1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mm
import (
"fmt"
"sync/atomic"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/safecopy"
"gvisor.dev/gvisor/pkg/safemem"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/pgalloc"
"gvisor.dev/gvisor/pkg/sentry/usage"
)
// existingPMAsLocked checks that pmas exist for all addresses in ar, and
// support access of type (at, ignorePermissions). If so, it returns an
// iterator to the pma containing ar.Start. Otherwise it returns a terminal
// iterator.
//
// Preconditions:
// - mm.activeMu must be locked.
// - ar.Length() != 0.
func (mm *MemoryManager) existingPMAsLocked(ar hostarch.AddrRange, at hostarch.AccessType, ignorePermissions bool, needInternalMappings bool) pmaIterator {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
first := mm.pmas.FindSegment(ar.Start)
pseg := first
for pseg.Ok() {
pma := pseg.ValuePtr()
perms := pma.effectivePerms
if ignorePermissions {
perms = pma.maxPerms
}
if !perms.SupersetOf(at) {
return pmaIterator{}
}
if needInternalMappings && pma.internalMappings.IsEmpty() {
return pmaIterator{}
}
if ar.End <= pseg.End() {
return first
}
pseg, _ = pseg.NextNonEmpty()
}
// Ran out of pmas before reaching ar.End.
return pmaIterator{}
}
// existingVecPMAsLocked returns true if pmas exist for all addresses in ars,
// and support access of type (at, ignorePermissions).
//
// Preconditions: mm.activeMu must be locked.
func (mm *MemoryManager) existingVecPMAsLocked(ars hostarch.AddrRangeSeq, at hostarch.AccessType, ignorePermissions bool, needInternalMappings bool) bool {
for ; !ars.IsEmpty(); ars = ars.Tail() {
if ar := ars.Head(); ar.Length() != 0 && !mm.existingPMAsLocked(ar, at, ignorePermissions, needInternalMappings).Ok() {
return false
}
}
return true
}
// getPMAsLocked ensures that pmas exist for all addresses in ar, and support
// access of type at. It returns:
//
// - An iterator to the pma containing ar.Start. If no pma contains ar.Start,
// the iterator is unspecified.
//
// - An iterator to the gap after the last pma containing an address in ar. If
// pmas exist for no addresses in ar, the iterator is to a gap that begins
// before ar.Start.
//
// - An error that is non-nil if pmas exist for only a subset of ar.
//
// Preconditions:
// - mm.mappingMu must be locked.
// - mm.activeMu must be locked for writing.
// - ar.Length() != 0.
// - vseg.Range().Contains(ar.Start).
// - vmas must exist for all addresses in ar, and support accesses of type at
// (i.e. permission checks must have been performed against vmas).
func (mm *MemoryManager) getPMAsLocked(ctx context.Context, vseg vmaIterator, ar hostarch.AddrRange, at hostarch.AccessType) (pmaIterator, pmaGapIterator, error) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !vseg.Ok() {
panic("terminal vma iterator")
}
if !vseg.Range().Contains(ar.Start) {
panic(fmt.Sprintf("initial vma %v does not cover start of ar %v", vseg.Range(), ar))
}
}
// Page-align ar so that all AddrRanges are aligned.
end, ok := ar.End.RoundUp()
var alignerr error
if !ok {
end = ar.End.RoundDown()
alignerr = linuxerr.EFAULT
}
ar = hostarch.AddrRange{ar.Start.RoundDown(), end}
pstart, pend, perr := mm.getPMAsInternalLocked(ctx, vseg, ar, at)
if pend.Start() <= ar.Start {
return pmaIterator{}, pend, perr
}
// getPMAsInternalLocked may not have returned pstart due to iterator
// invalidation.
if !pstart.Ok() {
pstart = mm.findOrSeekPrevUpperBoundPMA(ar.Start, pend)
}
if perr != nil {
return pstart, pend, perr
}
return pstart, pend, alignerr
}
// getVecPMAsLocked ensures that pmas exist for all addresses in ars, and
// support access of type at. It returns the subset of ars for which pmas
// exist. If this is not equal to ars, it returns a non-nil error explaining
// why.
//
// Preconditions:
// - mm.mappingMu must be locked.
// - mm.activeMu must be locked for writing.
// - vmas must exist for all addresses in ars, and support accesses of type at
// (i.e. permission checks must have been performed against vmas).
func (mm *MemoryManager) getVecPMAsLocked(ctx context.Context, ars hostarch.AddrRangeSeq, at hostarch.AccessType) (hostarch.AddrRangeSeq, error) {
for arsit := ars; !arsit.IsEmpty(); arsit = arsit.Tail() {
ar := arsit.Head()
if ar.Length() == 0 {
continue
}
if checkInvariants {
if !ar.WellFormed() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
// Page-align ar so that all AddrRanges are aligned.
end, ok := ar.End.RoundUp()
var alignerr error
if !ok {
end = ar.End.RoundDown()
alignerr = linuxerr.EFAULT
}
ar = hostarch.AddrRange{ar.Start.RoundDown(), end}
_, pend, perr := mm.getPMAsInternalLocked(ctx, mm.vmas.FindSegment(ar.Start), ar, at)
if perr != nil {
return truncatedAddrRangeSeq(ars, arsit, pend.Start()), perr
}
if alignerr != nil {
return truncatedAddrRangeSeq(ars, arsit, pend.Start()), alignerr
}
}
return ars, nil
}
// getPMAsInternalLocked is equivalent to getPMAsLocked, with the following
// exceptions:
//
// - getPMAsInternalLocked returns a pmaIterator on a best-effort basis (that
// is, the returned iterator may be terminal, even if a pma that contains
// ar.Start exists). Returning this iterator on a best-effort basis allows
// callers that require it to use it when it's cheaply available, while also
// avoiding the overhead of retrieving it when it's not.
//
// - getPMAsInternalLocked additionally requires that ar is page-aligned.
// getPMAsInternalLocked is an implementation helper for getPMAsLocked and
// getVecPMAsLocked; other clients should call one of those instead.
func (mm *MemoryManager) getPMAsInternalLocked(ctx context.Context, vseg vmaIterator, ar hostarch.AddrRange, at hostarch.AccessType) (pmaIterator, pmaGapIterator, error) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !vseg.Ok() {
panic("terminal vma iterator")
}
if !vseg.Range().Contains(ar.Start) {
panic(fmt.Sprintf("initial vma %v does not cover start of ar %v", vseg.Range(), ar))
}
}
opts := pgalloc.AllocOpts{Kind: usage.Anonymous, Dir: pgalloc.BottomUp}
vma := vseg.ValuePtr()
if uintptr(ar.Start) < atomic.LoadUintptr(&vma.lastFault) {
// Detect cases where memory is accessed downwards and change memory file
// allocation order to increase the chances that pages are coalesced.
opts.Dir = pgalloc.TopDown
}
atomic.StoreUintptr(&vma.lastFault, uintptr(ar.Start))
mf := mm.mfp.MemoryFile()
// Limit the range we allocate to ar, aligned to privateAllocUnit.
maskAR := privateAligned(ar)
didUnmapAS := false
// The range in which we iterate vmas and pmas is still limited to ar, to
// ensure that we don't allocate or COW-break a pma we don't need.
pseg, pgap := mm.pmas.Find(ar.Start)
pstart := pseg
for {
// Get pmas for this vma.
vsegAR := vseg.Range().Intersect(ar)
vma := vseg.ValuePtr()
pmaLoop:
for {
switch {
case pgap.Ok() && pgap.Start() < vsegAR.End:
// Need a pma here.
optAR := vseg.Range().Intersect(pgap.Range())
if checkInvariants {
if optAR.Length() == 0 {
panic(fmt.Sprintf("vseg %v and pgap %v do not overlap", vseg, pgap))
}
}
if vma.mappable == nil {
// Private anonymous mappings get pmas by allocating.
allocAR := optAR.Intersect(maskAR)
fr, err := mf.Allocate(uint64(allocAR.Length()), opts)
if err != nil {
return pstart, pgap, err
}
if checkInvariants {
if !fr.WellFormed() || fr.Length() != uint64(allocAR.Length()) {
panic(fmt.Sprintf("Allocate(%v) returned invalid FileRange %v", allocAR.Length(), fr))
}
}
mm.addRSSLocked(allocAR)
mm.incPrivateRef(fr)
mf.IncRef(fr)
pseg, pgap = mm.pmas.Insert(pgap, allocAR, pma{
file: mf,
off: fr.Start,
translatePerms: hostarch.AnyAccess,
effectivePerms: vma.effectivePerms,
maxPerms: vma.maxPerms,
// Since we just allocated this memory and have the
// only reference, the new pma does not need
// copy-on-write.
private: true,
}).NextNonEmpty()
pstart = pmaIterator{} // iterators invalidated
} else {
// Other mappings get pmas by translating.
optMR := vseg.mappableRangeOf(optAR)
reqAR := optAR.Intersect(ar)
reqMR := vseg.mappableRangeOf(reqAR)
perms := at
if vma.private {
// This pma will be copy-on-write; don't require write
// permission, but do require read permission to
// facilitate the copy.
//
// If at.Write is true, we will need to break
// copy-on-write immediately, which occurs after
// translation below.
perms.Read = true
perms.Write = false
}
ts, err := vma.mappable.Translate(ctx, reqMR, optMR, perms)
if checkInvariants {
if err := memmap.CheckTranslateResult(reqMR, optMR, perms, ts, err); err != nil {
panic(fmt.Sprintf("Mappable(%T).Translate(%v, %v, %v): %v", vma.mappable, reqMR, optMR, perms, err))
}
}
// Install a pma for each translation.
if len(ts) == 0 {
return pstart, pgap, err
}
pstart = pmaIterator{} // iterators invalidated
for _, t := range ts {
newpmaAR := vseg.addrRangeOf(t.Source)
newpma := pma{
file: t.File,
off: t.Offset,
translatePerms: t.Perms,
effectivePerms: vma.effectivePerms.Intersect(t.Perms),
maxPerms: vma.maxPerms.Intersect(t.Perms),
}
if vma.private {
newpma.effectivePerms.Write = false
newpma.maxPerms.Write = false
newpma.needCOW = true
}
mm.addRSSLocked(newpmaAR)
t.File.IncRef(t.FileRange())
// This is valid because memmap.Mappable.Translate is
// required to return Translations in increasing
// Translation.Source order.
pseg = mm.pmas.Insert(pgap, newpmaAR, newpma)
pgap = pseg.NextGap()
}
// The error returned by Translate is only significant if
// it occurred before ar.End.
if err != nil && vseg.addrRangeOf(ts[len(ts)-1].Source).End < ar.End {
return pstart, pgap, err
}
// Rewind pseg to the first pma inserted and continue the
// loop to check if we need to break copy-on-write.
pseg, pgap = mm.findOrSeekPrevUpperBoundPMA(vseg.addrRangeOf(ts[0].Source).Start, pgap), pmaGapIterator{}
continue
}
case pseg.Ok() && pseg.Start() < vsegAR.End:
oldpma := pseg.ValuePtr()
if at.Write && mm.isPMACopyOnWriteLocked(vseg, pseg) {
// Break copy-on-write by copying.
if checkInvariants {
if !oldpma.maxPerms.Read {
panic(fmt.Sprintf("pma %v needs to be copied for writing, but is not readable: %v", pseg.Range(), oldpma))
}
}
var copyAR hostarch.AddrRange
if vma := vseg.ValuePtr(); vma.effectivePerms.Execute {
// The majority of copy-on-write breaks on executable
// pages come from:
//
// - The ELF loader, which must zero out bytes on the
// last page of each segment after the end of the
// segment.
//
// - gdb's use of ptrace to insert breakpoints.
//
// Neither of these cases has enough spatial locality
// to benefit from copying nearby pages, so if the vma
// is executable, only copy the pages required.
copyAR = pseg.Range().Intersect(ar)
} else if vma.growsDown {
// In most cases, the new process will not use most of
// its stack before exiting or invoking execve(); it is
// especially unlikely to return very far down its call
// stack, since async-signal-safety concerns in
// multithreaded programs prevent the new process from
// being able to do much. So only copy up to one page
// before and after the pages required.
stackMaskAR := ar
if newStart := stackMaskAR.Start - hostarch.PageSize; newStart < stackMaskAR.Start {
stackMaskAR.Start = newStart
}
if newEnd := stackMaskAR.End + hostarch.PageSize; newEnd > stackMaskAR.End {
stackMaskAR.End = newEnd
}
copyAR = pseg.Range().Intersect(stackMaskAR)
} else {
copyAR = pseg.Range().Intersect(maskAR)
}
// Get internal mappings from the pma to copy from.
if err := pseg.getInternalMappingsLocked(); err != nil {
return pstart, pseg.PrevGap(), err
}
// Copy contents.
fr, err := mf.AllocateAndFill(uint64(copyAR.Length()), usage.Anonymous, true /* populate */, &safemem.BlockSeqReader{mm.internalMappingsLocked(pseg, copyAR)})
if _, ok := err.(safecopy.BusError); ok {
// If we got SIGBUS during the copy, deliver SIGBUS to
// userspace (instead of SIGSEGV) if we're breaking
// copy-on-write due to application page fault.
err = &memmap.BusError{err}
}
if fr.Length() == 0 {
return pstart, pseg.PrevGap(), err
}
// Unmap all of maskAR, not just copyAR, to minimize host
// syscalls. AddressSpace mappings must be removed before
// mm.decPrivateRef().
if !didUnmapAS {
mm.unmapASLocked(maskAR)
didUnmapAS = true
}
// Replace the pma with a copy in the part of the address
// range where copying was successful. This doesn't change
// RSS.
copyAR.End = copyAR.Start + hostarch.Addr(fr.Length())
if copyAR != pseg.Range() {
pseg = mm.pmas.Isolate(pseg, copyAR)
pstart = pmaIterator{} // iterators invalidated
}
oldpma = pseg.ValuePtr()
if oldpma.private {
mm.decPrivateRef(pseg.fileRange())
}
oldpma.file.DecRef(pseg.fileRange())
mm.incPrivateRef(fr)
mf.IncRef(fr)
oldpma.file = mf
oldpma.off = fr.Start
oldpma.translatePerms = hostarch.AnyAccess
oldpma.effectivePerms = vma.effectivePerms
oldpma.maxPerms = vma.maxPerms
oldpma.needCOW = false
oldpma.private = true
oldpma.internalMappings = safemem.BlockSeq{}
// Try to merge the pma with its neighbors.
if prev := pseg.PrevSegment(); prev.Ok() {
if merged := mm.pmas.Merge(prev, pseg); merged.Ok() {
pseg = merged
pstart = pmaIterator{} // iterators invalidated
}
}
if next := pseg.NextSegment(); next.Ok() {
if merged := mm.pmas.Merge(pseg, next); merged.Ok() {
pseg = merged
pstart = pmaIterator{} // iterators invalidated
}
}
// The error returned by AllocateAndFill is only
// significant if it occurred before ar.End.
if err != nil && pseg.End() < ar.End {
return pstart, pseg.NextGap(), err
}
// Ensure pseg and pgap are correct for the next iteration
// of the loop.
pseg, pgap = pseg.NextNonEmpty()
} else if !oldpma.translatePerms.SupersetOf(at) {
// Get new pmas (with sufficient permissions) by calling
// memmap.Mappable.Translate again.
if checkInvariants {
if oldpma.private {
panic(fmt.Sprintf("private pma %v has non-maximal pma.translatePerms: %v", pseg.Range(), oldpma))
}
}
// Allow the entire pma to be replaced.
optAR := pseg.Range()
optMR := vseg.mappableRangeOf(optAR)
reqAR := optAR.Intersect(ar)
reqMR := vseg.mappableRangeOf(reqAR)
perms := oldpma.translatePerms.Union(at)
ts, err := vma.mappable.Translate(ctx, reqMR, optMR, perms)
if checkInvariants {
if err := memmap.CheckTranslateResult(reqMR, optMR, perms, ts, err); err != nil {
panic(fmt.Sprintf("Mappable(%T).Translate(%v, %v, %v): %v", vma.mappable, reqMR, optMR, perms, err))
}
}
// Remove the part of the existing pma covered by new
// Translations, then insert new pmas. This doesn't change
// RSS. Note that we don't need to call unmapASLocked: any
// existing AddressSpace mappings are still valid (though
// less permissive than the new pmas indicate) until
// Invalidate is called, and will be replaced by future
// calls to mapASLocked.
if len(ts) == 0 {
return pstart, pseg.PrevGap(), err
}
transMR := memmap.MappableRange{ts[0].Source.Start, ts[len(ts)-1].Source.End}
transAR := vseg.addrRangeOf(transMR)
pseg = mm.pmas.Isolate(pseg, transAR)
pseg.ValuePtr().file.DecRef(pseg.fileRange())
pgap = mm.pmas.Remove(pseg)
pstart = pmaIterator{} // iterators invalidated
for _, t := range ts {
newpmaAR := vseg.addrRangeOf(t.Source)
newpma := pma{
file: t.File,
off: t.Offset,
translatePerms: t.Perms,
effectivePerms: vma.effectivePerms.Intersect(t.Perms),
maxPerms: vma.maxPerms.Intersect(t.Perms),
}
if vma.private {
newpma.effectivePerms.Write = false
newpma.maxPerms.Write = false
newpma.needCOW = true
}
t.File.IncRef(t.FileRange())
pseg = mm.pmas.Insert(pgap, newpmaAR, newpma)
pgap = pseg.NextGap()
}
// The error returned by Translate is only significant if
// it occurred before ar.End.
if err != nil && pseg.End() < ar.End {
return pstart, pgap, err
}
// Ensure pseg and pgap are correct for the next iteration
// of the loop.
if pgap.Range().Length() == 0 {
pseg, pgap = pgap.NextSegment(), pmaGapIterator{}
} else {
pseg = pmaIterator{}
}
} else {
// We have a usable pma; continue.
pseg, pgap = pseg.NextNonEmpty()
}
default:
break pmaLoop
}
}
// Go to the next vma.
if ar.End <= vseg.End() {
if pgap.Ok() {
return pstart, pgap, nil
}
return pstart, pseg.PrevGap(), nil
}
vseg = vseg.NextSegment()
}
}
const (
// When memory is allocated for a private pma, align the allocated address
// range to a privateAllocUnit boundary when possible. Larger values of
// privateAllocUnit may reduce page faults by allowing fewer, larger pmas
// to be mapped, but may result in larger amounts of wasted memory in the
// presence of fragmentation. privateAllocUnit must be a power-of-2
// multiple of hostarch.PageSize.
privateAllocUnit = hostarch.HugePageSize
privateAllocMask = privateAllocUnit - 1
)
func privateAligned(ar hostarch.AddrRange) hostarch.AddrRange {
aligned := hostarch.AddrRange{ar.Start &^ privateAllocMask, ar.End}
if end := (ar.End + privateAllocMask) &^ privateAllocMask; end >= ar.End {
aligned.End = end
}
if checkInvariants {
if !aligned.IsSupersetOf(ar) {
panic(fmt.Sprintf("aligned AddrRange %#v is not a superset of ar %#v", aligned, ar))
}
}
return aligned
}
// isPMACopyOnWriteLocked returns true if the contents of the pma represented
// by pseg must be copied to a new private pma to be written to.
//
// If the pma is a copy-on-write private pma, and holds the only reference on
// the memory it maps, isPMACopyOnWriteLocked will take ownership of the memory
// and update the pma to indicate that it does not require copy-on-write.
//
// Preconditions:
// - vseg.Range().IsSupersetOf(pseg.Range()).
// - mm.mappingMu must be locked.
// - mm.activeMu must be locked for writing.
func (mm *MemoryManager) isPMACopyOnWriteLocked(vseg vmaIterator, pseg pmaIterator) bool {
pma := pseg.ValuePtr()
if !pma.needCOW {
return false
}
if !pma.private {
return true
}
// If we have the only reference on private memory to be copied, just take
// ownership of it instead of copying. If we do hold the only reference,
// additional references can only be taken by mm.Fork(), which is excluded
// by mm.activeMu, so this isn't racy.
mm.privateRefs.mu.Lock()
defer mm.privateRefs.mu.Unlock()
fr := pseg.fileRange()
// This check relies on mm.privateRefs.refs being kept fully merged.
rseg := mm.privateRefs.refs.FindSegment(fr.Start)
if rseg.Ok() && rseg.Value() == 1 && fr.End <= rseg.End() {
pma.needCOW = false
// pma.private => pma.translatePerms == hostarch.AnyAccess
vma := vseg.ValuePtr()
pma.effectivePerms = vma.effectivePerms
pma.maxPerms = vma.maxPerms
return false
}
return true
}
// Invalidate implements memmap.MappingSpace.Invalidate.
func (mm *MemoryManager) Invalidate(ar hostarch.AddrRange, opts memmap.InvalidateOpts) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
mm.activeMu.Lock()
defer mm.activeMu.Unlock()
if mm.captureInvalidations {
mm.capturedInvalidations = append(mm.capturedInvalidations, invalidateArgs{ar, opts})
return
}
mm.invalidateLocked(ar, opts.InvalidatePrivate, true)
}
// invalidateLocked removes pmas and AddressSpace mappings of those pmas for
// addresses in ar.
//
// Preconditions:
// - mm.activeMu must be locked for writing.
// - ar.Length() != 0.
// - ar must be page-aligned.
func (mm *MemoryManager) invalidateLocked(ar hostarch.AddrRange, invalidatePrivate, invalidateShared bool) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
var didUnmapAS bool
pseg := mm.pmas.LowerBoundSegment(ar.Start)
for pseg.Ok() && pseg.Start() < ar.End {
pma := pseg.ValuePtr()
if (invalidatePrivate && pma.private) || (invalidateShared && !pma.private) {
pseg = mm.pmas.Isolate(pseg, ar)
pma = pseg.ValuePtr()
if !didUnmapAS {
// Unmap all of ar, not just pseg.Range(), to minimize host
// syscalls. AddressSpace mappings must be removed before
// mm.decPrivateRef().
//
// Note that we do more than just ar here, and extrapolate
// to the end of any previous region that we may have mapped.
// This is done to ensure that lower layers can fully invalidate
// intermediate pagetable pages during the unmap.
var unmapAR hostarch.AddrRange
if prev := pseg.PrevSegment(); prev.Ok() {
unmapAR.Start = prev.End()
} else {
unmapAR.Start = mm.layout.MinAddr
}
if last := mm.pmas.LowerBoundSegment(ar.End); last.Ok() {
if last.Start() < ar.End {
unmapAR.End = ar.End
} else {
unmapAR.End = last.Start()
}
} else {
unmapAR.End = mm.layout.MaxAddr
}
mm.unmapASLocked(unmapAR)
didUnmapAS = true
}
if pma.private {
mm.decPrivateRef(pseg.fileRange())
}
mm.removeRSSLocked(pseg.Range())
pma.file.DecRef(pseg.fileRange())
pseg = mm.pmas.Remove(pseg).NextSegment()
} else {
pseg = pseg.NextSegment()
}
}
}
// Pin returns the memmap.File ranges currently mapped by addresses in ar in
// mm, acquiring a reference on the returned ranges which the caller must
// release by calling Unpin. If not all addresses are mapped, Pin returns a
// non-nil error. Note that Pin may return both a non-empty slice of
// PinnedRanges and a non-nil error.
//
// Pin does not prevent mapped ranges from changing, making it unsuitable for
// most I/O. It should only be used in contexts that would use get_user_pages()
// in the Linux kernel.
//
// Preconditions:
// - ar.Length() != 0.
// - ar must be page-aligned.
func (mm *MemoryManager) Pin(ctx context.Context, ar hostarch.AddrRange, at hostarch.AccessType, ignorePermissions bool) ([]PinnedRange, error) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
// Ensure that we have usable vmas.
mm.mappingMu.RLock()
vseg, vend, verr := mm.getVMAsLocked(ctx, ar, at, ignorePermissions)
if vendaddr := vend.Start(); vendaddr < ar.End {
if vendaddr <= ar.Start {
mm.mappingMu.RUnlock()
return nil, verr
}
ar.End = vendaddr
}
// Ensure that we have usable pmas.
mm.activeMu.Lock()
pseg, pend, perr := mm.getPMAsLocked(ctx, vseg, ar, at)
mm.mappingMu.RUnlock()
if pendaddr := pend.Start(); pendaddr < ar.End {
if pendaddr <= ar.Start {
mm.activeMu.Unlock()
return nil, perr
}
ar.End = pendaddr
}
// Gather pmas.
var prs []PinnedRange
for pseg.Ok() && pseg.Start() < ar.End {
psar := pseg.Range().Intersect(ar)
f := pseg.ValuePtr().file
fr := pseg.fileRangeOf(psar)
f.IncRef(fr)
prs = append(prs, PinnedRange{
Source: psar,
File: f,
Offset: fr.Start,
})
pseg = pseg.NextSegment()
}
mm.activeMu.Unlock()
// Return the first error in order of progress through ar.
if perr != nil {
return prs, perr
}
return prs, verr
}
// PinnedRanges are returned by MemoryManager.Pin.
type PinnedRange struct {
// Source is the corresponding range of addresses.
Source hostarch.AddrRange
// File is the mapped file.
File memmap.File
// Offset is the offset into File at which this PinnedRange begins.
Offset uint64
}
// FileRange returns the memmap.File offsets mapped by pr.
func (pr PinnedRange) FileRange() memmap.FileRange {
return memmap.FileRange{pr.Offset, pr.Offset + uint64(pr.Source.Length())}
}
// Unpin releases the reference held by prs.
func Unpin(prs []PinnedRange) {
for i := range prs {
prs[i].File.DecRef(prs[i].FileRange())
}
}
// movePMAsLocked moves all pmas in oldAR to newAR.
//
// Preconditions:
// - mm.activeMu must be locked for writing.
// - oldAR.Length() != 0.
// - oldAR.Length() <= newAR.Length().
// - !oldAR.Overlaps(newAR).
// - mm.pmas.IsEmptyRange(newAR).
// - oldAR and newAR must be page-aligned.
func (mm *MemoryManager) movePMAsLocked(oldAR, newAR hostarch.AddrRange) {
if checkInvariants {
if !oldAR.WellFormed() || oldAR.Length() == 0 || !oldAR.IsPageAligned() {
panic(fmt.Sprintf("invalid oldAR: %v", oldAR))
}
if !newAR.WellFormed() || newAR.Length() == 0 || !newAR.IsPageAligned() {
panic(fmt.Sprintf("invalid newAR: %v", newAR))
}
if oldAR.Length() > newAR.Length() {
panic(fmt.Sprintf("old address range %v may contain pmas that will not fit in new address range %v", oldAR, newAR))
}
if oldAR.Overlaps(newAR) {
panic(fmt.Sprintf("old and new address ranges overlap: %v, %v", oldAR, newAR))
}
// mm.pmas.IsEmptyRange is checked by mm.pmas.Insert.
}
type movedPMA struct {
oldAR hostarch.AddrRange
pma pma
}
var movedPMAs []movedPMA
pseg := mm.pmas.LowerBoundSegment(oldAR.Start)
for pseg.Ok() && pseg.Start() < oldAR.End {
pseg = mm.pmas.Isolate(pseg, oldAR)
movedPMAs = append(movedPMAs, movedPMA{
oldAR: pseg.Range(),
pma: pseg.Value(),
})
pseg = mm.pmas.Remove(pseg).NextSegment()
// No RSS change is needed since we're re-inserting the same pmas
// below.
}
off := newAR.Start - oldAR.Start
pgap := mm.pmas.FindGap(newAR.Start)
for i := range movedPMAs {
mpma := &movedPMAs[i]
pmaNewAR := hostarch.AddrRange{mpma.oldAR.Start + off, mpma.oldAR.End + off}
pgap = mm.pmas.Insert(pgap, pmaNewAR, mpma.pma).NextGap()
}
mm.unmapASLocked(oldAR)
}
// getPMAInternalMappingsLocked ensures that pmas for all addresses in ar have
// cached internal mappings. It returns:
//
// - An iterator to the gap after the last pma with internal mappings
// containing an address in ar. If internal mappings exist for no addresses in
// ar, the iterator is to a gap that begins before ar.Start.
//
// - An error that is non-nil if internal mappings exist for only a subset of
// ar.
//
// Preconditions:
// - mm.activeMu must be locked for writing.
// - pseg.Range().Contains(ar.Start).
// - pmas must exist for all addresses in ar.
// - ar.Length() != 0.
//
// Postconditions: getPMAInternalMappingsLocked does not invalidate iterators
// into mm.pmas.
func (mm *MemoryManager) getPMAInternalMappingsLocked(pseg pmaIterator, ar hostarch.AddrRange) (pmaGapIterator, error) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !pseg.Range().Contains(ar.Start) {
panic(fmt.Sprintf("initial pma %v does not cover start of ar %v", pseg.Range(), ar))
}
}
for {
if err := pseg.getInternalMappingsLocked(); err != nil {
return pseg.PrevGap(), err
}
if ar.End <= pseg.End() {
return pseg.NextGap(), nil
}
pseg, _ = pseg.NextNonEmpty()
}
}
// getVecPMAInternalMappingsLocked ensures that pmas for all addresses in ars
// have cached internal mappings. It returns the subset of ars for which
// internal mappings exist. If this is not equal to ars, it returns a non-nil
// error explaining why.
//
// Preconditions:
// - mm.activeMu must be locked for writing.
// - pmas must exist for all addresses in ar.
//
// Postconditions: getVecPMAInternalMappingsLocked does not invalidate iterators
// into mm.pmas.
func (mm *MemoryManager) getVecPMAInternalMappingsLocked(ars hostarch.AddrRangeSeq) (hostarch.AddrRangeSeq, error) {
for arsit := ars; !arsit.IsEmpty(); arsit = arsit.Tail() {
ar := arsit.Head()
if ar.Length() == 0 {
continue
}
if pend, err := mm.getPMAInternalMappingsLocked(mm.pmas.FindSegment(ar.Start), ar); err != nil {
return truncatedAddrRangeSeq(ars, arsit, pend.Start()), err
}
}
return ars, nil
}
// internalMappingsLocked returns internal mappings for addresses in ar.
//
// Preconditions:
// - mm.activeMu must be locked.
// - Internal mappings must have been previously established for all addresses
// in ar.
// - ar.Length() != 0.
// - pseg.Range().Contains(ar.Start).
func (mm *MemoryManager) internalMappingsLocked(pseg pmaIterator, ar hostarch.AddrRange) safemem.BlockSeq {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !pseg.Range().Contains(ar.Start) {
panic(fmt.Sprintf("initial pma %v does not cover start of ar %v", pseg.Range(), ar))
}
}
if ar.End <= pseg.End() {
// Since only one pma is involved, we can use pma.internalMappings
// directly, avoiding a slice allocation.
offset := uint64(ar.Start - pseg.Start())
return pseg.ValuePtr().internalMappings.DropFirst64(offset).TakeFirst64(uint64(ar.Length()))
}
var ims []safemem.Block
for {
pr := pseg.Range().Intersect(ar)
for pims := pseg.ValuePtr().internalMappings.DropFirst64(uint64(pr.Start - pseg.Start())).TakeFirst64(uint64(pr.Length())); !pims.IsEmpty(); pims = pims.Tail() {
ims = append(ims, pims.Head())
}
if ar.End <= pseg.End() {
break
}
pseg = pseg.NextSegment()
}
return safemem.BlockSeqFromSlice(ims)
}
// vecInternalMappingsLocked returns internal mappings for addresses in ars.
//
// Preconditions:
// - mm.activeMu must be locked.
// - Internal mappings must have been previously established for all addresses
// in ars.
func (mm *MemoryManager) vecInternalMappingsLocked(ars hostarch.AddrRangeSeq) safemem.BlockSeq {
var ims []safemem.Block
for ; !ars.IsEmpty(); ars = ars.Tail() {
ar := ars.Head()
if ar.Length() == 0 {
continue
}
for pims := mm.internalMappingsLocked(mm.pmas.FindSegment(ar.Start), ar); !pims.IsEmpty(); pims = pims.Tail() {
ims = append(ims, pims.Head())
}
}
return safemem.BlockSeqFromSlice(ims)
}
// incPrivateRef acquires a reference on private pages in fr.
func (mm *MemoryManager) incPrivateRef(fr memmap.FileRange) {
mm.privateRefs.mu.Lock()
defer mm.privateRefs.mu.Unlock()
refSet := &mm.privateRefs.refs
seg, gap := refSet.Find(fr.Start)
for {
switch {
case seg.Ok() && seg.Start() < fr.End:
seg = refSet.Isolate(seg, fr)
seg.SetValue(seg.Value() + 1)
seg, gap = seg.NextNonEmpty()
case gap.Ok() && gap.Start() < fr.End:
seg, gap = refSet.InsertWithoutMerging(gap, gap.Range().Intersect(fr), 1).NextNonEmpty()
default:
refSet.MergeAdjacent(fr)
return
}
}
}
// decPrivateRef releases a reference on private pages in fr.
func (mm *MemoryManager) decPrivateRef(fr memmap.FileRange) {
var freed []memmap.FileRange
mm.privateRefs.mu.Lock()
refSet := &mm.privateRefs.refs
seg := refSet.LowerBoundSegment(fr.Start)
for seg.Ok() && seg.Start() < fr.End {
seg = refSet.Isolate(seg, fr)
if old := seg.Value(); old == 1 {
freed = append(freed, seg.Range())
seg = refSet.Remove(seg).NextSegment()
} else {
seg.SetValue(old - 1)
seg = seg.NextSegment()
}
}
refSet.MergeAdjacent(fr)
mm.privateRefs.mu.Unlock()
mf := mm.mfp.MemoryFile()
for _, fr := range freed {
mf.DecRef(fr)
}
}
// addRSSLocked updates the current and maximum resident set size of a
// MemoryManager to reflect the insertion of a pma at ar.
//
// Preconditions: mm.activeMu must be locked for writing.
func (mm *MemoryManager) addRSSLocked(ar hostarch.AddrRange) {
mm.curRSS += uint64(ar.Length())
if mm.curRSS > mm.maxRSS {
mm.maxRSS = mm.curRSS
}
}
// removeRSSLocked updates the current resident set size of a MemoryManager to
// reflect the removal of a pma at ar.
//
// Preconditions: mm.activeMu must be locked for writing.
func (mm *MemoryManager) removeRSSLocked(ar hostarch.AddrRange) {
mm.curRSS -= uint64(ar.Length())
}
// pmaSetFunctions implements segment.Functions for pmaSet.
type pmaSetFunctions struct{}
func (pmaSetFunctions) MinKey() hostarch.Addr {
return 0
}
func (pmaSetFunctions) MaxKey() hostarch.Addr {
return ^hostarch.Addr(0)
}
func (pmaSetFunctions) ClearValue(pma *pma) {
pma.file = nil
pma.internalMappings = safemem.BlockSeq{}
}
func (pmaSetFunctions) Merge(ar1 hostarch.AddrRange, pma1 pma, ar2 hostarch.AddrRange, pma2 pma) (pma, bool) {
if pma1.file != pma2.file ||
pma1.off+uint64(ar1.Length()) != pma2.off ||
pma1.translatePerms != pma2.translatePerms ||
pma1.effectivePerms != pma2.effectivePerms ||
pma1.maxPerms != pma2.maxPerms ||
pma1.needCOW != pma2.needCOW ||
pma1.private != pma2.private {
return pma{}, false
}
// Discard internal mappings instead of trying to merge them, since merging
// them requires an allocation and getting them again from the
// memmap.File might not.
pma1.internalMappings = safemem.BlockSeq{}
return pma1, true
}
func (pmaSetFunctions) Split(ar hostarch.AddrRange, p pma, split hostarch.Addr) (pma, pma) {
newlen1 := uint64(split - ar.Start)
p2 := p
p2.off += newlen1
if !p.internalMappings.IsEmpty() {
p.internalMappings = p.internalMappings.TakeFirst64(newlen1)
p2.internalMappings = p2.internalMappings.DropFirst64(newlen1)
}
return p, p2
}
// findOrSeekPrevUpperBoundPMA returns mm.pmas.UpperBoundSegment(addr), but may do
// so by scanning linearly backward from pgap.
//
// Preconditions:
// - mm.activeMu must be locked.
// - addr <= pgap.Start().
func (mm *MemoryManager) findOrSeekPrevUpperBoundPMA(addr hostarch.Addr, pgap pmaGapIterator) pmaIterator {
if checkInvariants {
if !pgap.Ok() {
panic("terminal pma iterator")
}
if addr > pgap.Start() {
panic(fmt.Sprintf("can't seek backward to %#x from %#x", addr, pgap.Start()))
}
}
// Optimistically check if pgap.PrevSegment() is the PMA we're looking for,
// which is the case if findOrSeekPrevUpperBoundPMA is called to find the
// start of a range containing only a single PMA.
if pseg := pgap.PrevSegment(); pseg.Start() <= addr {
return pseg
}
return mm.pmas.UpperBoundSegment(addr)
}
// getInternalMappingsLocked ensures that pseg.ValuePtr().internalMappings is
// non-empty.
//
// Preconditions: mm.activeMu must be locked for writing.
func (pseg pmaIterator) getInternalMappingsLocked() error {
pma := pseg.ValuePtr()
if pma.internalMappings.IsEmpty() {
// This must use maxPerms (instead of perms) because some permission
// constraints are only visible to vmas; for example, mappings of
// read-only files have vma.maxPerms.Write unset, but this may not be
// visible to the memmap.Mappable.
perms := pma.maxPerms
// We will never execute application code through an internal mapping.
perms.Execute = false
ims, err := pma.file.MapInternal(pseg.fileRange(), perms)
if err != nil {
return err
}
pma.internalMappings = ims
}
return nil
}
func (pseg pmaIterator) fileRange() memmap.FileRange {
return pseg.fileRangeOf(pseg.Range())
}
// Preconditions:
// - pseg.Range().IsSupersetOf(ar).
// - ar.Length != 0.
func (pseg pmaIterator) fileRangeOf(ar hostarch.AddrRange) memmap.FileRange {
if checkInvariants {
if !pseg.Ok() {
panic("terminal pma iterator")
}
if !ar.WellFormed() || ar.Length() == 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !pseg.Range().IsSupersetOf(ar) {
panic(fmt.Sprintf("ar %v out of bounds %v", ar, pseg.Range()))
}
}
pma := pseg.ValuePtr()
pstart := pseg.Start()
return memmap.FileRange{pma.off + uint64(ar.Start-pstart), pma.off + uint64(ar.End-pstart)}
}
|