1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
package locking
import (
"sync/atomic"
"unsafe"
"gvisor.dev/gvisor/pkg/gohacks"
"gvisor.dev/gvisor/pkg/sync"
)
const (
// ShardOrder is an optional parameter specifying the base-2 log of the
// number of shards per AtomicPtrMap. Higher values of ShardOrder reduce
// unnecessary synchronization between unrelated concurrent operations,
// improving performance for write-heavy workloads, but increase memory
// usage for small maps.
ancestorsShardOrder = 0
)
// Hasher is an optional type parameter. If Hasher is provided, it must define
// the Init and Hash methods. One Hasher will be shared by all AtomicPtrMaps.
type ancestorsHasher struct {
ancestorsdefaultHasher
}
// defaultHasher is the default Hasher. This indirection exists because
// defaultHasher must exist even if a custom Hasher is provided, to prevent the
// Go compiler from complaining about defaultHasher's unused imports.
type ancestorsdefaultHasher struct {
fn func(unsafe.Pointer, uintptr) uintptr
seed uintptr
}
// Init initializes the Hasher.
func (h *ancestorsdefaultHasher) Init() {
h.fn = sync.MapKeyHasher(map[*MutexClass]*string(nil))
h.seed = sync.RandUintptr()
}
// Hash returns the hash value for the given Key.
func (h *ancestorsdefaultHasher) Hash(key *MutexClass) uintptr {
return h.fn(gohacks.Noescape(unsafe.Pointer(&key)), h.seed)
}
var ancestorshasher ancestorsHasher
func init() {
ancestorshasher.Init()
}
// An AtomicPtrMap maps Keys to non-nil pointers to Values. AtomicPtrMap are
// safe for concurrent use from multiple goroutines without additional
// synchronization.
//
// The zero value of AtomicPtrMap is empty (maps all Keys to nil) and ready for
// use. AtomicPtrMaps must not be copied after first use.
//
// sync.Map may be faster than AtomicPtrMap if most operations on the map are
// concurrent writes to a fixed set of keys. AtomicPtrMap is usually faster in
// other circumstances.
type ancestorsAtomicPtrMap struct {
shards [1 << ancestorsShardOrder]ancestorsapmShard
}
func (m *ancestorsAtomicPtrMap) shard(hash uintptr) *ancestorsapmShard {
// Go defines right shifts >= width of shifted unsigned operand as 0, so
// this is correct even if ShardOrder is 0 (although nogo complains because
// nogo is dumb).
const indexLSB = unsafe.Sizeof(uintptr(0))*8 - ancestorsShardOrder
index := hash >> indexLSB
return (*ancestorsapmShard)(unsafe.Pointer(uintptr(unsafe.Pointer(&m.shards)) + (index * unsafe.Sizeof(ancestorsapmShard{}))))
}
type ancestorsapmShard struct {
ancestorsapmShardMutationData
_ [ancestorsapmShardMutationDataPadding]byte
ancestorsapmShardLookupData
_ [ancestorsapmShardLookupDataPadding]byte
}
type ancestorsapmShardMutationData struct {
dirtyMu sync.Mutex // serializes slot transitions out of empty
dirty uintptr // # slots with val != nil
count uintptr // # slots with val != nil and val != tombstone()
rehashMu sync.Mutex // serializes rehashing
}
type ancestorsapmShardLookupData struct {
seq sync.SeqCount // allows atomic reads of slots+mask
slots unsafe.Pointer // [mask+1]slot or nil; protected by rehashMu/seq
mask uintptr // always (a power of 2) - 1; protected by rehashMu/seq
}
const (
ancestorscacheLineBytes = 64
// Cache line padding is enabled if sharding is.
ancestorsapmEnablePadding = (ancestorsShardOrder + 63) >> 6 // 0 if ShardOrder == 0, 1 otherwise
// The -1 and +1 below are required to ensure that if unsafe.Sizeof(T) %
// cacheLineBytes == 0, then padding is 0 (rather than cacheLineBytes).
ancestorsapmShardMutationDataRequiredPadding = ancestorscacheLineBytes - (((unsafe.Sizeof(ancestorsapmShardMutationData{}) - 1) % ancestorscacheLineBytes) + 1)
ancestorsapmShardMutationDataPadding = ancestorsapmEnablePadding * ancestorsapmShardMutationDataRequiredPadding
ancestorsapmShardLookupDataRequiredPadding = ancestorscacheLineBytes - (((unsafe.Sizeof(ancestorsapmShardLookupData{}) - 1) % ancestorscacheLineBytes) + 1)
ancestorsapmShardLookupDataPadding = ancestorsapmEnablePadding * ancestorsapmShardLookupDataRequiredPadding
// These define fractional thresholds for when apmShard.rehash() is called
// (i.e. the load factor) and when it rehases to a larger table
// respectively. They are chosen such that the rehash threshold = the
// expansion threshold + 1/2, so that when reuse of deleted slots is rare
// or non-existent, rehashing occurs after the insertion of at least 1/2
// the table's size in new entries, which is acceptably infrequent.
ancestorsapmRehashThresholdNum = 2
ancestorsapmRehashThresholdDen = 3
ancestorsapmExpansionThresholdNum = 1
ancestorsapmExpansionThresholdDen = 6
)
type ancestorsapmSlot struct {
// slot states are indicated by val:
//
// * Empty: val == nil; key is meaningless. May transition to full or
// evacuated with dirtyMu locked.
//
// * Full: val != nil, tombstone(), or evacuated(); key is immutable. val
// is the Value mapped to key. May transition to deleted or evacuated.
//
// * Deleted: val == tombstone(); key is still immutable. key is mapped to
// no Value. May transition to full or evacuated.
//
// * Evacuated: val == evacuated(); key is immutable. Set by rehashing on
// slots that have already been moved, requiring readers to wait for
// rehashing to complete and use the new table. Terminal state.
//
// Note that once val is non-nil, it cannot become nil again. That is, the
// transition from empty to non-empty is irreversible for a given slot;
// the only way to create more empty slots is by rehashing.
val unsafe.Pointer
key *MutexClass
}
func ancestorsapmSlotAt(slots unsafe.Pointer, pos uintptr) *ancestorsapmSlot {
return (*ancestorsapmSlot)(unsafe.Pointer(uintptr(slots) + pos*unsafe.Sizeof(ancestorsapmSlot{})))
}
var ancestorstombstoneObj byte
func ancestorstombstone() unsafe.Pointer {
return unsafe.Pointer(&ancestorstombstoneObj)
}
var ancestorsevacuatedObj byte
func ancestorsevacuated() unsafe.Pointer {
return unsafe.Pointer(&ancestorsevacuatedObj)
}
// Load returns the Value stored in m for key.
func (m *ancestorsAtomicPtrMap) Load(key *MutexClass) *string {
hash := ancestorshasher.Hash(key)
shard := m.shard(hash)
retry:
epoch := shard.seq.BeginRead()
slots := atomic.LoadPointer(&shard.slots)
mask := atomic.LoadUintptr(&shard.mask)
if !shard.seq.ReadOk(epoch) {
goto retry
}
if slots == nil {
return nil
}
i := hash & mask
inc := uintptr(1)
for {
slot := ancestorsapmSlotAt(slots, i)
slotVal := atomic.LoadPointer(&slot.val)
if slotVal == nil {
return nil
}
if slotVal == ancestorsevacuated() {
goto retry
}
if slot.key == key {
if slotVal == ancestorstombstone() {
return nil
}
return (*string)(slotVal)
}
i = (i + inc) & mask
inc++
}
}
// Store stores the Value val for key.
func (m *ancestorsAtomicPtrMap) Store(key *MutexClass, val *string) {
m.maybeCompareAndSwap(key, false, nil, val)
}
// Swap stores the Value val for key and returns the previously-mapped Value.
func (m *ancestorsAtomicPtrMap) Swap(key *MutexClass, val *string) *string {
return m.maybeCompareAndSwap(key, false, nil, val)
}
// CompareAndSwap checks that the Value stored for key is oldVal; if it is, it
// stores the Value newVal for key. CompareAndSwap returns the previous Value
// stored for key, whether or not it stores newVal.
func (m *ancestorsAtomicPtrMap) CompareAndSwap(key *MutexClass, oldVal, newVal *string) *string {
return m.maybeCompareAndSwap(key, true, oldVal, newVal)
}
func (m *ancestorsAtomicPtrMap) maybeCompareAndSwap(key *MutexClass, compare bool, typedOldVal, typedNewVal *string) *string {
hash := ancestorshasher.Hash(key)
shard := m.shard(hash)
oldVal := ancestorstombstone()
if typedOldVal != nil {
oldVal = unsafe.Pointer(typedOldVal)
}
newVal := ancestorstombstone()
if typedNewVal != nil {
newVal = unsafe.Pointer(typedNewVal)
}
retry:
epoch := shard.seq.BeginRead()
slots := atomic.LoadPointer(&shard.slots)
mask := atomic.LoadUintptr(&shard.mask)
if !shard.seq.ReadOk(epoch) {
goto retry
}
if slots == nil {
if (compare && oldVal != ancestorstombstone()) || newVal == ancestorstombstone() {
return nil
}
shard.rehash(nil)
goto retry
}
i := hash & mask
inc := uintptr(1)
for {
slot := ancestorsapmSlotAt(slots, i)
slotVal := atomic.LoadPointer(&slot.val)
if slotVal == nil {
if (compare && oldVal != ancestorstombstone()) || newVal == ancestorstombstone() {
return nil
}
shard.dirtyMu.Lock()
slotVal = atomic.LoadPointer(&slot.val)
if slotVal == nil {
if dirty, capacity := shard.dirty+1, mask+1; dirty*ancestorsapmRehashThresholdDen >= capacity*ancestorsapmRehashThresholdNum {
shard.dirtyMu.Unlock()
shard.rehash(slots)
goto retry
}
slot.key = key
atomic.StorePointer(&slot.val, newVal)
shard.dirty++
atomic.AddUintptr(&shard.count, 1)
shard.dirtyMu.Unlock()
return nil
}
shard.dirtyMu.Unlock()
}
if slotVal == ancestorsevacuated() {
goto retry
}
if slot.key == key {
for {
if (compare && oldVal != slotVal) || newVal == slotVal {
if slotVal == ancestorstombstone() {
return nil
}
return (*string)(slotVal)
}
if atomic.CompareAndSwapPointer(&slot.val, slotVal, newVal) {
if slotVal == ancestorstombstone() {
atomic.AddUintptr(&shard.count, 1)
return nil
}
if newVal == ancestorstombstone() {
atomic.AddUintptr(&shard.count, ^uintptr(0))
}
return (*string)(slotVal)
}
slotVal = atomic.LoadPointer(&slot.val)
if slotVal == ancestorsevacuated() {
goto retry
}
}
}
i = (i + inc) & mask
inc++
}
}
// rehash is marked nosplit to avoid preemption during table copying.
//
//go:nosplit
func (shard *ancestorsapmShard) rehash(oldSlots unsafe.Pointer) {
shard.rehashMu.Lock()
defer shard.rehashMu.Unlock()
if shard.slots != oldSlots {
return
}
newSize := uintptr(8)
if oldSlots != nil {
oldSize := shard.mask + 1
newSize = oldSize
if count := atomic.LoadUintptr(&shard.count) + 1; count*ancestorsapmExpansionThresholdDen > oldSize*ancestorsapmExpansionThresholdNum {
newSize *= 2
}
}
newSlotsSlice := make([]ancestorsapmSlot, newSize)
newSlotsHeader := (*gohacks.SliceHeader)(unsafe.Pointer(&newSlotsSlice))
newSlots := newSlotsHeader.Data
newMask := newSize - 1
shard.dirtyMu.Lock()
shard.seq.BeginWrite()
if oldSlots != nil {
realCount := uintptr(0)
oldMask := shard.mask
for i := uintptr(0); i <= oldMask; i++ {
oldSlot := ancestorsapmSlotAt(oldSlots, i)
val := atomic.SwapPointer(&oldSlot.val, ancestorsevacuated())
if val == nil || val == ancestorstombstone() {
continue
}
hash := ancestorshasher.Hash(oldSlot.key)
j := hash & newMask
inc := uintptr(1)
for {
newSlot := ancestorsapmSlotAt(newSlots, j)
if newSlot.val == nil {
newSlot.val = val
newSlot.key = oldSlot.key
break
}
j = (j + inc) & newMask
inc++
}
realCount++
}
shard.dirty = realCount
}
atomic.StorePointer(&shard.slots, newSlots)
atomic.StoreUintptr(&shard.mask, newMask)
shard.seq.EndWrite()
shard.dirtyMu.Unlock()
}
// Range invokes f on each Key-Value pair stored in m. If any call to f returns
// false, Range stops iteration and returns.
//
// Range does not necessarily correspond to any consistent snapshot of the
// Map's contents: no Key will be visited more than once, but if the Value for
// any Key is stored or deleted concurrently, Range may reflect any mapping for
// that Key from any point during the Range call.
//
// f must not call other methods on m.
func (m *ancestorsAtomicPtrMap) Range(f func(key *MutexClass, val *string) bool) {
for si := 0; si < len(m.shards); si++ {
shard := &m.shards[si]
if !shard.doRange(f) {
return
}
}
}
func (shard *ancestorsapmShard) doRange(f func(key *MutexClass, val *string) bool) bool {
shard.rehashMu.Lock()
defer shard.rehashMu.Unlock()
slots := shard.slots
if slots == nil {
return true
}
mask := shard.mask
for i := uintptr(0); i <= mask; i++ {
slot := ancestorsapmSlotAt(slots, i)
slotVal := atomic.LoadPointer(&slot.val)
if slotVal == nil || slotVal == ancestorstombstone() {
continue
}
if !f(slot.key, (*string)(slotVal)) {
return false
}
}
return true
}
// RangeRepeatable is like Range, but:
//
// - RangeRepeatable may visit the same Key multiple times in the presence of
// concurrent mutators, possibly passing different Values to f in different
// calls.
//
// - It is safe for f to call other methods on m.
func (m *ancestorsAtomicPtrMap) RangeRepeatable(f func(key *MutexClass, val *string) bool) {
for si := 0; si < len(m.shards); si++ {
shard := &m.shards[si]
retry:
epoch := shard.seq.BeginRead()
slots := atomic.LoadPointer(&shard.slots)
mask := atomic.LoadUintptr(&shard.mask)
if !shard.seq.ReadOk(epoch) {
goto retry
}
if slots == nil {
continue
}
for i := uintptr(0); i <= mask; i++ {
slot := ancestorsapmSlotAt(slots, i)
slotVal := atomic.LoadPointer(&slot.val)
if slotVal == ancestorsevacuated() {
goto retry
}
if slotVal == nil || slotVal == ancestorstombstone() {
continue
}
if !f(slot.key, (*string)(slotVal)) {
return
}
}
}
}
|