1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package vfs
import (
"bytes"
"fmt"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/uniqueid"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/usermem"
"gvisor.dev/gvisor/pkg/waiter"
)
// inotifyEventBaseSize is the base size of linux's struct inotify_event. This
// must be a power 2 for rounding below.
const inotifyEventBaseSize = 16
// EventType defines different kinds of inotfiy events.
//
// The way events are labelled appears somewhat arbitrary, but they must match
// Linux so that IN_EXCL_UNLINK behaves as it does in Linux.
//
// +stateify savable
type EventType uint8
// PathEvent and InodeEvent correspond to FSNOTIFY_EVENT_PATH and
// FSNOTIFY_EVENT_INODE in Linux.
const (
PathEvent EventType = iota
InodeEvent EventType = iota
)
// Inotify represents an inotify instance created by inotify_init(2) or
// inotify_init1(2). Inotify implements FileDescriptionImpl.
//
// +stateify savable
type Inotify struct {
vfsfd FileDescription
FileDescriptionDefaultImpl
DentryMetadataFileDescriptionImpl
NoLockFD
// Unique identifier for this inotify instance. We don't just reuse the
// inotify fd because fds can be duped. These should not be exposed to the
// user, since we may aggressively reuse an id on S/R.
id uint64
// queue is used to notify interested parties when the inotify instance
// becomes readable or writable.
queue waiter.Queue
// evMu *only* protects the events list. We need a separate lock while
// queuing events: using mu may violate lock ordering, since at that point
// the calling goroutine may already hold Watches.mu.
evMu inotifyEventMutex `state:"nosave"`
// A list of pending events for this inotify instance. Protected by evMu.
events eventList
// A scratch buffer, used to serialize inotify events. Allocate this
// ahead of time for the sake of performance. Protected by evMu.
scratch []byte
// mu protects the fields below.
mu inotifyMutex `state:"nosave"`
// nextWatchMinusOne is used to allocate watch descriptors on this Inotify
// instance. Note that Linux starts numbering watch descriptors from 1.
nextWatchMinusOne int32
// Map from watch descriptors to watch objects.
watches map[int32]*Watch
}
var _ FileDescriptionImpl = (*Inotify)(nil)
// NewInotifyFD constructs a new Inotify instance.
func NewInotifyFD(ctx context.Context, vfsObj *VirtualFilesystem, flags uint32) (*FileDescription, error) {
// O_CLOEXEC affects file descriptors, so it must be handled outside of vfs.
flags &^= linux.O_CLOEXEC
if flags&^linux.O_NONBLOCK != 0 {
return nil, linuxerr.EINVAL
}
id := uniqueid.GlobalFromContext(ctx)
vd := vfsObj.NewAnonVirtualDentry(fmt.Sprintf("[inotifyfd:%d]", id))
defer vd.DecRef(ctx)
fd := &Inotify{
id: id,
scratch: make([]byte, inotifyEventBaseSize),
watches: make(map[int32]*Watch),
}
if err := fd.vfsfd.Init(fd, flags, vd.Mount(), vd.Dentry(), &FileDescriptionOptions{
UseDentryMetadata: true,
DenyPRead: true,
DenyPWrite: true,
}); err != nil {
return nil, err
}
return &fd.vfsfd, nil
}
// Release implements FileDescriptionImpl.Release. Release removes all
// watches and frees all resources for an inotify instance.
func (i *Inotify) Release(ctx context.Context) {
var ds []*Dentry
// We need to hold i.mu to avoid a race with concurrent calls to
// Inotify.handleDeletion from Watches. There's no risk of Watches
// accessing this Inotify after the destructor ends, because we remove all
// references to it below.
i.mu.Lock()
for _, w := range i.watches {
// Remove references to the watch from the watches set on the target. We
// don't need to worry about the references from i.watches, since this
// file description is about to be destroyed.
d := w.target
ws := d.Watches()
// Watchable dentries should never return a nil watch set.
if ws == nil {
panic("Cannot remove watch from an unwatchable dentry")
}
ws.Remove(i.id)
if ws.Size() == 0 {
ds = append(ds, d)
}
}
i.mu.Unlock()
for _, d := range ds {
d.OnZeroWatches(ctx)
}
}
// Allocate implements FileDescription.Allocate.
func (i *Inotify) Allocate(ctx context.Context, mode, offset, length uint64) error {
panic("Allocate should not be called on read-only inotify fds")
}
// EventRegister implements waiter.Waitable.
func (i *Inotify) EventRegister(e *waiter.Entry) error {
i.queue.EventRegister(e)
return nil
}
// EventUnregister implements waiter.Waitable.
func (i *Inotify) EventUnregister(e *waiter.Entry) {
i.queue.EventUnregister(e)
}
// Readiness implements waiter.Waitable.Readiness.
//
// Readiness indicates whether there are pending events for an inotify instance.
func (i *Inotify) Readiness(mask waiter.EventMask) waiter.EventMask {
ready := waiter.EventMask(0)
i.evMu.Lock()
defer i.evMu.Unlock()
if !i.events.Empty() {
ready |= waiter.ReadableEvents
}
return mask & ready
}
// Epollable implements FileDescriptionImpl.Epollable.
func (i *Inotify) Epollable() bool {
return true
}
// PRead implements FileDescriptionImpl.PRead.
func (*Inotify) PRead(ctx context.Context, dst usermem.IOSequence, offset int64, opts ReadOptions) (int64, error) {
return 0, linuxerr.ESPIPE
}
// PWrite implements FileDescriptionImpl.PWrite.
func (*Inotify) PWrite(ctx context.Context, src usermem.IOSequence, offset int64, opts WriteOptions) (int64, error) {
return 0, linuxerr.ESPIPE
}
// Write implements FileDescriptionImpl.Write.
func (*Inotify) Write(ctx context.Context, src usermem.IOSequence, opts WriteOptions) (int64, error) {
return 0, linuxerr.EBADF
}
// Read implements FileDescriptionImpl.Read.
func (i *Inotify) Read(ctx context.Context, dst usermem.IOSequence, opts ReadOptions) (int64, error) {
if dst.NumBytes() < inotifyEventBaseSize {
return 0, linuxerr.EINVAL
}
i.evMu.Lock()
defer i.evMu.Unlock()
if i.events.Empty() {
// Nothing to read yet, tell caller to block.
return 0, linuxerr.ErrWouldBlock
}
var writeLen int64
for it := i.events.Front(); it != nil; {
// Advance `it` before the element is removed from the list, or else
// it.Next() will always be nil.
event := it
it = it.Next()
// Does the buffer have enough remaining space to hold the event we're
// about to write out?
if dst.NumBytes() < int64(event.sizeOf()) {
if writeLen > 0 {
// Buffer wasn't big enough for all pending events, but we did
// write some events out.
return writeLen, nil
}
return 0, linuxerr.EINVAL
}
// Linux always dequeues an available event as long as there's enough
// buffer space to copy it out, even if the copy below fails. Emulate
// this behaviour.
i.events.Remove(event)
// Buffer has enough space, copy event to the read buffer.
n, err := event.CopyTo(ctx, i.scratch, dst)
if err != nil {
return 0, err
}
writeLen += n
dst = dst.DropFirst64(n)
}
return writeLen, nil
}
// Ioctl implements FileDescriptionImpl.Ioctl.
func (i *Inotify) Ioctl(ctx context.Context, uio usermem.IO, args arch.SyscallArguments) (uintptr, error) {
switch args[1].Int() {
case linux.FIONREAD:
i.evMu.Lock()
var n uint32
for e := i.events.Front(); e != nil; e = e.Next() {
n += uint32(e.sizeOf())
}
i.evMu.Unlock()
var buf [4]byte
hostarch.ByteOrder.PutUint32(buf[:], n)
_, err := uio.CopyOut(ctx, args[2].Pointer(), buf[:], usermem.IOOpts{})
return 0, err
default:
return 0, linuxerr.ENOTTY
}
}
func (i *Inotify) queueEvent(ev *Event) {
i.evMu.Lock()
// Check if we should coalesce the event we're about to queue with the last
// one currently in the queue. Events are coalesced if they are identical.
if last := i.events.Back(); last != nil {
if ev.equals(last) {
// "Coalesce" the two events by simply not queuing the new one. We
// don't need to raise a waiter.EventIn notification because no new
// data is available for reading.
i.evMu.Unlock()
return
}
}
i.events.PushBack(ev)
// Release mutex before notifying waiters because we don't control what they
// can do.
i.evMu.Unlock()
i.queue.Notify(waiter.ReadableEvents)
}
// newWatchLocked creates and adds a new watch to target.
//
// Precondition: i.mu must be locked. ws must be the watch set for target d.
func (i *Inotify) newWatchLocked(d *Dentry, ws *Watches, mask uint32) *Watch {
w := &Watch{
owner: i,
wd: i.nextWatchIDLocked(),
target: d,
mask: atomicbitops.FromUint32(mask),
}
// Hold the watch in this inotify instance as well as the watch set on the
// target.
i.watches[w.wd] = w
ws.Add(w)
return w
}
// newWatchIDLocked allocates and returns a new watch descriptor.
//
// Precondition: i.mu must be locked.
func (i *Inotify) nextWatchIDLocked() int32 {
i.nextWatchMinusOne++
return i.nextWatchMinusOne
}
// AddWatch constructs a new inotify watch and adds it to the target. It
// returns the watch descriptor returned by inotify_add_watch(2).
//
// The caller must hold a reference on target.
func (i *Inotify) AddWatch(target *Dentry, mask uint32) int32 {
// Note: Locking this inotify instance protects the result returned by
// Lookup() below. With the lock held, we know for sure the lookup result
// won't become stale because it's impossible for *this* instance to
// add/remove watches on target.
i.mu.Lock()
defer i.mu.Unlock()
ws := target.Watches()
// Does the target already have a watch from this inotify instance?
if existing := ws.Lookup(i.id); existing != nil {
newmask := mask
if mask&linux.IN_MASK_ADD != 0 {
// "Add (OR) events to watch mask for this pathname if it already
// exists (instead of replacing mask)." -- inotify(7)
newmask |= existing.mask.Load()
}
existing.mask.Store(newmask)
return existing.wd
}
// No existing watch, create a new watch.
w := i.newWatchLocked(target, ws, mask)
return w.wd
}
// RmWatch looks up an inotify watch for the given 'wd' and configures the
// target to stop sending events to this inotify instance.
func (i *Inotify) RmWatch(ctx context.Context, wd int32) error {
i.mu.Lock()
// Find the watch we were asked to removed.
w, ok := i.watches[wd]
if !ok {
i.mu.Unlock()
return linuxerr.EINVAL
}
// Remove the watch from this instance.
delete(i.watches, wd)
// Remove the watch from the watch target.
ws := w.target.Watches()
// AddWatch ensures that w.target has a non-nil watch set.
if ws == nil {
panic("Watched dentry cannot have nil watch set")
}
ws.Remove(w.OwnerID())
remaining := ws.Size()
i.mu.Unlock()
if remaining == 0 {
w.target.OnZeroWatches(ctx)
}
// Generate the event for the removal.
i.queueEvent(newEvent(wd, "", linux.IN_IGNORED, 0))
return nil
}
// Watches is the collection of all inotify watches on a single file.
//
// +stateify savable
type Watches struct {
// mu protects the fields below.
mu sync.RWMutex `state:"nosave"`
// ws is the map of active watches in this collection, keyed by the inotify
// instance id of the owner.
ws map[uint64]*Watch
}
// Size returns the number of watches held by w.
func (w *Watches) Size() int {
w.mu.Lock()
defer w.mu.Unlock()
return len(w.ws)
}
// Lookup returns the watch owned by an inotify instance with the given id.
// Returns nil if no such watch exists.
//
// Precondition: the inotify instance with the given id must be locked to
// prevent the returned watch from being concurrently modified or replaced in
// Inotify.watches.
func (w *Watches) Lookup(id uint64) *Watch {
w.mu.Lock()
defer w.mu.Unlock()
return w.ws[id]
}
// Add adds watch into this set of watches.
//
// Precondition: the inotify instance with the given id must be locked.
func (w *Watches) Add(watch *Watch) {
w.mu.Lock()
defer w.mu.Unlock()
owner := watch.OwnerID()
// Sanity check, we should never have two watches for one owner on the
// same target.
if _, exists := w.ws[owner]; exists {
panic(fmt.Sprintf("Watch collision with ID %+v", owner))
}
if w.ws == nil {
w.ws = make(map[uint64]*Watch)
}
w.ws[owner] = watch
}
// Remove removes a watch with the given id from this set of watches and
// releases it. The caller is responsible for generating any watch removal
// event, as appropriate. The provided id must match an existing watch in this
// collection.
//
// Precondition: the inotify instance with the given id must be locked.
func (w *Watches) Remove(id uint64) {
w.mu.Lock()
defer w.mu.Unlock()
if w.ws == nil {
// This watch set is being destroyed. The thread executing the
// destructor is already in the process of deleting all our watches. We
// got here with no references on the target because we raced with the
// destructor notifying all the watch owners of destruction. See the
// comment in Watches.HandleDeletion for why this race exists.
return
}
// It is possible for w.Remove() to be called for the same watch multiple
// times. See the treatment of one-shot watches in Watches.Notify().
if _, ok := w.ws[id]; ok {
delete(w.ws, id)
}
}
// Notify queues a new event with watches in this set. Watches with
// IN_EXCL_UNLINK are skipped if the event is coming from a child that has been
// unlinked.
func (w *Watches) Notify(ctx context.Context, name string, events, cookie uint32, et EventType, unlinked bool) {
var hasExpired bool
w.mu.RLock()
for _, watch := range w.ws {
if unlinked && watch.ExcludeUnlinked() && et == PathEvent {
continue
}
if watch.Notify(name, events, cookie) {
hasExpired = true
}
}
w.mu.RUnlock()
if hasExpired {
w.cleanupExpiredWatches(ctx)
}
}
// This function is relatively expensive and should only be called where there
// are expired watches.
func (w *Watches) cleanupExpiredWatches(ctx context.Context) {
// Because of lock ordering, we cannot acquire Inotify.mu for each watch
// owner while holding w.mu. As a result, store expired watches locally
// before removing.
var toRemove []*Watch
w.mu.RLock()
for _, watch := range w.ws {
if watch.expired.Load() == 1 {
toRemove = append(toRemove, watch)
}
}
w.mu.RUnlock()
for _, watch := range toRemove {
watch.owner.RmWatch(ctx, watch.wd)
}
}
// HandleDeletion is called when the watch target is destroyed. Clear the
// watch set, detach watches from the inotify instances they belong to, and
// generate the appropriate events.
func (w *Watches) HandleDeletion(ctx context.Context) {
w.Notify(ctx, "", linux.IN_DELETE_SELF, 0, InodeEvent, true /* unlinked */)
// As in Watches.Notify, we can't hold w.mu while acquiring Inotify.mu for
// the owner of each watch being deleted. Instead, atomically store the
// watches map in a local variable and set it to nil so we can iterate over
// it with the assurance that there will be no concurrent accesses.
var ws map[uint64]*Watch
w.mu.Lock()
ws = w.ws
w.ws = nil
w.mu.Unlock()
// Remove each watch from its owner's watch set, and generate a corresponding
// watch removal event.
for _, watch := range ws {
i := watch.owner
i.mu.Lock()
_, found := i.watches[watch.wd]
delete(i.watches, watch.wd)
// Release mutex before notifying waiters because we don't control what
// they can do.
i.mu.Unlock()
// If watch was not found, it was removed from the inotify instance before
// we could get to it, in which case we should not generate an event.
if found {
i.queueEvent(newEvent(watch.wd, "", linux.IN_IGNORED, 0))
}
}
}
// Watch represent a particular inotify watch created by inotify_add_watch.
//
// +stateify savable
type Watch struct {
// Inotify instance which owns this watch.
//
// This field is immutable after creation.
owner *Inotify
// Descriptor for this watch. This is unique across an inotify instance.
//
// This field is immutable after creation.
wd int32
// target is a dentry representing the watch target. Its watch set contains this watch.
//
// This field is immutable after creation.
target *Dentry
// Events being monitored via this watch.
mask atomicbitops.Uint32
// expired is set to 1 to indicate that this watch is a one-shot that has
// already sent a notification and therefore can be removed.
expired atomicbitops.Int32
}
// OwnerID returns the id of the inotify instance that owns this watch.
func (w *Watch) OwnerID() uint64 {
return w.owner.id
}
// ExcludeUnlinked indicates whether the watched object should continue to be
// notified of events originating from a path that has been unlinked.
//
// For example, if "foo/bar" is opened and then unlinked, operations on the
// open fd may be ignored by watches on "foo" and "foo/bar" with IN_EXCL_UNLINK.
func (w *Watch) ExcludeUnlinked() bool {
return w.mask.Load()&linux.IN_EXCL_UNLINK != 0
}
// Notify queues a new event on this watch. Returns true if this is a one-shot
// watch that should be deleted, after this event was successfully queued.
func (w *Watch) Notify(name string, events uint32, cookie uint32) bool {
if w.expired.Load() == 1 {
// This is a one-shot watch that is already in the process of being
// removed. This may happen if a second event reaches the watch target
// before this watch has been removed.
return false
}
mask := w.mask.Load()
if mask&events == 0 {
// We weren't watching for this event.
return false
}
// Event mask should include bits matched from the watch plus all control
// event bits.
unmaskableBits := ^uint32(0) &^ linux.IN_ALL_EVENTS
effectiveMask := unmaskableBits | mask
matchedEvents := effectiveMask & events
w.owner.queueEvent(newEvent(w.wd, name, matchedEvents, cookie))
if mask&linux.IN_ONESHOT != 0 {
w.expired.Store(1)
return true
}
return false
}
// Event represents a struct inotify_event from linux.
//
// +stateify savable
type Event struct {
eventEntry
wd int32
mask uint32
cookie uint32
// len is computed based on the name field is set automatically by
// Event.setName. It should be 0 when no name is set; otherwise it is the
// length of the name slice.
len uint32
// The name field has special padding requirements and should only be set by
// calling Event.setName.
name []byte
}
func newEvent(wd int32, name string, events, cookie uint32) *Event {
e := &Event{
wd: wd,
mask: events,
cookie: cookie,
}
if name != "" {
e.setName(name)
}
return e
}
// paddedBytes converts a go string to a null-terminated c-string, padded with
// null bytes to a total size of 'l'. 'l' must be large enough for all the bytes
// in the 's' plus at least one null byte.
func paddedBytes(s string, l uint32) []byte {
if l < uint32(len(s)+1) {
panic("Converting string to byte array results in truncation, this can lead to buffer-overflow due to the missing null-byte!")
}
b := make([]byte, l)
copy(b, s)
// b was zero-value initialized during make(), so the rest of the slice is
// already filled with null bytes.
return b
}
// setName sets the optional name for this event.
func (e *Event) setName(name string) {
// We need to pad the name such that the entire event length ends up a
// multiple of inotifyEventBaseSize.
unpaddedLen := len(name) + 1
// Round up to nearest multiple of inotifyEventBaseSize.
e.len = uint32((unpaddedLen + inotifyEventBaseSize - 1) & ^(inotifyEventBaseSize - 1))
// Make sure we haven't overflowed and wrapped around when rounding.
if unpaddedLen > int(e.len) {
panic("Overflow when rounding inotify event size, the 'name' field was too big.")
}
e.name = paddedBytes(name, e.len)
}
func (e *Event) sizeOf() int {
s := inotifyEventBaseSize + int(e.len)
if s < inotifyEventBaseSize {
panic("Overflowed event size")
}
return s
}
// CopyTo serializes this event to dst. buf is used as a scratch buffer to
// construct the output. We use a buffer allocated ahead of time for
// performance. buf must be at least inotifyEventBaseSize bytes.
func (e *Event) CopyTo(ctx context.Context, buf []byte, dst usermem.IOSequence) (int64, error) {
hostarch.ByteOrder.PutUint32(buf[0:], uint32(e.wd))
hostarch.ByteOrder.PutUint32(buf[4:], e.mask)
hostarch.ByteOrder.PutUint32(buf[8:], e.cookie)
hostarch.ByteOrder.PutUint32(buf[12:], e.len)
writeLen := 0
n, err := dst.CopyOut(ctx, buf)
if err != nil {
return 0, err
}
writeLen += n
dst = dst.DropFirst(n)
if e.len > 0 {
n, err = dst.CopyOut(ctx, e.name)
if err != nil {
return 0, err
}
writeLen += n
}
// Santiy check.
if writeLen != e.sizeOf() {
panic(fmt.Sprintf("Serialized unexpected amount of data for an event, expected %d, wrote %d.", e.sizeOf(), writeLen))
}
return int64(writeLen), nil
}
func (e *Event) equals(other *Event) bool {
return e.wd == other.wd &&
e.mask == other.mask &&
e.cookie == other.cookie &&
e.len == other.len &&
bytes.Equal(e.name, other.name)
}
// InotifyEventFromStatMask generates the appropriate events for an operation
// that set the stats specified in mask.
func InotifyEventFromStatMask(mask uint32) uint32 {
var ev uint32
if mask&(linux.STATX_UID|linux.STATX_GID|linux.STATX_MODE) != 0 {
ev |= linux.IN_ATTRIB
}
if mask&linux.STATX_SIZE != 0 {
ev |= linux.IN_MODIFY
}
if (mask & (linux.STATX_ATIME | linux.STATX_MTIME)) == (linux.STATX_ATIME | linux.STATX_MTIME) {
// Both times indicates a utime(s) call.
ev |= linux.IN_ATTRIB
} else if mask&linux.STATX_ATIME != 0 {
ev |= linux.IN_ACCESS
} else if mask&linux.STATX_MTIME != 0 {
ev |= linux.IN_MODIFY
}
return ev
}
// InotifyRemoveChild sends the appriopriate notifications to the watch sets of
// the child being removed and its parent. Note that unlike most pairs of
// parent/child notifications, the child is notified first in this case.
func InotifyRemoveChild(ctx context.Context, self, parent *Watches, name string) {
if self != nil {
self.Notify(ctx, "", linux.IN_ATTRIB, 0, InodeEvent, true /* unlinked */)
}
if parent != nil {
parent.Notify(ctx, name, linux.IN_DELETE, 0, InodeEvent, true /* unlinked */)
}
}
// InotifyRename sends the appriopriate notifications to the watch sets of the
// file being renamed and its old/new parents.
func InotifyRename(ctx context.Context, renamed, oldParent, newParent *Watches, oldName, newName string, isDir bool) {
var dirEv uint32
if isDir {
dirEv = linux.IN_ISDIR
}
cookie := uniqueid.InotifyCookie(ctx)
if oldParent != nil {
oldParent.Notify(ctx, oldName, dirEv|linux.IN_MOVED_FROM, cookie, InodeEvent, false /* unlinked */)
}
if newParent != nil {
newParent.Notify(ctx, newName, dirEv|linux.IN_MOVED_TO, cookie, InodeEvent, false /* unlinked */)
}
// Somewhat surprisingly, self move events do not have a cookie.
if renamed != nil {
renamed.Notify(ctx, "", linux.IN_MOVE_SELF, 0, InodeEvent, false /* unlinked */)
}
}
|