1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package vfs
import (
"fmt"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/fspath"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sync"
)
// ResolvingPath represents the state of an in-progress path resolution, shared
// between VFS and FilesystemImpl methods that take a path.
//
// From the perspective of FilesystemImpl methods, a ResolvingPath represents a
// starting Dentry on the associated Filesystem (on which a reference is
// already held), a stream of path components relative to that Dentry, and
// elements of the invoking Context that are commonly required by
// FilesystemImpl methods.
//
// ResolvingPath is loosely analogous to Linux's struct nameidata.
//
// +stateify savable
type ResolvingPath struct {
vfs *VirtualFilesystem
root VirtualDentry // refs borrowed from PathOperation
mount *Mount
start *Dentry
pit fspath.Iterator
flags uint16
mustBeDir bool // final file must be a directory?
symlinks uint8 // number of symlinks traversed
curPart uint8 // index into parts
creds *auth.Credentials
// Data associated with resolve*Errors, stored in ResolvingPath so that
// those errors don't need to allocate.
nextMount *Mount // ref held if not nil
nextStart *Dentry // ref held if not nil
absSymlinkTarget fspath.Path
// ResolvingPath tracks relative paths, which is updated whenever a relative
// symlink is encountered.
parts [1 + linux.MaxSymlinkTraversals]fspath.Iterator
}
const (
rpflagsHaveMountRef = 1 << iota // do we hold a reference on mount?
rpflagsHaveStartRef // do we hold a reference on start?
rpflagsFollowFinalSymlink // same as PathOperation.FollowFinalSymlink
)
func init() {
if maxParts := len(ResolvingPath{}.parts); maxParts > 255 {
panic(fmt.Sprintf("uint8 is insufficient to accommodate len(ResolvingPath.parts) (%d)", maxParts))
}
}
// Error types that communicate state from the FilesystemImpl-caller,
// VFS-callee side of path resolution (i.e. errors returned by
// ResolvingPath.Resolve*()) to the VFS-caller, FilesystemImpl-callee side
// (i.e. VFS methods => ResolvingPath.handleError()). These are empty structs
// rather than error values because Go doesn't support non-primitive constants,
// so error "constants" are really mutable vars, necessitating somewhat
// expensive interface object comparisons.
// +stateify savable
type resolveMountRootOrJumpError struct{}
// Error implements error.Error.
func (resolveMountRootOrJumpError) Error() string {
return "resolving mount root or jump"
}
// +stateify savable
type resolveMountPointError struct{}
// Error implements error.Error.
func (resolveMountPointError) Error() string {
return "resolving mount point"
}
// +stateify savable
type resolveAbsSymlinkError struct{}
// Error implements error.Error.
func (resolveAbsSymlinkError) Error() string {
return "resolving absolute symlink"
}
var resolvingPathPool = sync.Pool{
New: func() any {
return &ResolvingPath{}
},
}
// getResolvingPath gets a new ResolvingPath from the pool. Caller must call
// ResolvingPath.Release() when done.
func (vfs *VirtualFilesystem) getResolvingPath(creds *auth.Credentials, pop *PathOperation) *ResolvingPath {
rp := resolvingPathPool.Get().(*ResolvingPath)
rp.vfs = vfs
rp.root = pop.Root
rp.mount = pop.Start.mount
rp.start = pop.Start.dentry
rp.pit = pop.Path.Begin
rp.flags = 0
if pop.FollowFinalSymlink {
rp.flags |= rpflagsFollowFinalSymlink
}
rp.mustBeDir = pop.Path.Dir
rp.symlinks = 0
rp.curPart = 0
rp.creds = creds
rp.parts[0] = pop.Path.Begin
return rp
}
// Copy creates another ResolvingPath with the same state as the original.
// Copies are independent, using the copy does not change the original and
// vice-versa.
//
// Caller must call Resease() when done.
func (rp *ResolvingPath) Copy() *ResolvingPath {
copy := resolvingPathPool.Get().(*ResolvingPath)
*copy = *rp // All fields all shallow copiable.
// Take extra reference for the copy if the original had them.
if copy.flags&rpflagsHaveStartRef != 0 {
copy.start.IncRef()
}
if copy.flags&rpflagsHaveMountRef != 0 {
copy.mount.IncRef()
}
// Reset error state.
copy.nextStart = nil
copy.nextMount = nil
return copy
}
// Release decrements references if needed and returns the object to the pool.
func (rp *ResolvingPath) Release(ctx context.Context) {
rp.root = VirtualDentry{}
rp.decRefStartAndMount(ctx)
rp.mount = nil
rp.start = nil
rp.releaseErrorState(ctx)
resolvingPathPool.Put(rp)
}
func (rp *ResolvingPath) decRefStartAndMount(ctx context.Context) {
if rp.flags&rpflagsHaveStartRef != 0 {
rp.start.DecRef(ctx)
}
if rp.flags&rpflagsHaveMountRef != 0 {
rp.mount.DecRef(ctx)
}
}
func (rp *ResolvingPath) releaseErrorState(ctx context.Context) {
if rp.nextStart != nil {
rp.nextStart.DecRef(ctx)
rp.nextStart = nil
}
if rp.nextMount != nil {
rp.nextMount.DecRef(ctx)
rp.nextMount = nil
}
}
// VirtualFilesystem returns the containing VirtualFilesystem.
func (rp *ResolvingPath) VirtualFilesystem() *VirtualFilesystem {
return rp.vfs
}
// Credentials returns the credentials of rp's provider.
func (rp *ResolvingPath) Credentials() *auth.Credentials {
return rp.creds
}
// Mount returns the Mount on which path resolution is currently occurring. It
// does not take a reference on the returned Mount.
func (rp *ResolvingPath) Mount() *Mount {
return rp.mount
}
// Start returns the starting Dentry represented by rp. It does not take a
// reference on the returned Dentry.
func (rp *ResolvingPath) Start() *Dentry {
return rp.start
}
// Done returns true if there are no remaining path components in the stream
// represented by rp.
func (rp *ResolvingPath) Done() bool {
// We don't need to check for rp.curPart == 0 because rp.Advance() won't
// set rp.pit to a terminal iterator otherwise.
return !rp.pit.Ok()
}
// Final returns true if there is exactly one remaining path component in the
// stream represented by rp.
//
// Preconditions: !rp.Done().
func (rp *ResolvingPath) Final() bool {
return rp.curPart == 0 && !rp.pit.NextOk()
}
// Pit returns a copy of rp's current path iterator. Modifying the iterator
// does not change rp.
func (rp *ResolvingPath) Pit() fspath.Iterator {
return rp.pit
}
// Component returns the current path component in the stream represented by
// rp.
//
// Preconditions: !rp.Done().
func (rp *ResolvingPath) Component() string {
if checkInvariants {
if !rp.pit.Ok() {
panic("ResolvingPath.Component() called at end of relative path")
}
}
return rp.pit.String()
}
// Advance advances the stream of path components represented by rp.
//
// Preconditions: !rp.Done().
func (rp *ResolvingPath) Advance() {
if checkInvariants {
if !rp.pit.Ok() {
panic("ResolvingPath.Advance() called at end of relative path")
}
}
next := rp.pit.Next()
if next.Ok() || rp.curPart == 0 { // have next component, or at end of path
rp.pit = next
} else { // at end of path segment, continue with next one
rp.curPart--
rp.pit = rp.parts[rp.curPart]
}
}
// CheckRoot is called before resolving the parent of the Dentry d. If the
// Dentry is contextually a VFS root, such that path resolution should treat
// d's parent as itself, CheckRoot returns (true, nil). If the Dentry is the
// root of a non-root mount, such that path resolution should switch to another
// Mount, CheckRoot returns (unspecified, non-nil error). Otherwise, path
// resolution should resolve d's parent normally, and CheckRoot returns (false,
// nil).
func (rp *ResolvingPath) CheckRoot(ctx context.Context, d *Dentry) (bool, error) {
if d == rp.root.dentry && rp.mount == rp.root.mount {
// At contextual VFS root (due to e.g. chroot(2)).
return true, nil
} else if d == rp.mount.root {
// At mount root ...
vd := rp.vfs.getMountpointAt(ctx, rp.mount, rp.root)
if vd.Ok() {
// ... of non-root mount.
rp.nextMount = vd.mount
rp.nextStart = vd.dentry
return false, resolveMountRootOrJumpError{}
}
// ... of root mount.
return true, nil
}
return false, nil
}
// CheckMount is called after resolving the parent or child of another Dentry
// to d. If d is a mount point, such that path resolution should switch to
// another Mount, CheckMount returns a non-nil error. Otherwise, CheckMount
// returns nil.
func (rp *ResolvingPath) CheckMount(ctx context.Context, d *Dentry) error {
if !d.isMounted() {
return nil
}
if mnt := rp.vfs.getMountAt(ctx, rp.mount, d); mnt != nil {
rp.nextMount = mnt
return resolveMountPointError{}
}
return nil
}
// ShouldFollowSymlink returns true if, supposing that the current path
// component in pcs represents a symbolic link, the symbolic link should be
// followed.
//
// If path is terminated with '/', the '/' is considered the last element and
// any symlink before that is followed:
//
// - For most non-creating walks, the last path component is handled by
// fs/namei.c:lookup_last(), which sets LOOKUP_FOLLOW if the first byte
// after the path component is non-NULL (which is only possible if it's '/')
// and the path component is of type LAST_NORM.
//
// - For open/openat/openat2 without O_CREAT, the last path component is
// handled by fs/namei.c:do_last(), which does the same, though without the
// LAST_NORM check.
//
// Preconditions: !rp.Done().
func (rp *ResolvingPath) ShouldFollowSymlink() bool {
// Non-final symlinks are always followed. Paths terminated with '/' are also
// always followed.
return rp.flags&rpflagsFollowFinalSymlink != 0 || !rp.Final() || rp.MustBeDir()
}
// HandleSymlink is called when the current path component is a symbolic link
// to the given target. If the calling Filesystem method should continue path
// traversal, HandleSymlink updates the path component stream to reflect the
// symlink target and returns nil. Otherwise it returns a non-nil error.
//
// Preconditions: !rp.Done().
//
// Postconditions: If HandleSymlink returns a nil error, then !rp.Done().
func (rp *ResolvingPath) HandleSymlink(target string) error {
if rp.symlinks >= linux.MaxSymlinkTraversals {
return linuxerr.ELOOP
}
if len(target) == 0 {
return linuxerr.ENOENT
}
rp.symlinks++
targetPath := fspath.Parse(target)
if targetPath.Absolute {
rp.absSymlinkTarget = targetPath
return resolveAbsSymlinkError{}
}
// Consume the path component that represented the symlink.
rp.Advance()
// Prepend the symlink target to the relative path.
if checkInvariants {
if !targetPath.HasComponents() {
panic(fmt.Sprintf("non-empty pathname %q parsed to relative path with no components", target))
}
}
rp.relpathPrepend(targetPath)
return nil
}
// Preconditions: path.HasComponents().
func (rp *ResolvingPath) relpathPrepend(path fspath.Path) {
if rp.pit.Ok() {
rp.parts[rp.curPart] = rp.pit
rp.pit = path.Begin
rp.curPart++
} else {
// The symlink was the final path component, so now the symlink target
// is the whole path.
rp.pit = path.Begin
// Symlink targets can set rp.mustBeDir (if they end in a trailing /),
// but can't unset it.
if path.Dir {
rp.mustBeDir = true
}
}
}
// HandleJump is called when the current path component is a "magic" link to
// the given VirtualDentry, like /proc/[pid]/fd/[fd]. If the calling Filesystem
// method should continue path traversal, HandleJump updates the path
// component stream to reflect the magic link target and returns nil. Otherwise
// it returns a non-nil error.
//
// Preconditions: !rp.Done().
func (rp *ResolvingPath) HandleJump(target VirtualDentry) error {
if rp.symlinks >= linux.MaxSymlinkTraversals {
return linuxerr.ELOOP
}
rp.symlinks++
// Consume the path component that represented the magic link.
rp.Advance()
// Unconditionally return a resolveMountRootOrJumpError, even if the Mount
// isn't changing, to force restarting at the new Dentry.
target.IncRef()
rp.nextMount = target.mount
rp.nextStart = target.dentry
return resolveMountRootOrJumpError{}
}
func (rp *ResolvingPath) handleError(ctx context.Context, err error) bool {
switch err.(type) {
case resolveMountRootOrJumpError:
// Switch to the new Mount. We hold references on the Mount and Dentry.
rp.decRefStartAndMount(ctx)
rp.mount = rp.nextMount
rp.start = rp.nextStart
rp.flags |= rpflagsHaveMountRef | rpflagsHaveStartRef
rp.nextMount = nil
rp.nextStart = nil
// Don't consume the path component that caused us to traverse
// through the mount root - i.e. the ".." - because we still need to
// resolve the mount point's parent in the new FilesystemImpl.
//
// Restart path resolution on the new Mount. Don't bother calling
// rp.releaseErrorState() since we already set nextMount and nextStart
// to nil above.
return true
case resolveMountPointError:
// Switch to the new Mount. We hold a reference on the Mount, but
// borrow the reference on the mount root from the Mount.
rp.decRefStartAndMount(ctx)
rp.mount = rp.nextMount
rp.start = rp.nextMount.root
rp.flags = rp.flags&^rpflagsHaveStartRef | rpflagsHaveMountRef
rp.nextMount = nil
// Consume the path component that represented the mount point.
rp.Advance()
// Restart path resolution on the new Mount.
rp.releaseErrorState(ctx)
return true
case resolveAbsSymlinkError:
// Switch to the new Mount. References are borrowed from rp.root.
rp.decRefStartAndMount(ctx)
rp.mount = rp.root.mount
rp.start = rp.root.dentry
rp.flags &^= rpflagsHaveMountRef | rpflagsHaveStartRef
// Consume the path component that represented the symlink.
rp.Advance()
// Prepend the symlink target to the relative path.
rp.relpathPrepend(rp.absSymlinkTarget)
// Restart path resolution on the new Mount.
rp.releaseErrorState(ctx)
return true
default:
// Not an error we can handle.
return false
}
}
// canHandleError returns true if err is an error returned by rp.Resolve*()
// that rp.handleError() may attempt to handle.
func (rp *ResolvingPath) canHandleError(err error) bool {
switch err.(type) {
case resolveMountRootOrJumpError, resolveMountPointError, resolveAbsSymlinkError:
return true
default:
return false
}
}
// MustBeDir returns true if the file traversed by rp must be a directory.
func (rp *ResolvingPath) MustBeDir() bool {
return rp.mustBeDir
}
|