1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.12
// +build go1.12
// //go:linkname directives type-checked by checklinkname. Any other
// non-linkname assumptions outside the Go 1 compatibility guarantee should
// have an accompanied vet check or version guard build tag.
package kvm
import (
"fmt"
"math"
"runtime"
"sync/atomic"
"syscall"
"unsafe"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/atomicbitops"
)
//go:linkname entersyscall runtime.entersyscall
func entersyscall()
//go:linkname exitsyscall runtime.exitsyscall
func exitsyscall()
// setMemoryRegion initializes a region.
//
// This may be called from bluepillHandler, and therefore returns an errno
// directly (instead of wrapping in an error) to avoid allocations.
//
//go:nosplit
func (m *machine) setMemoryRegion(slot int, physical, length, virtual uintptr, flags uint32) unix.Errno {
userRegion := userMemoryRegion{
slot: uint32(slot),
flags: uint32(flags),
guestPhysAddr: uint64(physical),
memorySize: uint64(length),
userspaceAddr: uint64(virtual),
}
// Set the region.
// Note: syscall.RawSyscall is used to fit the nosplit stack limit.
_, _, errno := syscall.RawSyscall(
unix.SYS_IOCTL,
uintptr(m.fd),
_KVM_SET_USER_MEMORY_REGION,
uintptr(unsafe.Pointer(&userRegion)))
return errno
}
// mapRunData maps the vCPU run data.
func mapRunData(fd int) (*runData, error) {
r, _, errno := unix.RawSyscall6(
unix.SYS_MMAP,
0,
uintptr(runDataSize),
unix.PROT_READ|unix.PROT_WRITE,
unix.MAP_SHARED,
uintptr(fd),
0)
if errno != 0 {
return nil, fmt.Errorf("error mapping runData: %v", errno)
}
return (*runData)(unsafe.Pointer(r)), nil
}
// unmapRunData unmaps the vCPU run data.
func unmapRunData(r *runData) error {
if _, _, errno := unix.RawSyscall(
unix.SYS_MUNMAP,
uintptr(unsafe.Pointer(r)),
uintptr(runDataSize),
0); errno != 0 {
return fmt.Errorf("error unmapping runData: %v", errno)
}
return nil
}
// atomicAddressSpace is an atomic address space pointer.
type atomicAddressSpace struct {
pointer unsafe.Pointer
}
// set sets the address space value.
//
//go:nosplit
func (a *atomicAddressSpace) set(as *addressSpace) {
atomic.StorePointer(&a.pointer, unsafe.Pointer(as))
}
// get gets the address space value.
//
// Note that this should be considered best-effort, and may have changed by the
// time this function returns.
//
//go:nosplit
func (a *atomicAddressSpace) get() *addressSpace {
return (*addressSpace)(atomic.LoadPointer(&a.pointer))
}
// notify notifies that the vCPU has transitioned modes.
//
// This may be called by a signal handler and therefore throws on error.
//
//go:nosplit
func (c *vCPU) notify() {
_, _, errno := unix.RawSyscall6( // escapes: no.
unix.SYS_FUTEX,
uintptr(unsafe.Pointer(&c.state)),
linux.FUTEX_WAKE|linux.FUTEX_PRIVATE_FLAG,
math.MaxInt32, // Number of waiters.
0, 0, 0)
if errno != 0 {
throw("futex wake error")
}
}
// waitUntilNot waits for the vCPU to transition modes.
//
// The state should have been previously set to vCPUWaiter after performing an
// appropriate action to cause a transition (e.g. interrupt injection).
//
// This panics on error.
func (c *vCPU) waitUntilNot(state uint32) {
_, _, errno := unix.Syscall6(
unix.SYS_FUTEX,
uintptr(unsafe.Pointer(&c.state)),
linux.FUTEX_WAIT|linux.FUTEX_PRIVATE_FLAG,
uintptr(state),
0, 0, 0)
if errno != 0 && errno != unix.EINTR && errno != unix.EAGAIN {
panic("futex wait error")
}
}
// setSignalMask sets the vCPU signal mask.
//
// This must be called prior to running the vCPU.
func (c *vCPU) setSignalMask() error {
// The layout of this structure implies that it will not necessarily be
// the same layout chosen by the Go compiler. It gets fudged here.
var data struct {
length uint32
mask1 uint32
mask2 uint32
_ uint32
}
data.length = 8 // Fixed sigset size.
data.mask1 = ^uint32(bounceSignalMask & 0xffffffff)
data.mask2 = ^uint32(bounceSignalMask >> 32)
if _, _, errno := unix.RawSyscall(
unix.SYS_IOCTL,
uintptr(c.fd),
_KVM_SET_SIGNAL_MASK,
uintptr(unsafe.Pointer(&data))); errno != 0 {
return fmt.Errorf("error setting signal mask: %v", errno)
}
return nil
}
// seccompMmapHandlerCnt is a number of currently running seccompMmapHandler
// instances.
var seccompMmapHandlerCnt atomicbitops.Int64
// seccompMmapSync waits for all currently runnuing seccompMmapHandler
// instances.
//
// The standard locking primitives can't be used in this case since
// seccompMmapHandler is executed in a signal handler context.
//
// It can be implemented by using FUTEX calls, but it will require to call
// FUTEX_WAKE from seccompMmapHandler. Consider machine.Destroy is called only
// once, and the probability is racing with seccompMmapHandler is very low the
// spinlock-like way looks more reasonable.
func seccompMmapSync() {
for seccompMmapHandlerCnt.Load() != 0 {
runtime.Gosched()
}
}
// seccompMmapHandler is a signal handler for runtime mmap system calls
// that are trapped by seccomp.
//
// It executes the mmap syscall with specified arguments and maps a new region
// to the guest.
//
//go:nosplit
func seccompMmapHandler(context unsafe.Pointer) {
mmapCallCounter.Increment()
addr, length, errno := seccompMmapSyscall(context)
if errno != 0 {
return
}
seccompMmapHandlerCnt.Add(1)
for i := uint32(0); i < machinePoolLen.Load(); i++ {
m := machinePool[i].Load()
if m == nil {
continue
}
// Map the new region to the guest.
vr := region{
virtual: addr,
length: length,
}
for virtual := vr.virtual; virtual < vr.virtual+vr.length; {
physical, length, ok := translateToPhysical(virtual)
if !ok {
// This must be an invalid region that was
// knocked out by creation of the physical map.
return
}
if virtual+length > vr.virtual+vr.length {
// Cap the length to the end of the area.
length = vr.virtual + vr.length - virtual
}
// Ensure the physical range is mapped.
m.mapPhysical(physical, length, physicalRegions)
virtual += length
}
}
seccompMmapHandlerCnt.Add(-1)
}
// disableAsyncPreemption disables asynchronous preemption of go-routines.
func disableAsyncPreemption() {
set := linux.MakeSignalSet(linux.SIGURG)
_, _, errno := unix.RawSyscall6(unix.SYS_RT_SIGPROCMASK, linux.SIG_BLOCK,
uintptr(unsafe.Pointer(&set)), 0, linux.SignalSetSize, 0, 0)
if errno != 0 {
panic(fmt.Sprintf("sigprocmask failed: %d", errno))
}
}
// enableAsyncPreemption enables asynchronous preemption of go-routines.
func enableAsyncPreemption() {
set := linux.MakeSignalSet(linux.SIGURG)
_, _, errno := unix.RawSyscall6(unix.SYS_RT_SIGPROCMASK, linux.SIG_UNBLOCK,
uintptr(unsafe.Pointer(&set)), 0, linux.SignalSetSize, 0, 0)
if errno != 0 {
panic(fmt.Sprintf("sigprocmask failed: %d", errno))
}
}
|