itimerspec.
func ItimerspecFromSetting(now Time, s Setting) linux.Itimerspec {
val, iv := SpecFromSetting(now, s)
return linux.Itimerspec{
Interval: linux.DurationToTimespec(iv),
Value: linux.DurationToTimespec(val),
}
}
// At returns an updated Setting and a number of expirations after the
// associated Clock indicates a time of now.
//
// Settings may be created by successive calls to At with decreasing
// values of now (i.e. time may appear to go backward). Supporting this is
// required to support non-monotonic clocks, as well as allowing
// Timer.clock.Now() to be called without holding Timer.mu.
func (s Setting) At(now Time) (Setting, uint64) {
if !s.Enabled {
return s, 0
}
if s.Next.After(now) {
return s, 0
}
if s.Period == 0 {
s.Enabled = false
return s, 1
}
exp := 1 + uint64(now.Sub(s.Next).Nanoseconds())/uint64(s.Period)
s.Next = s.Next.Add(time.Duration(uint64(s.Period) * exp))
return s, exp
}
// Timer is an optionally-periodic timer driven by sampling a user-specified
// Clock. Timer's semantics support the requirements of Linux's interval timers
// (setitimer(2), timer_create(2), timerfd_create(2)).
//
// Timers should be created using NewTimer and must be cleaned up by calling
// Timer.Destroy when no longer used.
//
// +stateify savable
type Timer struct {
// clock is the time source. clock is immutable.
clock Clock
// listener is notified of expirations. listener is immutable.
listener Listener
// mu protects the following mutable fields.
mu sync.Mutex `state:"nosave"`
// setting is the timer setting. setting is protected by mu.
setting Setting
// paused is true if the Timer is paused. paused is protected by mu.
paused bool
// kicker is used to wake the Timer goroutine. The kicker pointer is
// immutable, but its state is protected by mu.
kicker *time.Timer `state:"nosave"`
// entry is registered with clock.EventRegister. entry is immutable.
//
// Per comment in Clock, entry must be re-registered after restore; per
// comment in Timer.Load, this is done in Timer.Resume.
entry waiter.Entry `state:"nosave"`
// events is the channel that will be notified whenever entry receives an
// event. It is also closed by Timer.Destroy to instruct the Timer
// goroutine to exit.
events chan struct{} `state:"nosave"`
}
// timerTickEvents are Clock events that require the Timer goroutine to Tick
// prematurely.
const timerTickEvents = ClockEventSet | ClockEventRateIncrease
// NewTimer returns a new Timer that will obtain time from clock and send
// expirations to listener. The Timer is initially stopped and has no first
// expiration or period configured.
func NewTimer(clock Clock, listener Listener) *Timer {
t := &Timer{
clock: clock,
listener: listener,
}
t.init()
return t
}
// init initializes Timer state that is not preserved across save/restore. If
// init has already been called, calling it again is a no-op.
//
// Preconditions: t.mu must be locked, or the caller must have exclusive access
// to t.
func (t *Timer) init() {
if t.kicker != nil {
return
}
// If t.kicker is nil, the Timer goroutine can't be running, so we can't
// race with it.
t.kicker = time.NewTimer(0)
t.entry, t.events = waiter.NewChannelEntry(timerTickEvents)
if err := t.clock.EventRegister(&t.entry); err != nil {
panic(err)
}
go t.runGoroutine() // S/R-SAFE: synchronized by t.mu
}
// Destroy releases resources owned by the Timer. A Destroyed Timer must not be
// used again; in particular, a Destroyed Timer should not be Saved.
func (t *Timer) Destroy() {
// Stop the Timer, ensuring that the Timer goroutine will not call
// t.kicker.Reset, before calling t.kicker.Stop.
t.mu.Lock()
t.setting.Enabled = false
t.mu.Unlock()
t.kicker.Stop()
// Unregister t.entry, ensuring that the Clock will not send to t.events,
// before closing t.events to instruct the Timer goroutine to exit.
t.clock.EventUnregister(&t.entry)
close(t.events)
}
func (t *Timer) runGoroutine() {
for {
select {
case <-t.kicker.C:
case _, ok := <-t.events:
if !ok {
// Channel closed by Destroy.
return
}
}
t.Tick()
}
}
// Tick requests that the Timer immediately check for expirations and
// re-evaluate when it should next check for expirations.
func (t *Timer) Tick() {
now := t.clock.Now()
t.mu.Lock()
defer t.mu.Unlock()
if t.paused {
return
}
s, exp := t.setting.At(now)
t.setting = s
if exp > 0 {
if newS, ok := t.listener.NotifyTimer(exp, t.setting); ok {
t.setting = newS
}
}
t.resetKickerLocked(now)
}
// Pause pauses the Timer, ensuring that it does not generate any further
// expirations until Resume is called. If the Timer is already paused, Pause
// has no effect.
func (t *Timer) Pause() {
t.mu.Lock()
defer t.mu.Unlock()
t.paused = true
// t.kicker may be nil if we were restored but never resumed.
if t.kicker != nil {
t.kicker.Stop()
}
}
// Resume ends the effect of Pause. If the Timer is not paused, Resume has no
// effect.
func (t *Timer) Resume() {
t.mu.Lock()
defer t.mu.Unlock()
if !t.paused {
return
}
t.paused = false
// Lazily initialize the Timer. We can't call Timer.init until Timer.Resume
// because save/restore will restore Timers before
// kernel.Timekeeper.SetClocks() has been called, so if t.clock is backed
// by a kernel.Timekeeper then the Timer goroutine will panic if it calls
// t.clock.Now().
t.init()
// Kick the Timer goroutine in case it was already initialized, but the
// Timer goroutine was sleeping.
t.kicker.Reset(0)
}
// Get returns a snapshot of the Timer's current Setting and the time
// (according to the Timer's Clock) at which the snapshot was taken.
//
// Preconditions: The Timer must not be paused (since its Setting cannot
// be advanced to the current time while it is paused.)
func (t *Timer) Get() (Time, Setting) {
now := t.clock.Now()
t.mu.Lock()
defer t.mu.Unlock()
if t.paused {
panic(fmt.Sprintf("Timer.Get called on paused Timer %p", t))
}
s, exp := t.setting.At(now)
t.setting = s
if exp > 0 {
if newS, ok := t.listener.NotifyTimer(exp, t.setting); ok {
t.setting = newS
}
}
t.resetKickerLocked(now)
return now, s
}
// Swap atomically changes the Timer's Setting and returns the Timer's previous
// Setting and the time (according to the Timer's Clock) at which the snapshot
// was taken. Setting s.Enabled to true starts the Timer, while setting
// s.Enabled to false stops it.
//
// Preconditions: The Timer must not be paused.
func (t *Timer) Swap(s Setting) (Time, Setting) {
return t.SwapAnd(s, nil)
}
// SwapAnd atomically changes the Timer's Setting, calls f if it is not nil,
// and returns the Timer's previous Setting and the time (according to the
// Timer's Clock) at which the Setting was changed. Setting s.Enabled to true
// starts the timer, while setting s.Enabled to false stops it.
//
// Preconditions:
// - The Timer must not be paused.
// - f cannot call any Timer methods since it is called with the Timer mutex
// locked.
func (t *Timer) SwapAnd(s Setting, f func()) (Time, Setting) {
now := t.clock.Now()
t.mu.Lock()
defer t.mu.Unlock()
if t.paused {
panic(fmt.Sprintf("Timer.SwapAnd called on paused Timer %p", t))
}
oldS, oldExp := t.setting.At(now)
if oldExp > 0 {
t.listener.NotifyTimer(oldExp, oldS)
// N.B. The returned Setting doesn't matter because we're about
// to overwrite.
}
if f != nil {
f()
}
newS, newExp := s.At(now)
t.setting = newS
if newExp > 0 {
if newS, ok := t.listener.NotifyTimer(newExp, t.setting); ok {
t.setting = newS
}
}
t.resetKickerLocked(now)
return now, oldS
}
// Atomically invokes f atomically with respect to expirations of t; that is, t
// cannot generate expirations while f is being called.
//
// Preconditions: f cannot call any Timer methods since it is called with the
// Timer mutex locked.
func (t *Timer) Atomically(f func()) {
t.mu.Lock()
defer t.mu.Unlock()
f()
}
// Preconditions: t.mu must be locked.
func (t *Timer) resetKickerLocked(now Time) {
if t.setting.Enabled {
// Clock.WallTimeUntil may return a negative value. This is fine;
// time.when treats negative Durations as 0.
t.kicker.Reset(t.clock.WallTimeUntil(t.setting.Next, now))
}
// We don't call t.kicker.Stop if !t.setting.Enabled because in most cases
// resetKickerLocked will be called from the Timer goroutine itself, in
// which case t.kicker has already fired and t.kicker.Stop will be an
// expensive no-op (time.Timer.Stop => time.stopTimer => runtime.stopTimer
// => runtime.deltimer).
}
// Clock returns the Clock used by t.
func (t *Timer) Clock() Clock {
return t.clock
}
// ChannelNotifier is a Listener that sends on a channel.
//
// ChannelNotifier cannot be saved or loaded.
type ChannelNotifier chan struct{}
// NewChannelNotifier creates a new channel notifier.
//
// If the notifier is used with a timer, Timer.Destroy will close the channel
// returned here.
func NewChannelNotifier() (Listener, <-chan struct{}) {
tchan := make(chan struct{}, 1)
return ChannelNotifier(tchan), tchan
}
// NotifyTimer implements Listener.NotifyTimer.
func (c ChannelNotifier) NotifyTimer(uint64, Setting) (Setting, bool) {
select {
case c <- struct{}{}:
default:
}
return Setting{}, false
}
|