1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package loader loads an executable file into a MemoryManager.
package loader
import (
"bytes"
"fmt"
"io"
"path"
"gvisor.dev/gvisor/pkg/abi"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/abi/linux/errno"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/cpuid"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/fspath"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/rand"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/mm"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/syserr"
"gvisor.dev/gvisor/pkg/usermem"
)
// LoadArgs holds specifications for an executable file to be loaded.
type LoadArgs struct {
// MemoryManager is the memory manager to load the executable into.
MemoryManager *mm.MemoryManager
// RemainingTraversals is the maximum number of symlinks to follow to
// resolve Filename. This counter is passed by reference to keep it
// updated throughout the call stack.
RemainingTraversals *uint
// ResolveFinal indicates whether the final link of Filename should be
// resolved, if it is a symlink.
ResolveFinal bool
// Filename is the path for the executable.
Filename string
// File is an open FD of the executable. If File is not nil, then File will
// be loaded and Filename will be ignored.
//
// The caller is responsible for checking that the user can execute this file.
File *vfs.FileDescription
// Root is the current filesystem root.
Root vfs.VirtualDentry
// WorkingDir is the current working directory.
WorkingDir vfs.VirtualDentry
// If AfterOpen is not nil, it is called after every successful call to
// Opener.OpenPath().
AfterOpen func(f *vfs.FileDescription)
// CloseOnExec indicates that the executable (or one of its parent
// directories) was opened with O_CLOEXEC. If the executable is an
// interpreter script, then cause an ENOENT error to occur, since the
// script would otherwise be inaccessible to the interpreter.
CloseOnExec bool
// Argv is the vector of arguments to pass to the executable.
Argv []string
// Envv is the vector of environment variables to pass to the
// executable.
Envv []string
// Features specifies the CPU feature set for the executable.
Features cpuid.FeatureSet
}
// openPath opens args.Filename and checks that it is valid for loading.
//
// openPath returns an *fs.Dirent and *fs.File for args.Filename, which is not
// installed in the Task FDTable. The caller takes ownership of both.
//
// args.Filename must be a readable, executable, regular file.
func openPath(ctx context.Context, args LoadArgs) (*vfs.FileDescription, error) {
if args.Filename == "" {
ctx.Infof("cannot open empty name")
return nil, linuxerr.ENOENT
}
// TODO(gvisor.dev/issue/160): Linux requires only execute permission,
// not read. However, our backing filesystems may prevent us from reading
// the file without read permission. Additionally, a task with a
// non-readable executable has additional constraints on access via
// ptrace and procfs.
opts := vfs.OpenOptions{
Flags: linux.O_RDONLY,
FileExec: true,
}
vfsObj := args.Root.Mount().Filesystem().VirtualFilesystem()
creds := auth.CredentialsFromContext(ctx)
path := fspath.Parse(args.Filename)
pop := &vfs.PathOperation{
Root: args.Root,
Start: args.WorkingDir,
Path: path,
FollowFinalSymlink: args.ResolveFinal,
}
if path.Absolute {
pop.Start = args.Root
}
fd, err := vfsObj.OpenAt(ctx, creds, pop, &opts)
if err != nil {
return nil, err
}
if args.AfterOpen != nil {
args.AfterOpen(fd)
}
return fd, nil
}
// checkIsRegularFile prevents us from trying to execute a directory, pipe, etc.
func checkIsRegularFile(ctx context.Context, fd *vfs.FileDescription, filename string) error {
stat, err := fd.Stat(ctx, vfs.StatOptions{})
if err != nil {
return err
}
if t := linux.FileMode(stat.Mode).FileType(); t != linux.ModeRegular {
ctx.Infof("%q is not a regular file: %v", filename, t)
return linuxerr.EACCES
}
return nil
}
// allocStack allocates and maps a stack in to any available part of the address space.
func allocStack(ctx context.Context, m *mm.MemoryManager, a *arch.Context64) (*arch.Stack, error) {
ar, err := m.MapStack(ctx)
if err != nil {
return nil, err
}
return &arch.Stack{Arch: a, IO: m, Bottom: ar.End}, nil
}
const (
// maxLoaderAttempts is the maximum number of attempts to try to load
// an interpreter scripts, to prevent loops. 6 (initial + 5 changes) is
// what the Linux kernel allows (fs/exec.c:search_binary_handler).
maxLoaderAttempts = 6
)
// loadExecutable loads an executable that is pointed to by args.File. The
// caller is responsible for checking that the user can execute this file.
// If nil, the path args.Filename is resolved and loaded (check that the user
// can execute this file is done here in this case). If the executable is an
// interpreter script rather than an ELF, the binary of the corresponding
// interpreter will be loaded.
//
// It returns:
// - loadedELF, description of the loaded binary
// - arch.Context64 matching the binary arch
// - fs.Dirent of the binary file
// - Possibly updated args.Argv
func loadExecutable(ctx context.Context, args LoadArgs) (loadedELF, *arch.Context64, *vfs.FileDescription, []string, error) {
for i := 0; i < maxLoaderAttempts; i++ {
if args.File == nil {
var err error
args.File, err = openPath(ctx, args)
if err != nil {
ctx.Infof("Error opening %s: %v", args.Filename, err)
return loadedELF{}, nil, nil, nil, err
}
// Ensure file is release in case the code loops or errors out.
defer args.File.DecRef(ctx)
} else {
if err := checkIsRegularFile(ctx, args.File, args.Filename); err != nil {
return loadedELF{}, nil, nil, nil, err
}
}
// Check the header. Is this an ELF or interpreter script?
var hdr [4]uint8
// N.B. We assume that reading from a regular file cannot block.
_, err := args.File.ReadFull(ctx, usermem.BytesIOSequence(hdr[:]), 0)
// Allow unexpected EOF, as a valid executable could be only three bytes
// (e.g., #!a).
if err != nil && err != io.ErrUnexpectedEOF {
if err == io.EOF {
err = linuxerr.ENOEXEC
}
return loadedELF{}, nil, nil, nil, err
}
switch {
case bytes.Equal(hdr[:], []byte(elfMagic)):
loaded, ac, err := loadELF(ctx, args)
if err != nil {
ctx.Infof("Error loading ELF: %v", err)
return loadedELF{}, nil, nil, nil, err
}
// An ELF is always terminal. Hold on to file.
args.File.IncRef()
return loaded, ac, args.File, args.Argv, err
case bytes.Equal(hdr[:2], []byte(interpreterScriptMagic)):
if args.CloseOnExec {
return loadedELF{}, nil, nil, nil, linuxerr.ENOENT
}
args.Filename, args.Argv, err = parseInterpreterScript(ctx, args.Filename, args.File, args.Argv)
if err != nil {
ctx.Infof("Error loading interpreter script: %v", err)
return loadedELF{}, nil, nil, nil, err
}
// Refresh the traversal limit for the interpreter.
*args.RemainingTraversals = linux.MaxSymlinkTraversals
default:
ctx.Infof("Unknown magic: %v", hdr)
return loadedELF{}, nil, nil, nil, linuxerr.ENOEXEC
}
// Set to nil in case we loop on a Interpreter Script.
args.File = nil
}
return loadedELF{}, nil, nil, nil, linuxerr.ELOOP
}
// Load loads args.File into a MemoryManager. If args.File is nil, the path
// args.Filename is resolved and loaded instead.
//
// If Load returns ErrSwitchFile it should be called again with the returned
// path and argv.
//
// Preconditions:
// - The Task MemoryManager is empty.
// - Load is called on the Task goroutine.
func Load(ctx context.Context, args LoadArgs, extraAuxv []arch.AuxEntry, vdso *VDSO) (abi.OS, *arch.Context64, string, *syserr.Error) {
// Load the executable itself.
loaded, ac, file, newArgv, err := loadExecutable(ctx, args)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("failed to load %s: %v", args.Filename, err), syserr.FromError(err).ToLinux())
}
defer file.DecRef(ctx)
// Load the VDSO.
vdsoAddr, err := loadVDSO(ctx, args.MemoryManager, vdso, loaded)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("error loading VDSO: %v", err), syserr.FromError(err).ToLinux())
}
// Setup the heap. brk starts at the next page after the end of the
// executable. Userspace can assume that the remainer of the page after
// loaded.end is available for its use.
e, ok := loaded.end.RoundUp()
if !ok {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("brk overflows: %#x", loaded.end), errno.ENOEXEC)
}
args.MemoryManager.BrkSetup(ctx, e)
// Allocate our stack.
stack, err := allocStack(ctx, args.MemoryManager, ac)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to allocate stack: %v", err), syserr.FromError(err).ToLinux())
}
// Push the original filename to the stack, for AT_EXECFN.
if _, err := stack.PushNullTerminatedByteSlice([]byte(args.Filename)); err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to push exec filename: %v", err), syserr.FromError(err).ToLinux())
}
execfn := stack.Bottom
// Push 16 random bytes on the stack which AT_RANDOM will point to.
var b [16]byte
if _, err := rand.Read(b[:]); err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to read random bytes: %v", err), syserr.FromError(err).ToLinux())
}
if _, err = stack.PushNullTerminatedByteSlice(b[:]); err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to push random bytes: %v", err), syserr.FromError(err).ToLinux())
}
random := stack.Bottom
c := auth.CredentialsFromContext(ctx)
// Add generic auxv entries.
auxv := append(loaded.auxv, arch.Auxv{
arch.AuxEntry{linux.AT_UID, hostarch.Addr(c.RealKUID.In(c.UserNamespace).OrOverflow())},
arch.AuxEntry{linux.AT_EUID, hostarch.Addr(c.EffectiveKUID.In(c.UserNamespace).OrOverflow())},
arch.AuxEntry{linux.AT_GID, hostarch.Addr(c.RealKGID.In(c.UserNamespace).OrOverflow())},
arch.AuxEntry{linux.AT_EGID, hostarch.Addr(c.EffectiveKGID.In(c.UserNamespace).OrOverflow())},
// The conditions that require AT_SECURE = 1 never arise. See
// kernel.Task.updateCredsForExecLocked.
arch.AuxEntry{linux.AT_SECURE, 0},
arch.AuxEntry{linux.AT_CLKTCK, linux.CLOCKS_PER_SEC},
arch.AuxEntry{linux.AT_EXECFN, execfn},
arch.AuxEntry{linux.AT_RANDOM, random},
arch.AuxEntry{linux.AT_PAGESZ, hostarch.PageSize},
arch.AuxEntry{linux.AT_SYSINFO_EHDR, vdsoAddr},
}...)
auxv = append(auxv, extraAuxv...)
sl, err := stack.Load(newArgv, args.Envv, auxv)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to load stack: %v", err), syserr.FromError(err).ToLinux())
}
m := args.MemoryManager
m.SetArgvStart(sl.ArgvStart)
m.SetArgvEnd(sl.ArgvEnd)
m.SetEnvvStart(sl.EnvvStart)
m.SetEnvvEnd(sl.EnvvEnd)
m.SetAuxv(auxv)
m.SetExecutable(ctx, file)
m.SetVDSOSigReturn(uint64(vdsoAddr) + vdsoSigreturnOffset - vdsoPrelink)
ac.SetIP(uintptr(loaded.entry))
ac.SetStack(uintptr(stack.Bottom))
name := path.Base(args.Filename)
if len(name) > linux.TASK_COMM_LEN-1 {
name = name[:linux.TASK_COMM_LEN-1]
}
return loaded.os, ac, name, nil
}
|