1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package pretty is a pretty-printer for state streams.
package pretty
import (
"fmt"
"io"
"io/ioutil"
"reflect"
"strings"
"gvisor.dev/gvisor/pkg/state"
"gvisor.dev/gvisor/pkg/state/wire"
)
type printer struct {
html bool
typeSpecs map[string]*wire.Type
}
func (p *printer) formatRef(x *wire.Ref, graph uint64) string {
baseRef := fmt.Sprintf("g%dr%d", graph, x.Root)
fullRef := baseRef
if len(x.Dots) > 0 {
// See wire.Ref; Type valid if Dots non-zero.
typ, _ := p.formatType(x.Type, graph)
var buf strings.Builder
buf.WriteString("(*")
buf.WriteString(typ)
buf.WriteString(")(")
buf.WriteString(baseRef)
buf.WriteString(")")
for _, component := range x.Dots {
switch v := component.(type) {
case *wire.FieldName:
buf.WriteString(".")
buf.WriteString(string(*v))
case wire.Index:
buf.WriteString(fmt.Sprintf("[%d]", v))
default:
panic(fmt.Sprintf("unreachable: switch should be exhaustive, unhandled case %v", reflect.TypeOf(component)))
}
}
fullRef = buf.String()
}
if p.html {
return fmt.Sprintf("<a href=\"#%s\">%s</a>", baseRef, fullRef)
}
return fullRef
}
func (p *printer) formatType(t wire.TypeSpec, graph uint64) (string, bool) {
switch x := t.(type) {
case wire.TypeID:
tag := fmt.Sprintf("g%dt%d", graph, x)
desc := tag
if spec, ok := p.typeSpecs[tag]; ok {
desc += fmt.Sprintf("=%s", spec.Name)
} else {
desc += "!missing-type-spec"
}
if p.html {
return fmt.Sprintf("<a href=\"#%s\">%s</a>", tag, desc), true
}
return desc, true
case wire.TypeSpecNil:
return "", false // Only nil type.
case *wire.TypeSpecPointer:
element, _ := p.formatType(x.Type, graph)
return fmt.Sprintf("(*%s)", element), true
case *wire.TypeSpecArray:
element, _ := p.formatType(x.Type, graph)
return fmt.Sprintf("[%d](%s)", x.Count, element), true
case *wire.TypeSpecSlice:
element, _ := p.formatType(x.Type, graph)
return fmt.Sprintf("([]%s)", element), true
case *wire.TypeSpecMap:
key, _ := p.formatType(x.Key, graph)
value, _ := p.formatType(x.Value, graph)
return fmt.Sprintf("(map[%s]%s)", key, value), true
default:
panic(fmt.Sprintf("unreachable: unknown type %T", t))
}
}
// format formats a single object, for pretty-printing. It also returns whether
// the value is a non-zero value.
func (p *printer) format(graph uint64, depth int, encoded wire.Object) (string, bool) {
switch x := encoded.(type) {
case wire.Nil:
return "nil", false
case *wire.String:
return fmt.Sprintf("%q", *x), *x != ""
case *wire.Complex64:
return fmt.Sprintf("%f+%fi", real(*x), imag(*x)), *x != 0.0
case *wire.Complex128:
return fmt.Sprintf("%f+%fi", real(*x), imag(*x)), *x != 0.0
case *wire.Ref:
return p.formatRef(x, graph), x.Root != 0
case *wire.Type:
tabs := "\n" + strings.Repeat("\t", depth)
items := make([]string, 0, len(x.Fields)+2)
items = append(items, fmt.Sprintf("type %s {", x.Name))
for i := 0; i < len(x.Fields); i++ {
items = append(items, fmt.Sprintf("\t%d: %s,", i, x.Fields[i]))
}
items = append(items, "}")
return strings.Join(items, tabs), true // No zero value.
case *wire.Slice:
return fmt.Sprintf("%s{len:%d,cap:%d}", p.formatRef(&x.Ref, graph), x.Length, x.Capacity), x.Capacity != 0
case *wire.Array:
if len(x.Contents) == 0 {
return "[]", false
}
items := make([]string, 0, len(x.Contents)+2)
zeros := make([]string, 0) // used to eliminate zero entries.
items = append(items, "[")
tabs := "\n" + strings.Repeat("\t", depth)
for i := 0; i < len(x.Contents); i++ {
item, ok := p.format(graph, depth+1, x.Contents[i])
if !ok {
zeros = append(zeros, fmt.Sprintf("\t%s,", item))
continue
}
if len(zeros) > 0 {
items = append(items, zeros...)
zeros = nil
}
items = append(items, fmt.Sprintf("\t%s,", item))
}
if len(zeros) > 0 {
items = append(items, fmt.Sprintf("\t... (%d zeros),", len(zeros)))
}
items = append(items, "]")
return strings.Join(items, tabs), len(zeros) < len(x.Contents)
case *wire.Struct:
tag := fmt.Sprintf("g%dt%d", graph, x.TypeID)
spec, _ := p.typeSpecs[tag]
typ, _ := p.formatType(x.TypeID, graph)
if x.Fields() == 0 {
return fmt.Sprintf("struct[%s]{}", typ), false
}
items := make([]string, 0, 2)
items = append(items, fmt.Sprintf("struct[%s]{", typ))
tabs := "\n" + strings.Repeat("\t", depth)
allZero := true
for i := 0; i < x.Fields(); i++ {
var name string
if spec != nil && i < len(spec.Fields) {
name = spec.Fields[i]
} else {
name = fmt.Sprintf("%d", i)
}
element, ok := p.format(graph, depth+1, *x.Field(i))
allZero = allZero && !ok
items = append(items, fmt.Sprintf("\t%s: %s,", name, element))
}
items = append(items, "}")
return strings.Join(items, tabs), !allZero
case *wire.Map:
if len(x.Keys) == 0 {
return "map{}", false
}
items := make([]string, 0, len(x.Keys)+2)
items = append(items, "map{")
tabs := "\n" + strings.Repeat("\t", depth)
for i := 0; i < len(x.Keys); i++ {
key, _ := p.format(graph, depth+1, x.Keys[i])
value, _ := p.format(graph, depth+1, x.Values[i])
items = append(items, fmt.Sprintf("\t%s: %s,", key, value))
}
items = append(items, "}")
return strings.Join(items, tabs), true
case *wire.Interface:
typ, typOk := p.formatType(x.Type, graph)
element, elementOk := p.format(graph, depth+1, x.Value)
return fmt.Sprintf("interface[%s]{%s}", typ, element), typOk || elementOk
default:
// Must be a primitive; use reflection.
return fmt.Sprintf("%v", encoded), true
}
}
// printStream is the basic print implementation.
func (p *printer) printStream(w io.Writer, r wire.Reader) (err error) {
// current graph ID.
var graph uint64
if p.html {
fmt.Fprintf(w, "<pre>")
defer fmt.Fprintf(w, "</pre>")
}
defer func() {
if r := recover(); r != nil {
if rErr, ok := r.(error); ok {
err = rErr // Override return.
return
}
panic(r) // Propagate.
}
}()
p.typeSpecs = make(map[string]*wire.Type)
for {
// Find the first object to begin generation.
length, object, err := state.ReadHeader(r)
if err == io.EOF {
// Nothing else to do.
break
} else if err != nil {
return err
}
if !object {
graph++ // Increment the graph.
if length > 0 {
fmt.Fprintf(w, "(%d bytes non-object data)\n", length)
io.Copy(ioutil.Discard, &io.LimitedReader{
R: r,
N: int64(length),
})
}
continue
}
// Read & unmarshal the object.
//
// Note that this loop must match the general structure of the
// loop in decode.go. But we don't register type information,
// etc. and just print the raw structures.
type objectAndID struct {
id uint64
obj wire.Object
}
var (
tid uint64 = 1
objects []objectAndID
)
for i := uint64(0); i < length; {
// Unmarshal either a type object or object ID.
encoded := wire.Load(r)
switch we := encoded.(type) {
case *wire.Type:
str, _ := p.format(graph, 0, encoded)
tag := fmt.Sprintf("g%dt%d", graph, tid)
p.typeSpecs[tag] = we
if p.html {
// See below.
tag = fmt.Sprintf("<a name=\"%s\">%s</a><a href=\"#%s\">⚓</a>", tag, tag, tag)
}
if _, err := fmt.Fprintf(w, "%s = %s\n", tag, str); err != nil {
return err
}
tid++
case wire.Uint:
// Unmarshal the actual object.
objects = append(objects, objectAndID{
id: uint64(we),
obj: wire.Load(r),
})
i++
default:
return fmt.Errorf("wanted type or object ID, got %#v", encoded)
}
}
for _, objAndID := range objects {
// Format the node.
str, _ := p.format(graph, 0, objAndID.obj)
tag := fmt.Sprintf("g%dr%d", graph, objAndID.id)
if p.html {
// Create a little tag with an anchor next to it for linking.
tag = fmt.Sprintf("<a name=\"%s\">%s</a><a href=\"#%s\">⚓</a>", tag, tag, tag)
}
if _, err := fmt.Fprintf(w, "%s = %s\n", tag, str); err != nil {
return err
}
}
}
return nil
}
// PrintText reads the stream from r and prints text to w.
func PrintText(w io.Writer, r wire.Reader) error {
return (&printer{}).printStream(w, r)
}
// PrintHTML reads the stream from r and prints html to w.
func PrintHTML(w io.Writer, r wire.Reader) error {
return (&printer{html: true}).printStream(w, r)
}
|