1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package ptrace provides a ptrace-based implementation of the platform
// interface. This is useful for development and testing purposes primarily,
// and runs on stock kernels without special permissions.
//
// In a nutshell, it works as follows:
//
// The creation of a new address space creates a new child process with a single
// thread which is traced by a single goroutine.
//
// A context is just a collection of temporary variables. Calling Switch on a
// context does the following:
//
// Locks the runtime thread.
//
// Looks up a traced subprocess thread for the current runtime thread. If
// none exists, the dedicated goroutine is asked to create a new stopped
// thread in the subprocess. This stopped subprocess thread is then traced
// by the current thread and this information is stored for subsequent
// switches.
//
// The context is then bound with information about the subprocess thread
// so that the context may be appropriately interrupted via a signal.
//
// The requested operation is performed in the traced subprocess thread
// (e.g. set registers, execute, return).
//
// Lock order:
//
// subprocess.mu
// context.mu
package ptrace
import (
"os"
"gvisor.dev/gvisor/pkg/abi/linux"
pkgcontext "gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/platform"
"gvisor.dev/gvisor/pkg/sentry/platform/interrupt"
"gvisor.dev/gvisor/pkg/sync"
)
var (
// stubStart is the link address for our stub, and determines the
// maximum user address. This is valid only after a call to stubInit.
//
// We attempt to link the stub here, and adjust downward as needed.
stubStart uintptr = stubInitAddress
// stubEnd is the first byte past the end of the stub, as with
// stubStart this is valid only after a call to stubInit.
stubEnd uintptr
// stubInitialized controls one-time stub initialization.
stubInitialized sync.Once
)
type context struct {
archContext
// signalInfo is the signal info, if and when a signal is received.
signalInfo linux.SignalInfo
// interrupt is the interrupt context.
interrupt interrupt.Forwarder
// mu protects the following fields.
mu sync.Mutex
// If lastFaultSP is non-nil, the last context switch was due to a fault
// received while executing lastFaultSP. Only context.Switch may set
// lastFaultSP to a non-nil value.
lastFaultSP *subprocess
// lastFaultAddr is the last faulting address; this is only meaningful if
// lastFaultSP is non-nil.
lastFaultAddr hostarch.Addr
// lastFaultIP is the address of the last faulting instruction;
// this is also only meaningful if lastFaultSP is non-nil.
lastFaultIP hostarch.Addr
}
// NewContext implements platform.Platform.NewContext.
func (*PTrace) NewContext(ctx pkgcontext.Context) platform.Context {
c := new(context)
c.archContext.init(ctx)
return c
}
// Switch runs the provided context in the given address space.
func (c *context) Switch(ctx pkgcontext.Context, mm platform.MemoryManager, ac *arch.Context64, cpu int32) (*linux.SignalInfo, hostarch.AccessType, error) {
as := mm.AddressSpace()
s := as.(*subprocess)
restart:
isSyscall := s.switchToApp(c, ac)
var (
faultSP *subprocess
faultAddr hostarch.Addr
faultIP hostarch.Addr
)
if !isSyscall && linux.Signal(c.signalInfo.Signo) == linux.SIGSEGV {
faultSP = s
faultAddr = hostarch.Addr(c.signalInfo.Addr())
faultIP = hostarch.Addr(ac.IP())
}
// Update the context to reflect the outcome of this context switch.
c.mu.Lock()
lastFaultSP := c.lastFaultSP
lastFaultAddr := c.lastFaultAddr
lastFaultIP := c.lastFaultIP
// At this point, c may not yet be in s.contexts, so c.lastFaultSP won't be
// updated by s.Unmap(). This is fine; we only need to synchronize with
// calls to s.Unmap() that occur after the handling of this fault.
c.lastFaultSP = faultSP
c.lastFaultAddr = faultAddr
c.lastFaultIP = faultIP
c.mu.Unlock()
// Update subprocesses to reflect the outcome of this context switch.
if lastFaultSP != faultSP {
if lastFaultSP != nil {
lastFaultSP.mu.Lock()
delete(lastFaultSP.contexts, c)
lastFaultSP.mu.Unlock()
}
if faultSP != nil {
faultSP.mu.Lock()
faultSP.contexts[c] = struct{}{}
faultSP.mu.Unlock()
}
}
if isSyscall {
return nil, hostarch.NoAccess, nil
}
si := c.signalInfo
if faultSP == nil {
// Non-fault signal.
return &si, hostarch.NoAccess, platform.ErrContextSignal
}
// See if this can be handled as a CPUID instruction.
if linux.Signal(si.Signo) == linux.SIGSEGV && platform.TryCPUIDEmulate(ctx, mm, ac) {
goto restart
}
// Got a page fault. Ideally, we'd get real fault type here, but ptrace
// doesn't expose this information. Instead, we use a simple heuristic:
//
// It was an instruction fault iff the faulting addr == instruction
// pointer.
//
// It was a write fault if the fault is immediately repeated.
at := hostarch.Read
if faultAddr == faultIP {
at.Execute = true
}
if lastFaultSP == faultSP &&
lastFaultAddr == faultAddr &&
lastFaultIP == faultIP {
at.Write = true
}
// Handle as a signal.
return &si, at, platform.ErrContextSignal
}
// Interrupt interrupts the running guest application associated with this context.
func (c *context) Interrupt() {
c.interrupt.NotifyInterrupt()
}
// Release implements platform.Context.Release().
func (c *context) Release() {}
// FullStateChanged implements platform.Context.FullStateChanged.
func (c *context) FullStateChanged() {}
// PullFullState implements platform.Context.PullFullState.
func (c *context) PullFullState(as platform.AddressSpace, ac *arch.Context64) {}
// PrepareSleep implements platform.Context.platform.PrepareSleep.
func (*context) PrepareSleep() {}
// PTrace represents a collection of ptrace subprocesses.
type PTrace struct {
platform.MMapMinAddr
platform.NoCPUPreemptionDetection
platform.UseHostGlobalMemoryBarrier
}
// New returns a new ptrace-based implementation of the platform interface.
func New() (*PTrace, error) {
stubInitialized.Do(func() {
// Initialize the stub.
stubInit()
// Create the master process for the global pool. This must be
// done before initializing any other processes.
master, err := newSubprocess(createStub)
if err != nil {
// Should never happen.
panic("unable to initialize ptrace master: " + err.Error())
}
// Set the master on the globalPool.
globalPool.master = master
})
return &PTrace{}, nil
}
// SupportsAddressSpaceIO implements platform.Platform.SupportsAddressSpaceIO.
func (*PTrace) SupportsAddressSpaceIO() bool {
return false
}
// CooperativelySchedulesAddressSpace implements platform.Platform.CooperativelySchedulesAddressSpace.
func (*PTrace) CooperativelySchedulesAddressSpace() bool {
return false
}
// MapUnit implements platform.Platform.MapUnit.
func (*PTrace) MapUnit() uint64 {
// The host kernel manages page tables and arbitrary-sized mappings
// have effectively the same cost.
return 0
}
// MaxUserAddress returns the first address that may not be used by user
// applications.
func (*PTrace) MaxUserAddress() hostarch.Addr {
return hostarch.Addr(stubStart)
}
// NewAddressSpace returns a new subprocess.
func (p *PTrace) NewAddressSpace(any) (platform.AddressSpace, <-chan struct{}, error) {
as, err := newSubprocess(globalPool.master.createStub)
return as, nil, err
}
type constructor struct{}
func (*constructor) New(*os.File) (platform.Platform, error) {
return New()
}
func (*constructor) OpenDevice(_ string) (*os.File, error) {
return nil, nil
}
// Flags implements platform.Constructor.Flags().
func (*constructor) Requirements() platform.Requirements {
// TODO(b/75837838): Also set a new PID namespace so that we limit
// access to other host processes.
return platform.Requirements{
RequiresCapSysPtrace: true,
RequiresCurrentPIDNS: true,
}
}
func init() {
platform.Register("ptrace", &constructor{})
}
|