1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ptrace
import (
"fmt"
"os"
"runtime"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/procid"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/platform"
"gvisor.dev/gvisor/pkg/sync"
)
// Linux kernel errnos which "should never be seen by user programs", but will
// be revealed to ptrace syscall exit tracing.
//
// These constants are only used in subprocess.go.
const (
ERESTARTSYS = unix.Errno(512)
ERESTARTNOINTR = unix.Errno(513)
ERESTARTNOHAND = unix.Errno(514)
)
// globalPool exists to solve two distinct problems:
//
// 1) Subprocesses can't always be killed properly (see Release).
//
// 2) Any seccomp filters that have been installed will apply to subprocesses
// created here. Therefore we use the intermediary (master), which is created
// on initialization of the platform.
var globalPool struct {
mu sync.Mutex
master *subprocess
available []*subprocess
}
// thread is a traced thread; it is a thread identifier.
//
// This is a convenience type for defining ptrace operations.
type thread struct {
tgid int32
tid int32
cpu uint32
// initRegs are the initial registers for the first thread.
//
// These are used for the register set for system calls.
initRegs arch.Registers
}
// threadPool is a collection of threads.
type threadPool struct {
// mu protects below.
mu sync.RWMutex
// threads is the collection of threads.
//
// This map is indexed by system TID (the calling thread); which will
// be the tracer for the given *thread, and therefore capable of using
// relevant ptrace calls.
threads map[int32]*thread
}
// lookupOrCreate looks up a given thread or creates one.
//
// newThread will generally be subprocess.newThread.
//
// Precondition: the runtime OS thread must be locked.
func (tp *threadPool) lookupOrCreate(currentTID int32, newThread func() *thread) *thread {
// The overwhelming common case is that the thread is already created.
// Optimistically attempt the lookup by only locking for reading.
tp.mu.RLock()
t, ok := tp.threads[currentTID]
tp.mu.RUnlock()
if ok {
return t
}
tp.mu.Lock()
defer tp.mu.Unlock()
// Another goroutine might have created the thread for currentTID in between
// mu.RUnlock() and mu.Lock().
if t, ok = tp.threads[currentTID]; ok {
return t
}
// Before creating a new thread, see if we can find a thread
// whose system tid has disappeared.
//
// TODO(b/77216482): Other parts of this package depend on
// threads never exiting.
for origTID, t := range tp.threads {
// Signal zero is an easy existence check.
if err := unix.Tgkill(unix.Getpid(), int(origTID), 0); err != nil {
// This thread has been abandoned; reuse it.
delete(tp.threads, origTID)
tp.threads[currentTID] = t
return t
}
}
// Create a new thread.
t = newThread()
tp.threads[currentTID] = t
return t
}
// subprocess is a collection of threads being traced.
type subprocess struct {
platform.NoAddressSpaceIO
// requests is used to signal creation of new threads.
requests chan chan *thread
// sysemuThreads are reserved for emulation.
sysemuThreads threadPool
// syscallThreads are reserved for syscalls (except clone, which is
// handled in the dedicated goroutine corresponding to requests above).
syscallThreads threadPool
// mu protects the following fields.
mu sync.Mutex
// contexts is the set of contexts for which it's possible that
// context.lastFaultSP == this subprocess.
contexts map[*context]struct{}
}
// newSubprocess returns a usable subprocess.
//
// This will either be a newly created subprocess, or one from the global pool.
// The create function will be called in the latter case, which is guaranteed
// to happen with the runtime thread locked.
func newSubprocess(create func() (*thread, error)) (*subprocess, error) {
// See Release.
globalPool.mu.Lock()
if len(globalPool.available) > 0 {
sp := globalPool.available[len(globalPool.available)-1]
globalPool.available = globalPool.available[:len(globalPool.available)-1]
globalPool.mu.Unlock()
return sp, nil
}
globalPool.mu.Unlock()
// The following goroutine is responsible for creating the first traced
// thread, and responding to requests to make additional threads in the
// traced process. The process will be killed and reaped when the
// request channel is closed, which happens in Release below.
errChan := make(chan error)
requests := make(chan chan *thread)
go func() { // S/R-SAFE: Platform-related.
runtime.LockOSThread()
defer runtime.UnlockOSThread()
// Initialize the first thread.
firstThread, err := create()
if err != nil {
errChan <- err
return
}
firstThread.grabInitRegs()
// Ready to handle requests.
errChan <- nil
// Wait for requests to create threads.
for r := range requests {
t, err := firstThread.clone()
if err != nil {
// Should not happen: not recoverable.
panic(fmt.Sprintf("error initializing first thread: %v", err))
}
// Since the new thread was created with
// clone(CLONE_PTRACE), it will begin execution with
// SIGSTOP pending and with this thread as its tracer.
// (Hopefully nobody tgkilled it with a signal <
// SIGSTOP before the SIGSTOP was delivered, in which
// case that signal would be delivered before SIGSTOP.)
if sig := t.wait(stopped); sig != unix.SIGSTOP {
panic(fmt.Sprintf("error waiting for new clone: expected SIGSTOP, got %v", sig))
}
// Detach the thread.
t.detach()
t.initRegs = firstThread.initRegs
// Return the thread.
r <- t
}
// Requests should never be closed.
panic("unreachable")
}()
// Wait until error or readiness.
if err := <-errChan; err != nil {
return nil, err
}
// Ready.
sp := &subprocess{
requests: requests,
sysemuThreads: threadPool{
threads: make(map[int32]*thread),
},
syscallThreads: threadPool{
threads: make(map[int32]*thread),
},
contexts: make(map[*context]struct{}),
}
sp.unmap()
return sp, nil
}
// unmap unmaps non-stub regions of the process.
//
// This will panic on failure (which should never happen).
func (s *subprocess) unmap() {
s.Unmap(0, uint64(stubStart))
if maximumUserAddress != stubEnd {
s.Unmap(hostarch.Addr(stubEnd), uint64(maximumUserAddress-stubEnd))
}
}
// Release kills the subprocess.
//
// Just kidding! We can't safely co-ordinate the detaching of all the
// tracees (since the tracers are random runtime threads, and the process
// won't exit until tracers have been notifier).
//
// Therefore we simply unmap everything in the subprocess and return it to the
// globalPool. This has the added benefit of reducing creation time for new
// subprocesses.
func (s *subprocess) Release() {
go func() { // S/R-SAFE: Platform.
s.unmap()
globalPool.mu.Lock()
globalPool.available = append(globalPool.available, s)
globalPool.mu.Unlock()
}()
}
// newThread creates a new traced thread.
//
// Precondition: the OS thread must be locked.
func (s *subprocess) newThread() *thread {
// Ask the first thread to create a new one.
r := make(chan *thread)
s.requests <- r
t := <-r
// Attach the subprocess to this one.
t.attach()
// Return the new thread, which is now bound.
return t
}
// attach attaches to the thread.
func (t *thread) attach() {
if _, _, errno := unix.RawSyscall6(unix.SYS_PTRACE, unix.PTRACE_ATTACH, uintptr(t.tid), 0, 0, 0, 0); errno != 0 {
panic(fmt.Sprintf("unable to attach: %v", errno))
}
// PTRACE_ATTACH sends SIGSTOP, and wakes the tracee if it was already
// stopped from the SIGSTOP queued by CLONE_PTRACE (see inner loop of
// newSubprocess), so we always expect to see signal-delivery-stop with
// SIGSTOP.
if sig := t.wait(stopped); sig != unix.SIGSTOP {
panic(fmt.Sprintf("wait failed: expected SIGSTOP, got %v", sig))
}
// Initialize options.
t.init()
}
func (t *thread) grabInitRegs() {
// Grab registers.
//
// Note that we adjust the current register RIP value to be just before
// the current system call executed. This depends on the definition of
// the stub itself.
if err := t.getRegs(&t.initRegs); err != nil {
panic(fmt.Sprintf("ptrace get regs failed: %v", err))
}
t.adjustInitRegsRip()
}
// detach detaches from the thread.
//
// Because the SIGSTOP is not suppressed, the thread will enter group-stop.
func (t *thread) detach() {
if _, _, errno := unix.RawSyscall6(unix.SYS_PTRACE, unix.PTRACE_DETACH, uintptr(t.tid), 0, uintptr(unix.SIGSTOP), 0, 0); errno != 0 {
panic(fmt.Sprintf("can't detach new clone: %v", errno))
}
}
// waitOutcome is used for wait below.
type waitOutcome int
const (
// stopped indicates that the process was stopped.
stopped waitOutcome = iota
// killed indicates that the process was killed.
killed
)
func (t *thread) dumpAndPanic(message string) {
var regs arch.Registers
message += "\n"
if err := t.getRegs(®s); err == nil {
message += dumpRegs(®s)
} else {
log.Warningf("unable to get registers: %v", err)
}
message += fmt.Sprintf("stubStart\t = %016x\n", stubStart)
panic(message)
}
func (t *thread) unexpectedStubExit() {
msg, err := t.getEventMessage()
status := unix.WaitStatus(msg)
if status.Signaled() && status.Signal() == unix.SIGKILL {
// SIGKILL can be only sent by a user or OOM-killer. In both
// these cases, we don't need to panic. There is no reasons to
// think that something wrong in gVisor.
log.Warningf("The ptrace stub process %v has been killed by SIGKILL.", t.tgid)
pid := os.Getpid()
unix.Tgkill(pid, pid, unix.Signal(unix.SIGKILL))
}
t.dumpAndPanic(fmt.Sprintf("wait failed: the process %d:%d exited: %x (err %v)", t.tgid, t.tid, msg, err))
}
// wait waits for a stop event.
//
// Precondition: outcome is a valid waitOutcome.
func (t *thread) wait(outcome waitOutcome) unix.Signal {
var status unix.WaitStatus
for {
r, err := unix.Wait4(int(t.tid), &status, unix.WALL|unix.WUNTRACED, nil)
if err == unix.EINTR || err == unix.EAGAIN {
// Wait was interrupted; wait again.
continue
} else if err != nil {
panic(fmt.Sprintf("ptrace wait failed: %v", err))
}
if int(r) != int(t.tid) {
panic(fmt.Sprintf("ptrace wait returned %v, expected %v", r, t.tid))
}
switch outcome {
case stopped:
if !status.Stopped() {
t.dumpAndPanic(fmt.Sprintf("ptrace status unexpected: got %v, wanted stopped", status))
}
stopSig := status.StopSignal()
if stopSig == 0 {
continue // Spurious stop.
}
if stopSig == unix.SIGTRAP {
if status.TrapCause() == unix.PTRACE_EVENT_EXIT {
t.unexpectedStubExit()
}
// Re-encode the trap cause the way it's expected.
return stopSig | unix.Signal(status.TrapCause()<<8)
}
// Not a trap signal.
return stopSig
case killed:
if !status.Exited() && !status.Signaled() {
t.dumpAndPanic(fmt.Sprintf("ptrace status unexpected: got %v, wanted exited", status))
}
return unix.Signal(status.ExitStatus())
default:
// Should not happen.
t.dumpAndPanic(fmt.Sprintf("unknown outcome: %v", outcome))
}
}
}
// destroy kills the thread.
//
// Note that this should not be used in the general case; the death of threads
// will typically cause the death of the parent. This is a utility method for
// manually created threads.
func (t *thread) destroy() {
t.detach()
unix.Tgkill(int(t.tgid), int(t.tid), unix.Signal(unix.SIGKILL))
t.wait(killed)
}
// init initializes trace options.
func (t *thread) init() {
// Set the TRACESYSGOOD option to differentiate real SIGTRAP.
// set PTRACE_O_EXITKILL to ensure that the unexpected exit of the
// sentry will immediately kill the associated stubs.
const PTRACE_O_EXITKILL = 0x100000
_, _, errno := unix.RawSyscall6(
unix.SYS_PTRACE,
unix.PTRACE_SETOPTIONS,
uintptr(t.tid),
0,
unix.PTRACE_O_TRACESYSGOOD|unix.PTRACE_O_TRACEEXIT|PTRACE_O_EXITKILL,
0, 0)
if errno != 0 {
panic(fmt.Sprintf("ptrace set options failed: %v", errno))
}
}
// syscall executes a system call cycle in the traced context.
//
// This is _not_ for use by application system calls, rather it is for use when
// a system call must be injected into the remote context (e.g. mmap, munmap).
// Note that clones are handled separately.
func (t *thread) syscall(regs *arch.Registers) (uintptr, error) {
// Set registers.
if err := t.setRegs(regs); err != nil {
panic(fmt.Sprintf("ptrace set regs failed: %v", err))
}
for {
// Execute the syscall instruction. The task has to stop on the
// trap instruction which is right after the syscall
// instruction.
if _, _, errno := unix.RawSyscall6(unix.SYS_PTRACE, unix.PTRACE_CONT, uintptr(t.tid), 0, 0, 0, 0); errno != 0 {
panic(fmt.Sprintf("ptrace syscall-enter failed: %v", errno))
}
sig := t.wait(stopped)
if sig == unix.SIGTRAP {
// Reached syscall-enter-stop.
break
} else {
// Some other signal caused a thread stop; ignore.
if sig != unix.SIGSTOP && sig != unix.SIGCHLD {
log.Warningf("The thread %d:%d has been interrupted by %d", t.tgid, t.tid, sig)
}
continue
}
}
// Grab registers.
if err := t.getRegs(regs); err != nil {
panic(fmt.Sprintf("ptrace get regs failed: %v", err))
}
return syscallReturnValue(regs)
}
// syscallIgnoreInterrupt ignores interrupts on the system call thread and
// restarts the syscall if the kernel indicates that should happen.
func (t *thread) syscallIgnoreInterrupt(
initRegs *arch.Registers,
sysno uintptr,
args ...arch.SyscallArgument) (uintptr, error) {
for {
regs := createSyscallRegs(initRegs, sysno, args...)
rval, err := t.syscall(®s)
switch err {
case ERESTARTSYS:
continue
case ERESTARTNOINTR:
continue
case ERESTARTNOHAND:
continue
default:
return rval, err
}
}
}
// NotifyInterrupt implements interrupt.Receiver.NotifyInterrupt.
func (t *thread) NotifyInterrupt() {
unix.Tgkill(int(t.tgid), int(t.tid), unix.Signal(platform.SignalInterrupt))
}
// switchToApp is called from the main SwitchToApp entrypoint.
//
// This function returns true on a system call, false on a signal.
func (s *subprocess) switchToApp(c *context, ac *arch.Context64) bool {
// Lock the thread for ptrace operations.
runtime.LockOSThread()
defer runtime.UnlockOSThread()
// Extract floating point state.
fpState := ac.FloatingPointData()
// Grab our thread from the pool.
currentTID := int32(procid.Current())
t := s.sysemuThreads.lookupOrCreate(currentTID, s.newThread)
// Reset necessary registers.
regs := &ac.StateData().Regs
t.resetSysemuRegs(regs)
// Extract TLS register
tls := uint64(ac.TLS())
// Check for interrupts, and ensure that future interrupts will signal t.
if !c.interrupt.Enable(t) {
// Pending interrupt; simulate.
c.signalInfo = linux.SignalInfo{Signo: int32(platform.SignalInterrupt)}
return false
}
defer c.interrupt.Disable()
// Set registers.
if err := t.setRegs(regs); err != nil {
panic(fmt.Sprintf("ptrace set regs (%+v) failed: %v", regs, err))
}
if err := t.setFPRegs(fpState, &c.archContext); err != nil {
panic(fmt.Sprintf("ptrace set fpregs (%+v) failed: %v", fpState, err))
}
if err := t.setTLS(&tls); err != nil {
panic(fmt.Sprintf("ptrace set tls (%+v) failed: %v", tls, err))
}
for {
// Start running until the next system call.
if isSingleStepping(regs) {
if _, _, errno := unix.RawSyscall6(
unix.SYS_PTRACE,
unix.PTRACE_SYSEMU_SINGLESTEP,
uintptr(t.tid), 0, 0, 0, 0); errno != 0 {
panic(fmt.Sprintf("ptrace sysemu failed: %v", errno))
}
} else {
if _, _, errno := unix.RawSyscall6(
unix.SYS_PTRACE,
unix.PTRACE_SYSEMU,
uintptr(t.tid), 0, 0, 0, 0); errno != 0 {
panic(fmt.Sprintf("ptrace sysemu failed: %v", errno))
}
}
// Wait for the syscall-enter stop.
sig := t.wait(stopped)
if sig == unix.SIGSTOP {
// SIGSTOP was delivered to another thread in the same thread
// group, which initiated another group stop. Just ignore it.
continue
}
// Refresh all registers.
if err := t.getRegs(regs); err != nil {
panic(fmt.Sprintf("ptrace get regs failed: %v", err))
}
if err := t.getFPRegs(fpState, &c.archContext); err != nil {
panic(fmt.Sprintf("ptrace get fpregs failed: %v", err))
}
if err := t.getTLS(&tls); err != nil {
panic(fmt.Sprintf("ptrace get tls failed: %v", err))
}
if !ac.SetTLS(uintptr(tls)) {
panic(fmt.Sprintf("tls value %v is invalid", tls))
}
// Is it a system call?
if sig == (syscallEvent | unix.SIGTRAP) {
s.arm64SyscallWorkaround(t, regs)
// Ensure registers are sane.
updateSyscallRegs(regs)
return true
}
// Grab signal information.
if err := t.getSignalInfo(&c.signalInfo); err != nil {
// Should never happen.
panic(fmt.Sprintf("ptrace get signal info failed: %v", err))
}
// We have a signal. We verify however, that the signal was
// either delivered from the kernel or from this process. We
// don't respect other signals.
if c.signalInfo.Code > 0 {
// The signal was generated by the kernel. We inspect
// the signal information, and may patch it in order to
// facilitate vsyscall emulation. See patchSignalInfo.
patchSignalInfo(regs, &c.signalInfo)
return false
} else if c.signalInfo.Code <= 0 && c.signalInfo.PID() == int32(os.Getpid()) {
// The signal was generated by this process. That means
// that it was an interrupt or something else that we
// should bail for. Note that we ignore signals
// generated by other processes.
return false
}
}
}
// syscall executes the given system call without handling interruptions.
func (s *subprocess) syscall(sysno uintptr, args ...arch.SyscallArgument) (uintptr, error) {
// Grab a thread.
runtime.LockOSThread()
defer runtime.UnlockOSThread()
currentTID := int32(procid.Current())
t := s.syscallThreads.lookupOrCreate(currentTID, s.newThread)
return t.syscallIgnoreInterrupt(&t.initRegs, sysno, args...)
}
// MapFile implements platform.AddressSpace.MapFile.
func (s *subprocess) MapFile(addr hostarch.Addr, f memmap.File, fr memmap.FileRange, at hostarch.AccessType, precommit bool) error {
var flags int
if precommit {
flags |= unix.MAP_POPULATE
}
_, err := s.syscall(
unix.SYS_MMAP,
arch.SyscallArgument{Value: uintptr(addr)},
arch.SyscallArgument{Value: uintptr(fr.Length())},
arch.SyscallArgument{Value: uintptr(at.Prot())},
arch.SyscallArgument{Value: uintptr(flags | unix.MAP_SHARED | unix.MAP_FIXED)},
arch.SyscallArgument{Value: uintptr(f.FD())},
arch.SyscallArgument{Value: uintptr(fr.Start)})
return err
}
// Unmap implements platform.AddressSpace.Unmap.
func (s *subprocess) Unmap(addr hostarch.Addr, length uint64) {
ar, ok := addr.ToRange(length)
if !ok {
panic(fmt.Sprintf("addr %#x + length %#x overflows", addr, length))
}
s.mu.Lock()
for c := range s.contexts {
c.mu.Lock()
if c.lastFaultSP == s && ar.Contains(c.lastFaultAddr) {
// Forget the last fault so that if c faults again, the fault isn't
// incorrectly reported as a write fault. If this is being called
// due to munmap() of the corresponding vma, handling of the second
// fault will fail anyway.
c.lastFaultSP = nil
delete(s.contexts, c)
}
c.mu.Unlock()
}
s.mu.Unlock()
_, err := s.syscall(
unix.SYS_MUNMAP,
arch.SyscallArgument{Value: uintptr(addr)},
arch.SyscallArgument{Value: uintptr(length)})
if err != nil {
// We never expect this to happen.
panic(fmt.Sprintf("munmap(%x, %x)) failed: %v", addr, length, err))
}
}
// PreFork implements platform.AddressSpace.PreFork.
func (s *subprocess) PreFork() {}
// PostFork implements platform.AddressSpace.PostFork.
func (s *subprocess) PostFork() {}
|