1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package pgalloc contains the page allocator subsystem, which manages memory
// that may be mapped into application address spaces.
//
// Lock order:
//
// pgalloc.MemoryFile.mu
// pgalloc.MemoryFile.mappingsMu
package pgalloc
import (
"fmt"
"math"
"os"
"sync/atomic"
"time"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/safemem"
"gvisor.dev/gvisor/pkg/sentry/hostmm"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/usage"
"gvisor.dev/gvisor/pkg/sync"
)
// Direction describes how to allocate offsets from MemoryFile.
type Direction int
const (
// BottomUp allocates offsets in increasing offsets.
BottomUp Direction = iota
// TopDown allocates offsets in decreasing offsets.
TopDown
)
// String implements fmt.Stringer.
func (d Direction) String() string {
switch d {
case BottomUp:
return "up"
case TopDown:
return "down"
}
panic(fmt.Sprintf("invalid direction: %d", d))
}
// MemoryFile is a memmap.File whose pages may be allocated to arbitrary
// users.
type MemoryFile struct {
// opts holds options passed to NewMemoryFile. opts is immutable.
opts MemoryFileOpts
// MemoryFile owns a single backing file, which is modeled as follows:
//
// Each page in the file can be committed or uncommitted. A page is
// committed if the host kernel is spending resources to store its contents
// and uncommitted otherwise. This definition includes pages that the host
// kernel has swapped; this is intentional, to ensure that accounting does
// not change even if host kernel swapping behavior changes, and that
// memory used by pseudo-swap mechanisms like zswap is still accounted.
//
// The initial contents of uncommitted pages are implicitly zero bytes. A
// read or write to the contents of an uncommitted page causes it to be
// committed. This is the only event that can cause a uncommitted page to
// be committed.
//
// fallocate(FALLOC_FL_PUNCH_HOLE) (MemoryFile.Decommit) causes committed
// pages to be uncommitted. This is the only event that can cause a
// committed page to be uncommitted.
//
// Memory accounting is based on identifying the set of committed pages.
// Since we do not have direct access to the MMU, tracking reads and writes
// to uncommitted pages to detect commitment would introduce additional
// page faults, which would be prohibitively expensive. Instead, we query
// the host kernel to determine which pages are committed.
// file is the backing file. The file pointer is immutable.
file *os.File
mu sync.Mutex
// usage maps each page in the file to metadata for that page. Pages for
// which no segment exists in usage are both unallocated (not in use) and
// uncommitted.
//
// Since usage stores usageInfo objects by value, clients should usually
// use usageIterator.ValuePtr() instead of usageIterator.Value() to get a
// pointer to the usageInfo rather than a copy.
//
// usage must be kept maximally merged (that is, there should never be two
// adjacent segments with the same values). At least markReclaimed depends
// on this property.
//
// usage is protected by mu.
usage usageSet
// The UpdateUsage function scans all segments with knownCommitted set
// to false, sees which pages are committed and creates corresponding
// segments with knownCommitted set to true.
//
// In order to avoid unnecessary scans, usageExpected tracks the total
// file blocks expected. This is used to elide the scan when this
// matches the underlying file blocks.
//
// To track swapped pages, usageSwapped tracks the discrepency between
// what is observed in core and what is reported by the file. When
// usageSwapped is non-zero, a sweep will be performed at least every
// second. The start of the last sweep is recorded in usageLast.
//
// All usage attributes are all protected by mu.
usageExpected uint64
usageSwapped uint64
usageLast time.Time
// fileSize is the size of the backing memory file in bytes. fileSize is
// always a power-of-two multiple of chunkSize.
//
// fileSize is protected by mu.
fileSize int64
// Pages from the backing file are mapped into the local address space on
// the granularity of large pieces called chunks. mappings is a []uintptr
// that stores, for each chunk, the start address of a mapping of that
// chunk in the current process' address space, or 0 if no such mapping
// exists. Once a chunk is mapped, it is never remapped or unmapped until
// the MemoryFile is destroyed.
//
// Mutating the mappings slice or its contents requires both holding
// mappingsMu and using atomic memory operations. (The slice is mutated
// whenever the file is expanded. Per the above, the only permitted
// mutation of the slice's contents is the assignment of a mapping to a
// chunk that was previously unmapped.) Reading the slice or its contents
// only requires *either* holding mappingsMu or using atomic memory
// operations. This allows MemoryFile.MapInternal to avoid locking in the
// common case where chunk mappings already exist.
mappingsMu sync.Mutex
mappings atomic.Value
// destroyed is set by Destroy to instruct the reclaimer goroutine to
// release resources and exit. destroyed is protected by mu.
destroyed bool
// reclaimable is true if usage may contain reclaimable pages. reclaimable
// is protected by mu.
reclaimable bool
// reclaim is the collection of regions for reclaim. reclaim is protected
// by mu.
reclaim reclaimSet
// reclaimCond is signaled (with mu locked) when reclaimable or destroyed
// transitions from false to true.
reclaimCond sync.Cond
// evictable maps EvictableMemoryUsers to eviction state.
//
// evictable is protected by mu.
evictable map[EvictableMemoryUser]*evictableMemoryUserInfo
// evictionWG counts the number of goroutines currently performing evictions.
evictionWG sync.WaitGroup
// stopNotifyPressure stops memory cgroup pressure level
// notifications used to drive eviction. stopNotifyPressure is
// immutable.
stopNotifyPressure func()
}
// MemoryFileOpts provides options to NewMemoryFile.
type MemoryFileOpts struct {
// DelayedEviction controls the extent to which the MemoryFile may delay
// eviction of evictable allocations.
DelayedEviction DelayedEvictionType
// If UseHostMemcgPressure is true, use host memory cgroup pressure level
// notifications to determine when eviction is necessary. This option has
// no effect unless DelayedEviction is DelayedEvictionEnabled.
UseHostMemcgPressure bool
// If ManualZeroing is true, MemoryFile must not assume that new pages
// obtained from the host are zero-filled, such that MemoryFile must manually
// zero newly-allocated pages.
ManualZeroing bool
}
// DelayedEvictionType is the type of MemoryFileOpts.DelayedEviction.
type DelayedEvictionType int
const (
// DelayedEvictionDefault has unspecified behavior.
DelayedEvictionDefault DelayedEvictionType = iota
// DelayedEvictionDisabled requires that evictable allocations are evicted
// as soon as possible.
DelayedEvictionDisabled
// DelayedEvictionEnabled requests that the MemoryFile delay eviction of
// evictable allocations until doing so is considered necessary to avoid
// performance degradation due to host memory pressure, or OOM kills.
//
// As of this writing, the behavior of DelayedEvictionEnabled depends on
// whether or not MemoryFileOpts.UseHostMemcgPressure is enabled:
//
// - If UseHostMemcgPressure is true, evictions are delayed until memory
// pressure is indicated.
//
// - Otherwise, evictions are only delayed until the reclaimer goroutine
// is out of work (pages to reclaim).
DelayedEvictionEnabled
// DelayedEvictionManual requires that evictable allocations are only
// evicted when MemoryFile.StartEvictions() is called. This is extremely
// dangerous outside of tests.
DelayedEvictionManual
)
// usageInfo tracks usage information.
//
// +stateify savable
type usageInfo struct {
// kind is the usage kind.
kind usage.MemoryKind
// knownCommitted is true if the tracked region is definitely committed.
// (If it is false, the tracked region may or may not be committed.)
knownCommitted bool
refs uint64
}
// canCommit returns true if the tracked region can be committed.
func (u *usageInfo) canCommit() bool {
// refs must be greater than 0 because we assume that reclaimable pages
// (that aren't already known to be committed) are not committed. This
// isn't necessarily true, even after the reclaimer does Decommit(),
// because the kernel may subsequently back the hugepage-sized region
// containing the decommitted page with a hugepage. However, it's
// consistent with our treatment of unallocated pages, which have the same
// property.
return !u.knownCommitted && u.refs != 0
}
// An EvictableMemoryUser represents a user of MemoryFile-allocated memory that
// may be asked to deallocate that memory in the presence of memory pressure.
type EvictableMemoryUser interface {
// Evict requests that the EvictableMemoryUser deallocate memory used by
// er, which was registered as evictable by a previous call to
// MemoryFile.MarkEvictable.
//
// Evict is not required to deallocate memory. In particular, since pgalloc
// must call Evict without holding locks to avoid circular lock ordering,
// it is possible that the passed range has already been marked as
// unevictable by a racing call to MemoryFile.MarkUnevictable.
// Implementations of EvictableMemoryUser must detect such races and handle
// them by making Evict have no effect on unevictable ranges.
//
// After a call to Evict, the MemoryFile will consider the evicted range
// unevictable (i.e. it will not call Evict on the same range again) until
// informed otherwise by a subsequent call to MarkEvictable.
Evict(ctx context.Context, er EvictableRange)
}
// An EvictableRange represents a range of uint64 offsets in an
// EvictableMemoryUser.
//
// In practice, most EvictableMemoryUsers will probably be implementations of
// memmap.Mappable, and EvictableRange therefore corresponds to
// memmap.MappableRange. However, this package cannot depend on the memmap
// package, since doing so would create a circular dependency.
//
// type EvictableRange <generated using go_generics>
// evictableMemoryUserInfo is the value type of MemoryFile.evictable.
type evictableMemoryUserInfo struct {
// ranges tracks all evictable ranges for the given user.
ranges evictableRangeSet
// If evicting is true, there is a goroutine currently evicting all
// evictable ranges for this user.
evicting bool
}
const (
chunkShift = 30
chunkSize = 1 << chunkShift // 1 GB
chunkMask = chunkSize - 1
// maxPage is the highest 64-bit page.
maxPage = math.MaxUint64 &^ (hostarch.PageSize - 1)
)
// NewMemoryFile creates a MemoryFile backed by the given file. If
// NewMemoryFile succeeds, ownership of file is transferred to the returned
// MemoryFile.
func NewMemoryFile(file *os.File, opts MemoryFileOpts) (*MemoryFile, error) {
switch opts.DelayedEviction {
case DelayedEvictionDefault:
opts.DelayedEviction = DelayedEvictionEnabled
case DelayedEvictionDisabled, DelayedEvictionManual:
opts.UseHostMemcgPressure = false
case DelayedEvictionEnabled:
// ok
default:
return nil, fmt.Errorf("invalid MemoryFileOpts.DelayedEviction: %v", opts.DelayedEviction)
}
// Truncate the file to 0 bytes first to ensure that it's empty.
if err := file.Truncate(0); err != nil {
return nil, err
}
f := &MemoryFile{
opts: opts,
file: file,
evictable: make(map[EvictableMemoryUser]*evictableMemoryUserInfo),
}
f.mappings.Store(make([]uintptr, 0))
f.reclaimCond.L = &f.mu
if f.opts.DelayedEviction == DelayedEvictionEnabled && f.opts.UseHostMemcgPressure {
stop, err := hostmm.NotifyCurrentMemcgPressureCallback(func() {
f.mu.Lock()
startedAny := f.startEvictionsLocked()
f.mu.Unlock()
if startedAny {
log.Debugf("pgalloc.MemoryFile performing evictions due to memcg pressure")
}
}, "low")
if err != nil {
return nil, fmt.Errorf("failed to configure memcg pressure level notifications: %v", err)
}
f.stopNotifyPressure = stop
}
go f.runReclaim() // S/R-SAFE: f.mu
// The Linux kernel contains an optional feature called "Integrity
// Measurement Architecture" (IMA). If IMA is enabled, it will checksum
// binaries the first time they are mapped PROT_EXEC. This is bad news for
// executable pages mapped from our backing file, which can grow to
// terabytes in (sparse) size. If IMA attempts to checksum a file that
// large, it will allocate all of the sparse pages and quickly exhaust all
// memory.
//
// Work around IMA by immediately creating a temporary PROT_EXEC mapping,
// while the backing file is still small. IMA will ignore any future
// mappings.
m, _, errno := unix.Syscall6(
unix.SYS_MMAP,
0,
hostarch.PageSize,
unix.PROT_EXEC,
unix.MAP_SHARED,
file.Fd(),
0)
if errno != 0 {
// This isn't fatal (IMA may not even be in use). Log the error, but
// don't return it.
log.Warningf("Failed to pre-map MemoryFile PROT_EXEC: %v", errno)
} else {
if _, _, errno := unix.Syscall(
unix.SYS_MUNMAP,
m,
hostarch.PageSize,
0); errno != 0 {
panic(fmt.Sprintf("failed to unmap PROT_EXEC MemoryFile mapping: %v", errno))
}
}
return f, nil
}
// Destroy releases all resources used by f.
//
// Preconditions: All pages allocated by f have been freed.
//
// Postconditions: None of f's methods may be called after Destroy.
func (f *MemoryFile) Destroy() {
f.mu.Lock()
defer f.mu.Unlock()
f.destroyed = true
f.reclaimCond.Signal()
}
// AllocOpts are options used in MemoryFile.Allocate.
type AllocOpts struct {
Kind usage.MemoryKind
Dir Direction
}
// Allocate returns a range of initially-zeroed pages of the given length with
// the given accounting kind and a single reference held by the caller. When
// the last reference on an allocated page is released, ownership of the page
// is returned to the MemoryFile, allowing it to be returned by a future call
// to Allocate.
//
// Preconditions: length must be page-aligned and non-zero.
func (f *MemoryFile) Allocate(length uint64, opts AllocOpts) (memmap.FileRange, error) {
if length == 0 || length%hostarch.PageSize != 0 {
panic(fmt.Sprintf("invalid allocation length: %#x", length))
}
f.mu.Lock()
defer f.mu.Unlock()
// Align hugepage-and-larger allocations on hugepage boundaries to try
// to take advantage of hugetmpfs.
alignment := uint64(hostarch.PageSize)
if length >= hostarch.HugePageSize {
alignment = hostarch.HugePageSize
}
// Find a range in the underlying file.
fr, ok := f.findAvailableRange(length, alignment, opts.Dir)
if !ok {
return memmap.FileRange{}, linuxerr.ENOMEM
}
// Expand the file if needed.
if int64(fr.End) > f.fileSize {
// Round the new file size up to be chunk-aligned.
newFileSize := (int64(fr.End) + chunkMask) &^ chunkMask
if err := f.file.Truncate(newFileSize); err != nil {
return memmap.FileRange{}, err
}
f.fileSize = newFileSize
f.mappingsMu.Lock()
oldMappings := f.mappings.Load().([]uintptr)
newMappings := make([]uintptr, newFileSize>>chunkShift)
copy(newMappings, oldMappings)
f.mappings.Store(newMappings)
f.mappingsMu.Unlock()
}
if f.opts.ManualZeroing {
if err := f.manuallyZero(fr); err != nil {
return memmap.FileRange{}, err
}
}
// Mark selected pages as in use.
if !f.usage.Add(fr, usageInfo{
kind: opts.Kind,
refs: 1,
}) {
panic(fmt.Sprintf("allocating %v: failed to insert into usage set:\n%v", fr, &f.usage))
}
return fr, nil
}
// findAvailableRange returns an available range in the usageSet.
//
// Note that scanning for available slots takes place from end first backwards,
// then forwards. This heuristic has important consequence for how sequential
// mappings can be merged in the host VMAs, given that addresses for both
// application and sentry mappings are allocated top-down (from higher to
// lower addresses). The file is also grown expoentially in order to create
// space for mappings to be allocated downwards.
//
// Precondition: alignment must be a power of 2.
func (f *MemoryFile) findAvailableRange(length, alignment uint64, dir Direction) (memmap.FileRange, bool) {
if dir == BottomUp {
return findAvailableRangeBottomUp(&f.usage, length, alignment)
}
return findAvailableRangeTopDown(&f.usage, f.fileSize, length, alignment)
}
func findAvailableRangeTopDown(usage *usageSet, fileSize int64, length, alignment uint64) (memmap.FileRange, bool) {
alignmentMask := alignment - 1
// Search for space in existing gaps, starting at the current end of the
// file and working backward.
lastGap := usage.LastGap()
gap := lastGap
for {
end := gap.End()
if end > uint64(fileSize) {
end = uint64(fileSize)
}
// Try to allocate from the end of this gap, with the start of the
// allocated range aligned down to alignment.
unalignedStart := end - length
if unalignedStart > end {
// Negative overflow: this and all preceding gaps are too small to
// accommodate length.
break
}
if start := unalignedStart &^ alignmentMask; start >= gap.Start() {
return memmap.FileRange{start, start + length}, true
}
gap = gap.PrevLargeEnoughGap(length)
if !gap.Ok() {
break
}
}
// Check that it's possible to fit this allocation at the end of a file of any size.
min := lastGap.Start()
min = (min + alignmentMask) &^ alignmentMask
if min+length < min {
// Overflow: allocation would exceed the range of uint64.
return memmap.FileRange{}, false
}
// Determine the minimum file size required to fit this allocation at its end.
for {
newFileSize := 2 * fileSize
if newFileSize <= fileSize {
if fileSize != 0 {
// Overflow: allocation would exceed the range of int64.
return memmap.FileRange{}, false
}
newFileSize = chunkSize
}
fileSize = newFileSize
unalignedStart := uint64(fileSize) - length
if unalignedStart > uint64(fileSize) {
// Negative overflow: fileSize is still inadequate.
continue
}
if start := unalignedStart &^ alignmentMask; start >= min {
return memmap.FileRange{start, start + length}, true
}
}
}
func findAvailableRangeBottomUp(usage *usageSet, length, alignment uint64) (memmap.FileRange, bool) {
alignmentMask := alignment - 1
for gap := usage.FirstGap(); gap.Ok(); gap = gap.NextLargeEnoughGap(length) {
// Align the start address and check if allocation still fits in the gap.
start := (gap.Start() + alignmentMask) &^ alignmentMask
// File offsets are int64s. Since length must be strictly positive, end
// cannot legitimately be 0.
end := start + length
if end < start || int64(end) <= 0 {
return memmap.FileRange{}, false
}
if end <= gap.End() {
return memmap.FileRange{start, end}, true
}
}
// NextLargeEnoughGap should have returned a gap at the end.
panic(fmt.Sprintf("NextLargeEnoughGap didn't return a gap at the end, length: %d", length))
}
// AllocateAndFill allocates memory of the given kind and fills it by calling
// r.ReadToBlocks() repeatedly until either length bytes are read or a non-nil
// error is returned. It returns the memory filled by r, truncated down to the
// nearest page. If this is shorter than length bytes due to an error returned
// by r.ReadToBlocks(), it returns that error.
//
// If populate is true, AllocateAndFill will attempt to pre-fault pages in bulk
// in the safemem.BlockSeq passed to r. Callers that will fill the allocated
// memory by writing to it in the sentry should pass populate = true to avoid
// faulting page-by-page. Callers that will fill the allocated memory by
// invoking host system calls should pass populate = false.
//
// Preconditions:
// - length > 0.
// - length must be page-aligned.
func (f *MemoryFile) AllocateAndFill(length uint64, kind usage.MemoryKind, populate bool, r safemem.Reader) (memmap.FileRange, error) {
fr, err := f.Allocate(length, AllocOpts{Kind: kind})
if err != nil {
return memmap.FileRange{}, err
}
dsts, err := f.MapInternal(fr, hostarch.Write)
if err != nil {
f.DecRef(fr)
return memmap.FileRange{}, err
}
if populate && canPopulate() {
rem := dsts
for {
if !tryPopulate(rem.Head()) {
break
}
rem = rem.Tail()
if rem.IsEmpty() {
break
}
}
}
n, err := safemem.ReadFullToBlocks(r, dsts)
un := uint64(hostarch.Addr(n).RoundDown())
if un < length {
// Free unused memory and update fr to contain only the memory that is
// still allocated.
f.DecRef(memmap.FileRange{fr.Start + un, fr.End})
fr.End = fr.Start + un
}
return fr, err
}
var mlockDisabled atomicbitops.Uint32
func canPopulate() bool {
return mlockDisabled.Load() == 0
}
func tryPopulate(b safemem.Block) bool {
// Call mlock to populate pages, then munlock to cancel the mlock (but keep
// the pages populated). Only do so for hugepage-aligned address ranges to
// ensure that splitting the VMA in mlock doesn't split any existing
// hugepages. This assumes that two host syscalls, plus the MM overhead of
// mlock + munlock, is faster on average than trapping for
// HugePageSize/PageSize small page faults.
start, ok := hostarch.Addr(b.Addr()).HugeRoundUp()
if !ok {
return true
}
end := hostarch.Addr(b.Addr() + uintptr(b.Len())).HugeRoundDown()
if start >= end {
return true
}
_, _, errno := unix.Syscall(unix.SYS_MLOCK, uintptr(start), uintptr(end-start), 0)
unix.RawSyscall(unix.SYS_MUNLOCK, uintptr(start), uintptr(end-start), 0)
if errno != 0 {
if errno == unix.ENOMEM || errno == unix.EPERM {
// These errors are expected from hitting non-zero RLIMIT_MEMLOCK, or
// hitting zero RLIMIT_MEMLOCK without CAP_IPC_LOCK, respectively.
log.Infof("Disabling pgalloc.MemoryFile.AllocateAndFill pre-population: mlock failed: %s", errno)
} else {
log.Warningf("Disabling pgalloc.MemoryFile.AllocateAndFill pre-population: mlock failed: %s", errno)
}
mlockDisabled.Store(1)
return false
}
return true
}
// fallocate(2) modes, defined in Linux's include/uapi/linux/falloc.h.
const (
_FALLOC_FL_KEEP_SIZE = 1
_FALLOC_FL_PUNCH_HOLE = 2
)
// Decommit releases resources associated with maintaining the contents of the
// given pages. If Decommit succeeds, future accesses of the decommitted pages
// will read zeroes.
//
// Preconditions: fr.Length() > 0.
func (f *MemoryFile) Decommit(fr memmap.FileRange) error {
if !fr.WellFormed() || fr.Length() == 0 || fr.Start%hostarch.PageSize != 0 || fr.End%hostarch.PageSize != 0 {
panic(fmt.Sprintf("invalid range: %v", fr))
}
if f.opts.ManualZeroing {
// FALLOC_FL_PUNCH_HOLE may not zero pages if ManualZeroing is in
// effect.
if err := f.manuallyZero(fr); err != nil {
return err
}
} else {
if err := f.decommitFile(fr); err != nil {
return err
}
}
f.markDecommitted(fr)
return nil
}
func (f *MemoryFile) manuallyZero(fr memmap.FileRange) error {
return f.forEachMappingSlice(fr, func(bs []byte) {
for i := range bs {
bs[i] = 0
}
})
}
func (f *MemoryFile) decommitFile(fr memmap.FileRange) error {
// "After a successful call, subsequent reads from this range will
// return zeroes. The FALLOC_FL_PUNCH_HOLE flag must be ORed with
// FALLOC_FL_KEEP_SIZE in mode ..." - fallocate(2)
return unix.Fallocate(
int(f.file.Fd()),
_FALLOC_FL_PUNCH_HOLE|_FALLOC_FL_KEEP_SIZE,
int64(fr.Start),
int64(fr.Length()))
}
func (f *MemoryFile) markDecommitted(fr memmap.FileRange) {
f.mu.Lock()
defer f.mu.Unlock()
// Since we're changing the knownCommitted attribute, we need to merge
// across the entire range to ensure that the usage tree is minimal.
gap := f.usage.ApplyContiguous(fr, func(seg usageIterator) {
val := seg.ValuePtr()
if val.knownCommitted {
// Drop the usageExpected appropriately.
amount := seg.Range().Length()
usage.MemoryAccounting.Dec(amount, val.kind)
f.usageExpected -= amount
val.knownCommitted = false
}
})
if gap.Ok() {
panic(fmt.Sprintf("Decommit(%v): attempted to decommit unallocated pages %v:\n%v", fr, gap.Range(), &f.usage))
}
f.usage.MergeRange(fr)
}
// IncRef implements memmap.File.IncRef.
func (f *MemoryFile) IncRef(fr memmap.FileRange) {
if !fr.WellFormed() || fr.Length() == 0 || fr.Start%hostarch.PageSize != 0 || fr.End%hostarch.PageSize != 0 {
panic(fmt.Sprintf("invalid range: %v", fr))
}
f.mu.Lock()
defer f.mu.Unlock()
gap := f.usage.ApplyContiguous(fr, func(seg usageIterator) {
seg.ValuePtr().refs++
})
if gap.Ok() {
panic(fmt.Sprintf("IncRef(%v): attempted to IncRef on unallocated pages %v:\n%v", fr, gap.Range(), &f.usage))
}
f.usage.MergeAdjacent(fr)
}
// DecRef implements memmap.File.DecRef.
func (f *MemoryFile) DecRef(fr memmap.FileRange) {
if !fr.WellFormed() || fr.Length() == 0 || fr.Start%hostarch.PageSize != 0 || fr.End%hostarch.PageSize != 0 {
panic(fmt.Sprintf("invalid range: %v", fr))
}
var freed bool
f.mu.Lock()
defer f.mu.Unlock()
for seg := f.usage.FindSegment(fr.Start); seg.Ok() && seg.Start() < fr.End; seg = seg.NextSegment() {
seg = f.usage.Isolate(seg, fr)
val := seg.ValuePtr()
if val.refs == 0 {
panic(fmt.Sprintf("DecRef(%v): 0 existing references on %v:\n%v", fr, seg.Range(), &f.usage))
}
val.refs--
if val.refs == 0 {
f.reclaim.Add(seg.Range(), reclaimSetValue{})
freed = true
// Reclassify memory as System, until it's freed by the reclaim
// goroutine.
if val.knownCommitted {
usage.MemoryAccounting.Move(seg.Range().Length(), usage.System, val.kind)
}
val.kind = usage.System
}
}
f.usage.MergeAdjacent(fr)
if freed {
f.reclaimable = true
f.reclaimCond.Signal()
}
}
// MapInternal implements memmap.File.MapInternal.
func (f *MemoryFile) MapInternal(fr memmap.FileRange, at hostarch.AccessType) (safemem.BlockSeq, error) {
if !fr.WellFormed() || fr.Length() == 0 {
panic(fmt.Sprintf("invalid range: %v", fr))
}
if at.Execute {
return safemem.BlockSeq{}, linuxerr.EACCES
}
chunks := ((fr.End + chunkMask) >> chunkShift) - (fr.Start >> chunkShift)
if chunks == 1 {
// Avoid an unnecessary slice allocation.
var seq safemem.BlockSeq
err := f.forEachMappingSlice(fr, func(bs []byte) {
seq = safemem.BlockSeqOf(safemem.BlockFromSafeSlice(bs))
})
return seq, err
}
blocks := make([]safemem.Block, 0, chunks)
err := f.forEachMappingSlice(fr, func(bs []byte) {
blocks = append(blocks, safemem.BlockFromSafeSlice(bs))
})
return safemem.BlockSeqFromSlice(blocks), err
}
// forEachMappingSlice invokes fn on a sequence of byte slices that
// collectively map all bytes in fr.
func (f *MemoryFile) forEachMappingSlice(fr memmap.FileRange, fn func([]byte)) error {
mappings := f.mappings.Load().([]uintptr)
for chunkStart := fr.Start &^ chunkMask; chunkStart < fr.End; chunkStart += chunkSize {
chunk := int(chunkStart >> chunkShift)
m := atomic.LoadUintptr(&mappings[chunk])
if m == 0 {
var err error
mappings, m, err = f.getChunkMapping(chunk)
if err != nil {
return err
}
}
startOff := uint64(0)
if chunkStart < fr.Start {
startOff = fr.Start - chunkStart
}
endOff := uint64(chunkSize)
if chunkStart+chunkSize > fr.End {
endOff = fr.End - chunkStart
}
fn(unsafeSlice(m, chunkSize)[startOff:endOff])
}
return nil
}
func (f *MemoryFile) getChunkMapping(chunk int) ([]uintptr, uintptr, error) {
f.mappingsMu.Lock()
defer f.mappingsMu.Unlock()
// Another thread may have replaced f.mappings altogether due to file
// expansion.
mappings := f.mappings.Load().([]uintptr)
// Another thread may have already mapped the chunk.
if m := mappings[chunk]; m != 0 {
return mappings, m, nil
}
m, _, errno := unix.Syscall6(
unix.SYS_MMAP,
0,
chunkSize,
unix.PROT_READ|unix.PROT_WRITE,
unix.MAP_SHARED,
f.file.Fd(),
uintptr(chunk<<chunkShift))
if errno != 0 {
return nil, 0, errno
}
atomic.StoreUintptr(&mappings[chunk], m)
return mappings, m, nil
}
// MarkEvictable allows f to request memory deallocation by calling
// user.Evict(er) in the future.
//
// Redundantly marking an already-evictable range as evictable has no effect.
func (f *MemoryFile) MarkEvictable(user EvictableMemoryUser, er EvictableRange) {
f.mu.Lock()
defer f.mu.Unlock()
info, ok := f.evictable[user]
if !ok {
info = &evictableMemoryUserInfo{}
f.evictable[user] = info
}
gap := info.ranges.LowerBoundGap(er.Start)
for gap.Ok() && gap.Start() < er.End {
gapER := gap.Range().Intersect(er)
if gapER.Length() == 0 {
gap = gap.NextGap()
continue
}
gap = info.ranges.Insert(gap, gapER, evictableRangeSetValue{}).NextGap()
}
if !info.evicting {
switch f.opts.DelayedEviction {
case DelayedEvictionDisabled:
// Kick off eviction immediately.
f.startEvictionGoroutineLocked(user, info)
case DelayedEvictionEnabled:
if !f.opts.UseHostMemcgPressure {
// Ensure that the reclaimer goroutine is running, so that it
// can start eviction when necessary.
f.reclaimCond.Signal()
}
}
}
}
// MarkUnevictable informs f that user no longer considers er to be evictable,
// so the MemoryFile should no longer call user.Evict(er). Note that, per
// EvictableMemoryUser.Evict's documentation, user.Evict(er) may still be
// called even after MarkUnevictable returns due to race conditions, and
// implementations of EvictableMemoryUser must handle this possibility.
//
// Redundantly marking an already-unevictable range as unevictable has no
// effect.
func (f *MemoryFile) MarkUnevictable(user EvictableMemoryUser, er EvictableRange) {
f.mu.Lock()
defer f.mu.Unlock()
info, ok := f.evictable[user]
if !ok {
return
}
seg := info.ranges.LowerBoundSegment(er.Start)
for seg.Ok() && seg.Start() < er.End {
seg = info.ranges.Isolate(seg, er)
seg = info.ranges.Remove(seg).NextSegment()
}
// We can only remove info if there's no eviction goroutine running on its
// behalf.
if !info.evicting && info.ranges.IsEmpty() {
delete(f.evictable, user)
}
}
// MarkAllUnevictable informs f that user no longer considers any offsets to be
// evictable. It otherwise has the same semantics as MarkUnevictable.
func (f *MemoryFile) MarkAllUnevictable(user EvictableMemoryUser) {
f.mu.Lock()
defer f.mu.Unlock()
info, ok := f.evictable[user]
if !ok {
return
}
info.ranges.RemoveAll()
// We can only remove info if there's no eviction goroutine running on its
// behalf.
if !info.evicting {
delete(f.evictable, user)
}
}
// ShouldCacheEvictable returns true if f is meaningfully delaying evictions of
// evictable memory, such that it may be advantageous to cache data in
// evictable memory. The value returned by ShouldCacheEvictable may change
// between calls.
func (f *MemoryFile) ShouldCacheEvictable() bool {
return f.opts.DelayedEviction == DelayedEvictionManual || f.opts.UseHostMemcgPressure
}
// UpdateUsage ensures that the memory usage statistics in
// usage.MemoryAccounting are up to date.
func (f *MemoryFile) UpdateUsage() error {
f.mu.Lock()
defer f.mu.Unlock()
// If the underlying usage matches where the usage tree already
// represents, then we can just avoid the entire scan (we know it's
// accurate).
currentUsage, err := f.TotalUsage()
if err != nil {
return err
}
if currentUsage == f.usageExpected && f.usageSwapped == 0 {
log.Debugf("UpdateUsage: skipped with usageSwapped=0.")
return nil
}
// If the current usage matches the expected but there's swap
// accounting, then ensure a scan takes place at least every second
// (when requested).
if currentUsage == f.usageExpected+f.usageSwapped && time.Now().Before(f.usageLast.Add(time.Second)) {
log.Debugf("UpdateUsage: skipped with usageSwapped!=0.")
return nil
}
// Linux updates usage values at CONFIG_HZ.
if scanningAfter := time.Now().Sub(f.usageLast).Milliseconds(); scanningAfter < time.Second.Milliseconds()/linux.CLOCKS_PER_SEC {
log.Debugf("UpdateUsage: skipped because previous scan happened %d ms back", scanningAfter)
return nil
}
f.usageLast = time.Now()
err = f.updateUsageLocked(currentUsage, mincore)
log.Debugf("UpdateUsage: currentUsage=%d, usageExpected=%d, usageSwapped=%d.",
currentUsage, f.usageExpected, f.usageSwapped)
log.Debugf("UpdateUsage: took %v.", time.Since(f.usageLast))
return err
}
// updateUsageLocked attempts to detect commitment of previous-uncommitted
// pages by invoking checkCommitted, which is a function that, for each page i
// in bs, sets committed[i] to 1 if the page is committed and 0 otherwise.
//
// Precondition: f.mu must be held; it may be unlocked and reacquired.
// +checklocks:f.mu
func (f *MemoryFile) updateUsageLocked(currentUsage uint64, checkCommitted func(bs []byte, committed []byte) error) error {
// Track if anything changed to elide the merge. In the common case, we
// expect all segments to be committed and no merge to occur.
changedAny := false
defer func() {
if changedAny {
f.usage.MergeAll()
}
// Adjust the swap usage to reflect reality.
if f.usageExpected < currentUsage {
// Since no pages may be marked decommitted while we hold mu, we
// know that usage may have only increased since we got the last
// current usage. Therefore, if usageExpected is still short of
// currentUsage, we must assume that the difference is in pages
// that have been swapped.
newUsageSwapped := currentUsage - f.usageExpected
if f.usageSwapped < newUsageSwapped {
usage.MemoryAccounting.Inc(newUsageSwapped-f.usageSwapped, usage.System)
} else {
usage.MemoryAccounting.Dec(f.usageSwapped-newUsageSwapped, usage.System)
}
f.usageSwapped = newUsageSwapped
} else if f.usageSwapped != 0 {
// We have more usage accounted for than the file itself.
// That's fine, we probably caught a race where pages were
// being committed while the below loop was running. Just
// report the higher number that we found and ignore swap.
usage.MemoryAccounting.Dec(f.usageSwapped, usage.System)
f.usageSwapped = 0
}
}()
// Reused mincore buffer, will generally be <= 4096 bytes.
var buf []byte
// Iterate over all usage data. There will only be usage segments
// present when there is an associated reference.
for seg := f.usage.FirstSegment(); seg.Ok(); {
if !seg.ValuePtr().canCommit() {
seg = seg.NextSegment()
continue
}
// Get the range for this segment. As we touch slices, the
// Start value will be walked along.
r := seg.Range()
var checkErr error
err := f.forEachMappingSlice(r,
func(s []byte) {
if checkErr != nil {
return
}
// Ensure that we have sufficient buffer for the call
// (one byte per page). The length of each slice must
// be page-aligned.
bufLen := len(s) / hostarch.PageSize
if len(buf) < bufLen {
buf = make([]byte, bufLen)
}
// Query for new pages in core.
// NOTE(b/165896008): mincore (which is passed as checkCommitted)
// by f.UpdateUsage() might take a really long time. So unlock f.mu
// while checkCommitted runs.
f.mu.Unlock() // +checklocksforce
err := checkCommitted(s, buf)
f.mu.Lock()
if err != nil {
checkErr = err
return
}
// Scan each page and switch out segments.
seg := f.usage.LowerBoundSegment(r.Start)
for i := 0; i < bufLen; {
if buf[i]&0x1 == 0 {
i++
continue
}
// Scan to the end of this committed range.
j := i + 1
for ; j < bufLen; j++ {
if buf[j]&0x1 == 0 {
break
}
}
committedFR := memmap.FileRange{
Start: r.Start + uint64(i*hostarch.PageSize),
End: r.Start + uint64(j*hostarch.PageSize),
}
// Advance seg to committedFR.Start.
for seg.Ok() && seg.End() < committedFR.Start {
seg = seg.NextSegment()
}
// Mark pages overlapping committedFR as committed.
for seg.Ok() && seg.Start() < committedFR.End {
if seg.ValuePtr().canCommit() {
seg = f.usage.Isolate(seg, committedFR)
seg.ValuePtr().knownCommitted = true
amount := seg.Range().Length()
usage.MemoryAccounting.Inc(amount, seg.ValuePtr().kind)
f.usageExpected += amount
changedAny = true
}
seg = seg.NextSegment()
}
// Continue scanning for committed pages.
i = j + 1
}
// Advance r.Start.
r.Start += uint64(len(s))
})
if checkErr != nil {
return checkErr
}
if err != nil {
return err
}
// Continue with the first segment after r.End.
seg = f.usage.LowerBoundSegment(r.End)
}
return nil
}
// TotalUsage returns an aggregate usage for all memory statistics except
// Mapped (which is external to MemoryFile). This is generally much cheaper
// than UpdateUsage, but will not provide a fine-grained breakdown.
func (f *MemoryFile) TotalUsage() (uint64, error) {
// Stat the underlying file to discover the underlying usage. stat(2)
// always reports the allocated block count in units of 512 bytes. This
// includes pages in the page cache and swapped pages.
var stat unix.Stat_t
if err := unix.Fstat(int(f.file.Fd()), &stat); err != nil {
return 0, err
}
return uint64(stat.Blocks * 512), nil
}
// TotalSize returns the current size of the backing file in bytes, which is an
// upper bound on the amount of memory that can currently be allocated from the
// MemoryFile. The value returned by TotalSize is permitted to change.
func (f *MemoryFile) TotalSize() uint64 {
f.mu.Lock()
defer f.mu.Unlock()
return uint64(f.fileSize)
}
// File returns the backing file.
func (f *MemoryFile) File() *os.File {
return f.file
}
// FD implements memmap.File.FD.
func (f *MemoryFile) FD() int {
return int(f.file.Fd())
}
// String implements fmt.Stringer.String.
//
// Note that because f.String locks f.mu, calling f.String internally
// (including indirectly through the fmt package) risks recursive locking.
// Within the pgalloc package, use f.usage directly instead.
func (f *MemoryFile) String() string {
f.mu.Lock()
defer f.mu.Unlock()
return f.usage.String()
}
// runReclaim implements the reclaimer goroutine, which continuously decommits
// reclaimable pages in order to reduce memory usage and make them available
// for allocation.
func (f *MemoryFile) runReclaim() {
for {
// N.B. We must call f.markReclaimed on the returned FrameRange.
fr, ok := f.findReclaimable()
if !ok {
break
}
if f.opts.ManualZeroing {
// If ManualZeroing is in effect, only hugepage-aligned regions may
// be safely passed to decommitFile. Pages will be zeroed on
// reallocation, so we don't need to perform any manual zeroing
// here, whether or not decommitFile succeeds.
if startAddr, ok := hostarch.Addr(fr.Start).HugeRoundUp(); ok {
if endAddr := hostarch.Addr(fr.End).HugeRoundDown(); startAddr < endAddr {
decommitFR := memmap.FileRange{uint64(startAddr), uint64(endAddr)}
if err := f.decommitFile(decommitFR); err != nil {
log.Warningf("Reclaim failed to decommit %v: %v", decommitFR, err)
}
}
}
} else {
if err := f.decommitFile(fr); err != nil {
log.Warningf("Reclaim failed to decommit %v: %v", fr, err)
// Zero the pages manually. This won't reduce memory usage, but at
// least ensures that the pages will be zero when reallocated.
if err := f.manuallyZero(fr); err != nil {
panic(fmt.Sprintf("Reclaim failed to decommit or zero %v: %v", fr, err))
}
}
}
f.markDecommitted(fr)
f.markReclaimed(fr)
}
// We only get here if findReclaimable finds f.destroyed set and returns
// false.
f.mu.Lock()
if !f.destroyed {
f.mu.Unlock()
panic("findReclaimable broke out of reclaim loop, but destroyed is no longer set")
}
f.file.Close()
// Ensure that any attempts to use f.file.Fd() fail instead of getting a fd
// that has possibly been reassigned.
f.file = nil
f.mappingsMu.Lock()
defer f.mappingsMu.Unlock()
mappings := f.mappings.Load().([]uintptr)
for i, m := range mappings {
if m != 0 {
_, _, errno := unix.Syscall(unix.SYS_MUNMAP, m, chunkSize, 0)
if errno != 0 {
log.Warningf("Failed to unmap mapping %#x for MemoryFile chunk %d: %v", m, i, errno)
}
}
}
// Similarly, invalidate f.mappings. (atomic.Value.Store(nil) panics.)
f.mappings.Store([]uintptr{})
f.mu.Unlock()
// This must be called without holding f.mu to avoid circular lock
// ordering.
if f.stopNotifyPressure != nil {
f.stopNotifyPressure()
}
}
// findReclaimable finds memory that has been marked for reclaim.
//
// Note that there returned range will be removed from tracking. It
// must be reclaimed (removed from f.usage) at this point.
func (f *MemoryFile) findReclaimable() (memmap.FileRange, bool) {
f.mu.Lock()
defer f.mu.Unlock()
for {
for {
if f.destroyed {
return memmap.FileRange{}, false
}
if f.reclaimable {
break
}
if f.opts.DelayedEviction == DelayedEvictionEnabled && !f.opts.UseHostMemcgPressure {
// No work to do. Evict any pending evictable allocations to
// get more reclaimable pages before going to sleep.
f.startEvictionsLocked()
}
f.reclaimCond.Wait()
}
// Most allocations are done upwards, with exceptions being stacks and some
// allocators that allocate top-down. Reclaim preserves this order to
// minimize the cost of the search.
if seg := f.reclaim.FirstSegment(); seg.Ok() {
fr := seg.Range()
f.reclaim.Remove(seg)
return fr, true
}
// Nothing is reclaimable.
f.reclaimable = false
}
}
func (f *MemoryFile) markReclaimed(fr memmap.FileRange) {
f.mu.Lock()
defer f.mu.Unlock()
seg := f.usage.FindSegment(fr.Start)
// All of fr should be mapped to a single uncommitted reclaimable
// segment accounted to System.
if !seg.Ok() {
panic(fmt.Sprintf("reclaimed pages %v include unreferenced pages:\n%v", fr, &f.usage))
}
if !seg.Range().IsSupersetOf(fr) {
panic(fmt.Sprintf("reclaimed pages %v are not entirely contained in segment %v with state %v:\n%v", fr, seg.Range(), seg.Value(), &f.usage))
}
if got, want := seg.Value(), (usageInfo{
kind: usage.System,
knownCommitted: false,
refs: 0,
}); got != want {
panic(fmt.Sprintf("reclaimed pages %v in segment %v has incorrect state %v, wanted %v:\n%v", fr, seg.Range(), got, want, &f.usage))
}
// Deallocate reclaimed pages. Even though all of seg is reclaimable,
// the caller of markReclaimed may not have decommitted it, so we can
// only mark fr as reclaimed.
f.usage.Remove(f.usage.Isolate(seg, fr))
}
// StartEvictions requests that f evict all evictable allocations. It does not
// wait for eviction to complete; for this, see MemoryFile.WaitForEvictions.
func (f *MemoryFile) StartEvictions() {
f.mu.Lock()
defer f.mu.Unlock()
f.startEvictionsLocked()
}
// Preconditions: f.mu must be locked.
func (f *MemoryFile) startEvictionsLocked() bool {
startedAny := false
for user, info := range f.evictable {
// Don't start multiple goroutines to evict the same user's
// allocations.
if !info.evicting {
f.startEvictionGoroutineLocked(user, info)
startedAny = true
}
}
return startedAny
}
// Preconditions:
// - info == f.evictable[user].
// - !info.evicting.
// - f.mu must be locked.
func (f *MemoryFile) startEvictionGoroutineLocked(user EvictableMemoryUser, info *evictableMemoryUserInfo) {
info.evicting = true
f.evictionWG.Add(1)
go func() { // S/R-SAFE: f.evictionWG
defer f.evictionWG.Done()
for {
f.mu.Lock()
info, ok := f.evictable[user]
if !ok {
// This shouldn't happen: only this goroutine is permitted
// to delete this entry.
f.mu.Unlock()
panic(fmt.Sprintf("evictableMemoryUserInfo for EvictableMemoryUser %v deleted while eviction goroutine running", user))
}
if info.ranges.IsEmpty() {
delete(f.evictable, user)
f.mu.Unlock()
return
}
// Evict from the end of info.ranges, under the assumption that
// if ranges in user start being used again (and are
// consequently marked unevictable), such uses are more likely
// to start from the beginning of user.
seg := info.ranges.LastSegment()
er := seg.Range()
info.ranges.Remove(seg)
// user.Evict() must be called without holding f.mu to avoid
// circular lock ordering.
f.mu.Unlock()
user.Evict(context.Background(), er)
}
}()
}
// MemoryFile implements MemoryFileProvider.MemoryFile.
func (f *MemoryFile) MemoryFile() *MemoryFile {
return f
}
// WaitForEvictions blocks until f is no longer evicting any evictable
// allocations.
func (f *MemoryFile) WaitForEvictions() {
f.evictionWG.Wait()
}
type usageSetFunctions struct{}
func (usageSetFunctions) MinKey() uint64 {
return 0
}
func (usageSetFunctions) MaxKey() uint64 {
return math.MaxUint64
}
func (usageSetFunctions) ClearValue(val *usageInfo) {
}
func (usageSetFunctions) Merge(_ memmap.FileRange, val1 usageInfo, _ memmap.FileRange, val2 usageInfo) (usageInfo, bool) {
return val1, val1 == val2
}
func (usageSetFunctions) Split(_ memmap.FileRange, val usageInfo, _ uint64) (usageInfo, usageInfo) {
return val, val
}
// evictableRangeSetValue is the value type of evictableRangeSet.
type evictableRangeSetValue struct{}
type evictableRangeSetFunctions struct{}
func (evictableRangeSetFunctions) MinKey() uint64 {
return 0
}
func (evictableRangeSetFunctions) MaxKey() uint64 {
return math.MaxUint64
}
func (evictableRangeSetFunctions) ClearValue(val *evictableRangeSetValue) {
}
func (evictableRangeSetFunctions) Merge(_ EvictableRange, _ evictableRangeSetValue, _ EvictableRange, _ evictableRangeSetValue) (evictableRangeSetValue, bool) {
return evictableRangeSetValue{}, true
}
func (evictableRangeSetFunctions) Split(_ EvictableRange, _ evictableRangeSetValue, _ uint64) (evictableRangeSetValue, evictableRangeSetValue) {
return evictableRangeSetValue{}, evictableRangeSetValue{}
}
// reclaimSetValue is the value type of reclaimSet.
type reclaimSetValue struct{}
type reclaimSetFunctions struct{}
func (reclaimSetFunctions) MinKey() uint64 {
return 0
}
func (reclaimSetFunctions) MaxKey() uint64 {
return math.MaxUint64
}
func (reclaimSetFunctions) ClearValue(val *reclaimSetValue) {
}
func (reclaimSetFunctions) Merge(_ memmap.FileRange, _ reclaimSetValue, _ memmap.FileRange, _ reclaimSetValue) (reclaimSetValue, bool) {
return reclaimSetValue{}, true
}
func (reclaimSetFunctions) Split(_ memmap.FileRange, _ reclaimSetValue, _ uint64) (reclaimSetValue, reclaimSetValue) {
return reclaimSetValue{}, reclaimSetValue{}
}
|