File: machine_arm64_unsafe.go

package info (click to toggle)
golang-gvisor-gvisor 0.0~20221219.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bookworm-proposed-updates
  • size: 17,136 kB
  • sloc: asm: 2,860; cpp: 348; python: 89; sh: 40; makefile: 34; ansic: 21
file content (340 lines) | stat: -rw-r--r-- 9,500 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//go:build arm64
// +build arm64

package kvm

import (
	"fmt"
	"reflect"
	"unsafe"

	"golang.org/x/sys/unix"
	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/hostarch"
	"gvisor.dev/gvisor/pkg/ring0"
	"gvisor.dev/gvisor/pkg/ring0/pagetables"
	"gvisor.dev/gvisor/pkg/sentry/platform"
	ktime "gvisor.dev/gvisor/pkg/sentry/time"
)

type kvmVcpuInit struct {
	target   uint32
	features [7]uint32
}

var vcpuInit kvmVcpuInit

// initArchState initializes architecture-specific state.
func (m *machine) initArchState() error {
	if _, _, errno := unix.RawSyscall(
		unix.SYS_IOCTL,
		uintptr(m.fd),
		_KVM_ARM_PREFERRED_TARGET,
		uintptr(unsafe.Pointer(&vcpuInit))); errno != 0 {
		panic(fmt.Sprintf("error setting KVM_ARM_PREFERRED_TARGET failed: %v", errno))
	}

	// Initialize all vCPUs on ARM64, while this does not happen on x86_64.
	// The reason for the difference is that ARM64 and x86_64 have different KVM timer mechanisms.
	// If we create vCPU dynamically on ARM64, the timer for vCPU would mess up for a short time.
	// For more detail, please refer to https://github.com/google/gvisor/issues/5739
	m.mu.Lock()
	for i := 0; i < m.maxVCPUs; i++ {
		m.createVCPU(i)
	}
	m.mu.Unlock()
	return nil
}

// initArchState initializes architecture-specific state.
func (c *vCPU) initArchState() error {
	var (
		reg     kvmOneReg
		data    uint64
		regGet  kvmOneReg
		dataGet uint64
	)

	reg.addr = uint64(reflect.ValueOf(&data).Pointer())
	regGet.addr = uint64(reflect.ValueOf(&dataGet).Pointer())

	vcpuInit.features[0] |= (1 << _KVM_ARM_VCPU_PSCI_0_2)
	if _, _, errno := unix.RawSyscall(
		unix.SYS_IOCTL,
		uintptr(c.fd),
		_KVM_ARM_VCPU_INIT,
		uintptr(unsafe.Pointer(&vcpuInit))); errno != 0 {
		panic(fmt.Sprintf("error setting KVM_ARM_VCPU_INIT failed: %v", errno))
	}

	// tcr_el1
	data = _TCR_TXSZ_VA48 | _TCR_CACHE_FLAGS | _TCR_SHARED | _TCR_TG_FLAGS | _TCR_ASID16 | _TCR_IPS_40BITS
	reg.id = _KVM_ARM64_REGS_TCR_EL1
	if err := c.setOneRegister(&reg); err != nil {
		return err
	}

	// mair_el1
	data = _MT_EL1_INIT
	reg.id = _KVM_ARM64_REGS_MAIR_EL1
	if err := c.setOneRegister(&reg); err != nil {
		return err
	}

	// ttbr0_el1
	data = c.machine.kernel.PageTables.TTBR0_EL1(false, 0)

	reg.id = _KVM_ARM64_REGS_TTBR0_EL1
	if err := c.setOneRegister(&reg); err != nil {
		return err
	}

	c.SetTtbr0Kvm(uintptr(data))

	// ttbr1_el1
	data = c.machine.kernel.PageTables.TTBR1_EL1(false, 0)

	reg.id = _KVM_ARM64_REGS_TTBR1_EL1
	if err := c.setOneRegister(&reg); err != nil {
		return err
	}

	// sp_el1
	data = c.CPU.StackTop()
	reg.id = _KVM_ARM64_REGS_SP_EL1
	if err := c.setOneRegister(&reg); err != nil {
		return err
	}

	// pc
	reg.id = _KVM_ARM64_REGS_PC
	data = uint64(ring0.AddrOfStart())
	if err := c.setOneRegister(&reg); err != nil {
		return err
	}

	// r8
	reg.id = _KVM_ARM64_REGS_R8
	data = uint64(reflect.ValueOf(&c.CPU).Pointer())
	if err := c.setOneRegister(&reg); err != nil {
		return err
	}

	// vbar_el1
	reg.id = _KVM_ARM64_REGS_VBAR_EL1
	vectorLocation := ring0.AddrOfVectors()
	data = uint64(ring0.KernelStartAddress | vectorLocation)
	if err := c.setOneRegister(&reg); err != nil {
		return err
	}

	// Use the address of the exception vector table as
	// the MMIO address base.
	arm64HypercallMMIOBase = vectorLocation

	// Initialize the PCID database.
	if hasGuestPCID {
		// Note that NewPCIDs may return a nil table here, in which
		// case we simply don't use PCID support (see below). In
		// practice, this should not happen, however.
		c.PCIDs = pagetables.NewPCIDs(fixedKernelPCID+1, poolPCIDs)
	}

	return c.setSystemTime()
}

// setTSC sets the counter Virtual Offset.
func (c *vCPU) setTSC(value uint64) error {
	var (
		reg  kvmOneReg
		data uint64
	)

	reg.addr = uint64(reflect.ValueOf(&data).Pointer())
	reg.id = _KVM_ARM64_REGS_TIMER_CNT
	data = uint64(value)

	if err := c.setOneRegister(&reg); err != nil {
		return err
	}

	return nil
}

// getTSC gets the counter Physical Counter minus Virtual Offset.
func (c *vCPU) getTSC() error {
	var (
		reg  kvmOneReg
		data uint64
	)

	reg.addr = uint64(reflect.ValueOf(&data).Pointer())
	reg.id = _KVM_ARM64_REGS_TIMER_CNT

	if err := c.getOneRegister(&reg); err != nil {
		return err
	}

	return nil
}

// setSystemTime sets the vCPU to the system time.
func (c *vCPU) setSystemTime() error {
	const minIterations = 10
	minimum := uint64(0)
	for iter := 0; ; iter++ {
		// Use get the TSC to an estimate of where it will be
		// on the host during a "fast" system call iteration.
		// replace getTSC to another setOneRegister syscall can get more accurate value?
		start := uint64(ktime.Rdtsc())
		if err := c.getTSC(); err != nil {
			return err
		}
		// See if this is our new minimum call time. Note that this
		// serves two functions: one, we make sure that we are
		// accurately predicting the offset we need to set. Second, we
		// don't want to do the final set on a slow call, which could
		// produce a really bad result.
		end := uint64(ktime.Rdtsc())
		if end < start {
			continue // Totally bogus: unstable TSC?
		}
		current := end - start
		if current < minimum || iter == 0 {
			minimum = current // Set our new minimum.
		}
		// Is this past minIterations and within ~10% of minimum?
		upperThreshold := (((minimum << 3) + minimum) >> 3)
		if iter >= minIterations && (current <= upperThreshold || minimum < 50) {
			// Try to set the TSC
			if err := c.setTSC(end + (minimum / 2)); err != nil {
				return err
			}
			return nil
		}
	}
}

//go:nosplit
func (c *vCPU) loadSegments(tid uint64) {
	// TODO(gvisor.dev/issue/1238):  TLS is not supported.
	// Get TLS from tpidr_el0.
	c.tid.Store(tid)
}

func (c *vCPU) setOneRegister(reg *kvmOneReg) error {
	if _, _, errno := unix.RawSyscall(
		unix.SYS_IOCTL,
		uintptr(c.fd),
		_KVM_SET_ONE_REG,
		uintptr(unsafe.Pointer(reg))); errno != 0 {
		return fmt.Errorf("error setting one register: %v", errno)
	}
	return nil
}

func (c *vCPU) getOneRegister(reg *kvmOneReg) error {
	if _, _, errno := unix.RawSyscall(
		unix.SYS_IOCTL,
		uintptr(c.fd),
		_KVM_GET_ONE_REG,
		uintptr(unsafe.Pointer(reg))); errno != 0 {
		return fmt.Errorf("error getting one register: %v", errno)
	}
	return nil
}

// SwitchToUser unpacks architectural-details.
func (c *vCPU) SwitchToUser(switchOpts ring0.SwitchOpts, info *linux.SignalInfo) (hostarch.AccessType, error) {
	// Check for canonical addresses.
	if regs := switchOpts.Registers; !ring0.IsCanonical(regs.Pc) {
		return nonCanonical(regs.Pc, int32(unix.SIGSEGV), info)
	} else if !ring0.IsCanonical(regs.Sp) {
		return nonCanonical(regs.Sp, int32(unix.SIGSEGV), info)
	}

	// Assign PCIDs.
	if c.PCIDs != nil {
		var requireFlushPCID bool // Force a flush?
		switchOpts.UserASID, requireFlushPCID = c.PCIDs.Assign(switchOpts.PageTables)
		switchOpts.Flush = switchOpts.Flush || requireFlushPCID
	}

	var vector ring0.Vector
	ttbr0App := switchOpts.PageTables.TTBR0_EL1(false, 0)
	c.SetTtbr0App(uintptr(ttbr0App))

	// Full context-switch supporting for Arm64.
	// The Arm64 user-mode execution state consists of:
	// x0-x30
	// PC, SP, PSTATE
	// V0-V31: 32 128-bit registers for floating point, and simd
	// FPSR, FPCR
	// TPIDR_EL0, used for TLS
	appRegs := switchOpts.Registers
	c.SetAppAddr(ring0.KernelStartAddress | uintptr(unsafe.Pointer(appRegs)))

	entersyscall()
	bluepill(c)
	vector = c.CPU.SwitchToUser(switchOpts)
	exitsyscall()

	switch vector {
	case ring0.Syscall:
		// Fast path: system call executed.
		return hostarch.NoAccess, nil
	case ring0.PageFault:
		return c.fault(int32(unix.SIGSEGV), info)
	case ring0.El0ErrNMI:
		return c.fault(int32(unix.SIGBUS), info)
	case ring0.Vector(bounce): // ring0.VirtualizationException.
		return hostarch.NoAccess, platform.ErrContextInterrupt
	case ring0.El0SyncUndef:
		return c.fault(int32(unix.SIGILL), info)
	case ring0.El0SyncDbg:
		*info = linux.SignalInfo{
			Signo: int32(unix.SIGTRAP),
			Code:  1, // TRAP_BRKPT (breakpoint).
		}
		info.SetAddr(switchOpts.Registers.Pc) // Include address.
		return hostarch.AccessType{}, platform.ErrContextSignal
	case ring0.El0SyncSpPc:
		*info = linux.SignalInfo{
			Signo: int32(unix.SIGBUS),
			Code:  2, // BUS_ADRERR (physical address does not exist).
		}
		return hostarch.NoAccess, platform.ErrContextSignal
	case ring0.El0SyncSys,
		ring0.El0SyncWfx:
		return hostarch.NoAccess, nil // skip for now.
	default:
		panic(fmt.Sprintf("unexpected vector: 0x%x", vector))
	}

}

//go:nosplit
func seccompMmapSyscall(context unsafe.Pointer) (uintptr, uintptr, unix.Errno) {
	ctx := bluepillArchContext(context)

	// MAP_DENYWRITE is deprecated and ignored by kernel. We use it only for seccomp filters.
	addr, _, e := unix.RawSyscall6(uintptr(ctx.Regs[8]), uintptr(ctx.Regs[0]), uintptr(ctx.Regs[1]),
		uintptr(ctx.Regs[2]), uintptr(ctx.Regs[3])|unix.MAP_DENYWRITE, uintptr(ctx.Regs[4]), uintptr(ctx.Regs[5]))
	ctx.Regs[0] = uint64(addr)

	return addr, uintptr(ctx.Regs[1]), e
}