1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"fmt"
"time"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/log"
ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/pgalloc"
sentrytime "gvisor.dev/gvisor/pkg/sentry/time"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
)
// Timekeeper manages all of the kernel clocks.
//
// +stateify savable
type Timekeeper struct {
// clocks are the clock sources.
//
// These are not saved directly, as the new machine's clock may behave
// differently.
//
// It is set only once, by SetClocks.
clocks sentrytime.Clocks `state:"nosave"`
// realtimeClock is a ktime.Clock based on timekeeper's Realtime.
realtimeClock *timekeeperClock
// monotonicClock is a ktime.Clock based on timekeeper's Monotonic.
monotonicClock *timekeeperClock
// bootTime is the realtime when the system "booted". i.e., when
// SetClocks was called in the initial (not restored) run.
bootTime ktime.Time
// monotonicOffset is the offset to apply to the monotonic clock output
// from clocks.
//
// It is set only once, by SetClocks.
monotonicOffset int64 `state:"nosave"`
// monotonicLowerBound is the lowerBound for monotonic time.
monotonicLowerBound atomicbitops.Int64 `state:"nosave"`
// restored, if non-nil, indicates that this Timekeeper was restored
// from a state file. The clocks are not set until restored is closed.
restored chan struct{} `state:"nosave"`
// saveMonotonic is the (offset) value of the monotonic clock at the
// time of save.
//
// It is only valid if restored is non-nil.
//
// It is only used in SetClocks after restore to compute the new
// monotonicOffset.
saveMonotonic int64
// saveRealtime is the value of the realtime clock at the time of save.
//
// It is only valid if restored is non-nil.
//
// It is only used in SetClocks after restore to compute the new
// monotonicOffset.
saveRealtime int64
// params manages the parameter page.
params *VDSOParamPage
// mu protects destruction with stop and wg.
mu sync.Mutex `state:"nosave"`
// stop is used to tell the update goroutine to exit.
stop chan struct{} `state:"nosave"`
// wg is used to indicate that the update goroutine has exited.
wg sync.WaitGroup `state:"nosave"`
}
// NewTimekeeper returns a Timekeeper that is automatically kept up-to-date.
// NewTimekeeper does not take ownership of paramPage.
//
// SetClocks must be called on the returned Timekeeper before it is usable.
func NewTimekeeper(mfp pgalloc.MemoryFileProvider, paramPage memmap.FileRange) *Timekeeper {
t := Timekeeper{
params: NewVDSOParamPage(mfp, paramPage),
}
t.realtimeClock = &timekeeperClock{tk: &t, c: sentrytime.Realtime}
t.monotonicClock = &timekeeperClock{tk: &t, c: sentrytime.Monotonic}
return &t
}
// SetClocks the backing clock source.
//
// SetClocks must be called before the Timekeeper is used, and it may not be
// called more than once, as changing the clock source without extra correction
// could cause time discontinuities.
//
// It must also be called after Load.
func (t *Timekeeper) SetClocks(c sentrytime.Clocks) {
// Update the params, marking them "not ready", as we may need to
// restart calibration on this new machine.
if t.restored != nil {
if err := t.params.Write(func() vdsoParams {
return vdsoParams{}
}); err != nil {
panic("unable to reset VDSO params: " + err.Error())
}
}
if t.clocks != nil {
panic("SetClocks called on previously-initialized Timekeeper")
}
t.clocks = c
// Compute the offset of the monotonic clock from the base Clocks.
//
// In a fresh (not restored) sentry, monotonic time starts at zero.
//
// In a restored sentry, monotonic time jumps forward by approximately
// the same amount as real time. There are no guarantees here, we are
// just making a best-effort attempt to make it appear that the app
// was simply not scheduled for a long period, rather than that the
// real time clock was changed.
//
// If real time went backwards, it remains the same.
wantMonotonic := int64(0)
nowMonotonic, err := t.clocks.GetTime(sentrytime.Monotonic)
if err != nil {
panic("Unable to get current monotonic time: " + err.Error())
}
nowRealtime, err := t.clocks.GetTime(sentrytime.Realtime)
if err != nil {
panic("Unable to get current realtime: " + err.Error())
}
if t.restored != nil {
wantMonotonic = t.saveMonotonic
elapsed := nowRealtime - t.saveRealtime
if elapsed > 0 {
wantMonotonic += elapsed
}
}
t.monotonicOffset = wantMonotonic - nowMonotonic
if t.restored == nil {
// Hold on to the initial "boot" time.
t.bootTime = ktime.FromNanoseconds(nowRealtime)
}
t.mu.Lock()
defer t.mu.Unlock()
t.startUpdater()
if t.restored != nil {
close(t.restored)
}
}
var _ tcpip.Clock = (*Timekeeper)(nil)
// Now implements tcpip.Clock.
func (t *Timekeeper) Now() time.Time {
nsec, err := t.GetTime(sentrytime.Realtime)
if err != nil {
panic("timekeeper.GetTime(sentrytime.Realtime): " + err.Error())
}
return time.Unix(0, nsec)
}
// NowMonotonic implements tcpip.Clock.
func (t *Timekeeper) NowMonotonic() tcpip.MonotonicTime {
nsec, err := t.GetTime(sentrytime.Monotonic)
if err != nil {
panic("timekeeper.GetTime(sentrytime.Monotonic): " + err.Error())
}
var mt tcpip.MonotonicTime
return mt.Add(time.Duration(nsec) * time.Nanosecond)
}
// AfterFunc implements tcpip.Clock.
func (t *Timekeeper) AfterFunc(d time.Duration, f func()) tcpip.Timer {
return ktime.AfterFunc(t.realtimeClock, d, f)
}
// startUpdater starts an update goroutine that keeps the clocks updated.
//
// mu must be held.
func (t *Timekeeper) startUpdater() {
if t.stop != nil {
// Timekeeper already started
return
}
t.stop = make(chan struct{})
// Keep the clocks up to date.
//
// Note that the Go runtime uses host CLOCK_MONOTONIC to service the
// timer, so it may run at a *slightly* different rate from the
// application CLOCK_MONOTONIC. That is fine, as we only need to update
// at approximately this rate.
timer := time.NewTicker(sentrytime.ApproxUpdateInterval)
t.wg.Add(1)
go func() { // S/R-SAFE: stopped during save.
defer t.wg.Done()
for {
// Start with an update immediately, so the clocks are
// ready ASAP.
// Call Update within a Write block to prevent the VDSO
// from using the old params between Update and
// Write.
if err := t.params.Write(func() vdsoParams {
monotonicParams, monotonicOk, realtimeParams, realtimeOk := t.clocks.Update()
var p vdsoParams
if monotonicOk {
p.monotonicReady = 1
p.monotonicBaseCycles = int64(monotonicParams.BaseCycles)
p.monotonicBaseRef = int64(monotonicParams.BaseRef) + t.monotonicOffset
p.monotonicFrequency = monotonicParams.Frequency
}
if realtimeOk {
p.realtimeReady = 1
p.realtimeBaseCycles = int64(realtimeParams.BaseCycles)
p.realtimeBaseRef = int64(realtimeParams.BaseRef)
p.realtimeFrequency = realtimeParams.Frequency
}
return p
}); err != nil {
log.Warningf("Unable to update VDSO parameter page: %v", err)
}
select {
case <-timer.C:
case <-t.stop:
return
}
}
}()
}
// stopUpdater stops the update goroutine, blocking until it exits.
//
// mu must be held.
func (t *Timekeeper) stopUpdater() {
if t.stop == nil {
// Updater not running.
return
}
close(t.stop)
t.wg.Wait()
t.stop = nil
}
// Destroy destroys the Timekeeper, freeing all associated resources.
func (t *Timekeeper) Destroy() {
t.mu.Lock()
defer t.mu.Unlock()
t.stopUpdater()
}
// PauseUpdates stops clock parameter updates. This should only be used when
// Tasks are not running and thus cannot access the clock.
func (t *Timekeeper) PauseUpdates() {
t.mu.Lock()
defer t.mu.Unlock()
t.stopUpdater()
}
// ResumeUpdates restarts clock parameter updates stopped by PauseUpdates.
func (t *Timekeeper) ResumeUpdates() {
t.mu.Lock()
defer t.mu.Unlock()
t.startUpdater()
}
// GetTime returns the current time in nanoseconds.
func (t *Timekeeper) GetTime(c sentrytime.ClockID) (int64, error) {
if t.clocks == nil {
if t.restored == nil {
panic("Timekeeper used before initialized with SetClocks")
}
<-t.restored
}
now, err := t.clocks.GetTime(c)
if err == nil && c == sentrytime.Monotonic {
now += t.monotonicOffset
for {
// It's possible that the clock is shaky. This may be due to
// platform issues, e.g. the KVM platform relies on the guest
// TSC and host TSC, which may not be perfectly in sync. To
// work around this issue, ensure that the monotonic time is
// always bounded by the last time read.
oldLowerBound := t.monotonicLowerBound.Load()
if now < oldLowerBound {
now = oldLowerBound
break
}
if t.monotonicLowerBound.CompareAndSwap(oldLowerBound, now) {
break
}
}
}
return now, err
}
// BootTime returns the system boot real time.
func (t *Timekeeper) BootTime() ktime.Time {
return t.bootTime
}
// timekeeperClock is a ktime.Clock that reads time from a
// kernel.Timekeeper-managed clock.
//
// +stateify savable
type timekeeperClock struct {
tk *Timekeeper
c sentrytime.ClockID
// Implements ktime.Clock.WallTimeUntil.
ktime.WallRateClock `state:"nosave"`
// Implements waiter.Waitable. (We have no ability to detect
// discontinuities from external changes to CLOCK_REALTIME).
ktime.NoClockEvents `state:"nosave"`
}
// Now implements ktime.Clock.Now.
func (tc *timekeeperClock) Now() ktime.Time {
now, err := tc.tk.GetTime(tc.c)
if err != nil {
panic(fmt.Sprintf("timekeeperClock(ClockID=%v)).Now: %v", tc.c, err))
}
return ktime.FromNanoseconds(now)
}
|