1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package ipv6 contains the implementation of the ipv6 network protocol.
package ipv6
import (
"encoding/binary"
"fmt"
"hash/fnv"
"math"
"reflect"
"sort"
"time"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/bufferv2"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/header/parse"
"gvisor.dev/gvisor/pkg/tcpip/network/hash"
"gvisor.dev/gvisor/pkg/tcpip/network/internal/fragmentation"
"gvisor.dev/gvisor/pkg/tcpip/network/internal/ip"
"gvisor.dev/gvisor/pkg/tcpip/network/internal/multicast"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
const (
// ReassembleTimeout controls how long a fragment will be held.
// As per RFC 8200 section 4.5:
//
// If insufficient fragments are received to complete reassembly of a packet
// within 60 seconds of the reception of the first-arriving fragment of that
// packet, reassembly of that packet must be abandoned.
//
// Linux also uses 60 seconds for reassembly timeout:
// https://github.com/torvalds/linux/blob/47ec5303d73ea344e84f46660fff693c57641386/include/net/ipv6.h#L456
ReassembleTimeout = 60 * time.Second
// ProtocolNumber is the ipv6 protocol number.
ProtocolNumber = header.IPv6ProtocolNumber
// maxPayloadSize is the maximum size that can be encoded in the 16-bit
// PayloadLength field of the ipv6 header.
maxPayloadSize = 0xffff
// DefaultTTL is the default hop limit for IPv6 Packets egressed by
// Netstack.
DefaultTTL = 64
// buckets for fragment identifiers
buckets = 2048
)
const (
forwardingDisabled = 0
forwardingEnabled = 1
)
// policyTable is the default policy table defined in RFC 6724 section 2.1.
//
// A more human-readable version:
//
// Prefix Precedence Label
// ::1/128 50 0
// ::/0 40 1
// ::ffff:0:0/96 35 4
// 2002::/16 30 2
// 2001::/32 5 5
// fc00::/7 3 13
// ::/96 1 3
// fec0::/10 1 11
// 3ffe::/16 1 12
//
// The table is sorted by prefix length so longest-prefix match can be easily
// achieved.
//
// We willingly left out ::/96, fec0::/10 and 3ffe::/16 since those prefix
// assignments are deprecated.
//
// As per RFC 4291 section 2.5.5.1 (for ::/96),
//
// The "IPv4-Compatible IPv6 address" is now deprecated because the
// current IPv6 transition mechanisms no longer use these addresses.
// New or updated implementations are not required to support this
// address type.
//
// As per RFC 3879 section 4 (for fec0::/10),
//
// This document formally deprecates the IPv6 site-local unicast prefix
// defined in [RFC3513], i.e., 1111111011 binary or FEC0::/10.
//
// As per RFC 3701 section 1 (for 3ffe::/16),
//
// As clearly stated in [TEST-NEW], the addresses for the 6bone are
// temporary and will be reclaimed in the future. It further states
// that all users of these addresses (within the 3FFE::/16 prefix) will
// be required to renumber at some time in the future.
//
// and section 2,
//
// Thus after the pTLA allocation cutoff date January 1, 2004, it is
// REQUIRED that no new 6bone 3FFE pTLAs be allocated.
//
// MUST NOT BE MODIFIED.
var policyTable = [...]struct {
subnet tcpip.Subnet
label uint8
}{
// ::1/128
{
subnet: header.IPv6Loopback.WithPrefix().Subnet(),
label: 0,
},
// ::ffff:0:0/96
{
subnet: header.IPv4MappedIPv6Subnet,
label: 4,
},
// 2001::/32 (Teredo prefix as per RFC 4380 section 2.6).
{
subnet: tcpip.AddressWithPrefix{
Address: "\x20\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
PrefixLen: 32,
}.Subnet(),
label: 5,
},
// 2002::/16 (6to4 prefix as per RFC 3056 section 2).
{
subnet: tcpip.AddressWithPrefix{
Address: "\x20\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
PrefixLen: 16,
}.Subnet(),
label: 2,
},
// fc00::/7 (Unique local addresses as per RFC 4193 section 3.1).
{
subnet: tcpip.AddressWithPrefix{
Address: "\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
PrefixLen: 7,
}.Subnet(),
label: 13,
},
// ::/0
{
subnet: header.IPv6EmptySubnet,
label: 1,
},
}
func getLabel(addr tcpip.Address) uint8 {
for _, p := range policyTable {
if p.subnet.Contains(addr) {
return p.label
}
}
panic(fmt.Sprintf("should have a label for address = %s", addr))
}
var _ stack.DuplicateAddressDetector = (*endpoint)(nil)
var _ stack.LinkAddressResolver = (*endpoint)(nil)
var _ stack.LinkResolvableNetworkEndpoint = (*endpoint)(nil)
var _ stack.ForwardingNetworkEndpoint = (*endpoint)(nil)
var _ stack.MulticastForwardingNetworkEndpoint = (*endpoint)(nil)
var _ stack.GroupAddressableEndpoint = (*endpoint)(nil)
var _ stack.AddressableEndpoint = (*endpoint)(nil)
var _ stack.NetworkEndpoint = (*endpoint)(nil)
var _ stack.NDPEndpoint = (*endpoint)(nil)
var _ NDPEndpoint = (*endpoint)(nil)
type endpoint struct {
nic stack.NetworkInterface
dispatcher stack.TransportDispatcher
protocol *protocol
stats sharedStats
// enabled is set to 1 when the endpoint is enabled and 0 when it is
// disabled.
enabled atomicbitops.Uint32
// forwarding is set to forwardingEnabled when the endpoint has forwarding
// enabled and forwardingDisabled when it is disabled.
forwarding atomicbitops.Uint32
// multicastForwarding is set to forwardingEnabled when the endpoint has
// forwarding enabled and forwardingDisabled when it is disabled.
//
// TODO(https://gvisor.dev/issue/7338): Implement support for multicast
// forwarding. Currently, setting this value to true is a no-op.
multicastForwarding atomicbitops.Uint32
mu struct {
sync.RWMutex
addressableEndpointState stack.AddressableEndpointState
ndp ndpState
mld mldState
}
// dad is used to check if an arbitrary address is already assigned to some
// neighbor.
//
// Note: this is different from mu.ndp.dad which is used to perform DAD for
// addresses that are assigned to the interface. Removing an address aborts
// DAD; if we had used the same state, handlers for a removed address would
// not be called with the actual DAD result.
//
// LOCK ORDERING: mu > dad.mu.
dad struct {
mu struct {
sync.Mutex
dad ip.DAD
}
}
}
// NICNameFromID is a function that returns a stable name for the specified NIC,
// even if different NIC IDs are used to refer to the same NIC in different
// program runs. It is used when generating opaque interface identifiers (IIDs).
// If the NIC was created with a name, it is passed to NICNameFromID.
//
// NICNameFromID SHOULD return unique NIC names so unique opaque IIDs are
// generated for the same prefix on different NICs.
type NICNameFromID func(tcpip.NICID, string) string
// OpaqueInterfaceIdentifierOptions holds the options related to the generation
// of opaque interface identifiers (IIDs) as defined by RFC 7217.
type OpaqueInterfaceIdentifierOptions struct {
// NICNameFromID is a function that returns a stable name for a specified NIC,
// even if the NIC ID changes over time.
//
// Must be specified to generate the opaque IID.
NICNameFromID NICNameFromID
// SecretKey is a pseudo-random number used as the secret key when generating
// opaque IIDs as defined by RFC 7217. The key SHOULD be at least
// header.OpaqueIIDSecretKeyMinBytes bytes and MUST follow minimum randomness
// requirements for security as outlined by RFC 4086. SecretKey MUST NOT
// change between program runs, unless explicitly changed.
//
// OpaqueInterfaceIdentifierOptions takes ownership of SecretKey. SecretKey
// MUST NOT be modified after Stack is created.
//
// May be nil, but a nil value is highly discouraged to maintain
// some level of randomness between nodes.
SecretKey []byte
}
// CheckDuplicateAddress implements stack.DuplicateAddressDetector.
func (e *endpoint) CheckDuplicateAddress(addr tcpip.Address, h stack.DADCompletionHandler) stack.DADCheckAddressDisposition {
e.dad.mu.Lock()
defer e.dad.mu.Unlock()
return e.dad.mu.dad.CheckDuplicateAddressLocked(addr, h)
}
// SetDADConfigurations implements stack.DuplicateAddressDetector.
func (e *endpoint) SetDADConfigurations(c stack.DADConfigurations) {
e.mu.Lock()
defer e.mu.Unlock()
e.dad.mu.Lock()
defer e.dad.mu.Unlock()
e.mu.ndp.dad.SetConfigsLocked(c)
e.dad.mu.dad.SetConfigsLocked(c)
}
// DuplicateAddressProtocol implements stack.DuplicateAddressDetector.
func (*endpoint) DuplicateAddressProtocol() tcpip.NetworkProtocolNumber {
return ProtocolNumber
}
// HandleLinkResolutionFailure implements stack.LinkResolvableNetworkEndpoint.
func (e *endpoint) HandleLinkResolutionFailure(pkt stack.PacketBufferPtr) {
// If we are operating as a router, we should return an ICMP error to the
// original packet's sender.
if pkt.NetworkPacketInfo.IsForwardedPacket {
// TODO(gvisor.dev/issue/6005): Propagate asynchronously generated ICMP
// errors to local endpoints.
e.protocol.returnError(&icmpReasonHostUnreachable{}, pkt, false /* deliveredLocally */)
e.stats.ip.Forwarding.Errors.Increment()
e.stats.ip.Forwarding.HostUnreachable.Increment()
return
}
// handleControl expects the entire offending packet to be in the packet
// buffer's data field.
pkt = stack.NewPacketBuffer(stack.PacketBufferOptions{
Payload: pkt.ToBuffer(),
})
defer pkt.DecRef()
pkt.NICID = e.nic.ID()
pkt.NetworkProtocolNumber = ProtocolNumber
e.handleControl(&icmpv6DestinationAddressUnreachableSockError{}, pkt)
}
// onAddressAssignedLocked handles an address being assigned.
//
// Precondition: e.mu must be exclusively locked.
func (e *endpoint) onAddressAssignedLocked(addr tcpip.Address) {
// As per RFC 2710 section 3,
//
// All MLD messages described in this document are sent with a link-local
// IPv6 Source Address, ...
//
// If we just completed DAD for a link-local address, then attempt to send any
// queued MLD reports. Note, we may have sent reports already for some of the
// groups before we had a valid link-local address to use as the source for
// the MLD messages, but that was only so that MLD snooping switches are aware
// of our membership to groups - routers would not have handled those reports.
//
// As per RFC 3590 section 4,
//
// MLD Report and Done messages are sent with a link-local address as
// the IPv6 source address, if a valid address is available on the
// interface. If a valid link-local address is not available (e.g., one
// has not been configured), the message is sent with the unspecified
// address (::) as the IPv6 source address.
//
// Once a valid link-local address is available, a node SHOULD generate
// new MLD Report messages for all multicast addresses joined on the
// interface.
//
// Routers receiving an MLD Report or Done message with the unspecified
// address as the IPv6 source address MUST silently discard the packet
// without taking any action on the packets contents.
//
// Snooping switches MUST manage multicast forwarding state based on MLD
// Report and Done messages sent with the unspecified address as the
// IPv6 source address.
if header.IsV6LinkLocalUnicastAddress(addr) {
e.mu.mld.sendQueuedReports()
}
}
// InvalidateDefaultRouter implements stack.NDPEndpoint.
func (e *endpoint) InvalidateDefaultRouter(rtr tcpip.Address) {
e.mu.Lock()
defer e.mu.Unlock()
// We represent default routers with a default (off-link) route through the
// router.
e.mu.ndp.invalidateOffLinkRoute(offLinkRoute{dest: header.IPv6EmptySubnet, router: rtr})
}
// SetNDPConfigurations implements NDPEndpoint.
func (e *endpoint) SetNDPConfigurations(c NDPConfigurations) {
c.validate()
e.mu.Lock()
defer e.mu.Unlock()
e.mu.ndp.configs = c
}
// hasTentativeAddr returns true if addr is tentative on e.
func (e *endpoint) hasTentativeAddr(addr tcpip.Address) bool {
e.mu.RLock()
addressEndpoint := e.getAddressRLocked(addr)
e.mu.RUnlock()
return addressEndpoint != nil && addressEndpoint.GetKind() == stack.PermanentTentative
}
// dupTentativeAddrDetected attempts to inform e that a tentative addr is a
// duplicate on a link.
//
// dupTentativeAddrDetected removes the tentative address if it exists. If the
// address was generated via SLAAC, an attempt is made to generate a new
// address.
func (e *endpoint) dupTentativeAddrDetected(addr tcpip.Address, holderLinkAddr tcpip.LinkAddress, nonce []byte) tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
addressEndpoint := e.getAddressRLocked(addr)
if addressEndpoint == nil {
return &tcpip.ErrBadAddress{}
}
if addressEndpoint.GetKind() != stack.PermanentTentative {
return &tcpip.ErrInvalidEndpointState{}
}
switch result := e.mu.ndp.dad.ExtendIfNonceEqualLocked(addr, nonce); result {
case ip.Extended:
// The nonce we got back was the same we sent so we know the message
// indicating a duplicate address was likely ours so do not consider
// the address duplicate here.
return nil
case ip.AlreadyExtended:
// See Extended.
//
// Our DAD message was looped back already.
return nil
case ip.NoDADStateFound:
panic(fmt.Sprintf("expected DAD state for tentative address %s", addr))
case ip.NonceDisabled:
// If nonce is disabled then we have no way to know if the packet was
// looped-back so we have to assume it indicates a duplicate address.
fallthrough
case ip.NonceNotEqual:
// If the address is a SLAAC address, do not invalidate its SLAAC prefix as an
// attempt will be made to generate a new address for it.
if err := e.removePermanentEndpointLocked(addressEndpoint, false /* allowSLAACInvalidation */, stack.AddressRemovalDADFailed, &stack.DADDupAddrDetected{HolderLinkAddress: holderLinkAddr}); err != nil {
return err
}
prefix := addressEndpoint.Subnet()
switch t := addressEndpoint.ConfigType(); t {
case stack.AddressConfigStatic:
case stack.AddressConfigSlaac:
if addressEndpoint.Temporary() {
// Do not reset the generation attempts counter for the prefix as the
// temporary address is being regenerated in response to a DAD conflict.
e.mu.ndp.regenerateTempSLAACAddr(prefix, false /* resetGenAttempts */)
} else {
e.mu.ndp.regenerateSLAACAddr(prefix)
}
default:
panic(fmt.Sprintf("unrecognized address config type = %d", t))
}
return nil
default:
panic(fmt.Sprintf("unhandled result = %d", result))
}
}
// Forwarding implements stack.ForwardingNetworkEndpoint.
func (e *endpoint) Forwarding() bool {
return e.forwarding.Load() == forwardingEnabled
}
// setForwarding sets the forwarding status for the endpoint.
//
// Returns the previous forwarding status.
func (e *endpoint) setForwarding(v bool) bool {
forwarding := uint32(forwardingDisabled)
if v {
forwarding = forwardingEnabled
}
return e.forwarding.Swap(forwarding) != forwardingDisabled
}
// SetForwarding implements stack.ForwardingNetworkEndpoint.
func (e *endpoint) SetForwarding(forwarding bool) bool {
e.mu.Lock()
defer e.mu.Unlock()
prevForwarding := e.setForwarding(forwarding)
if prevForwarding == forwarding {
return prevForwarding
}
allRoutersGroups := [...]tcpip.Address{
header.IPv6AllRoutersInterfaceLocalMulticastAddress,
header.IPv6AllRoutersLinkLocalMulticastAddress,
header.IPv6AllRoutersSiteLocalMulticastAddress,
}
if forwarding {
// As per RFC 4291 section 2.8:
//
// A router is required to recognize all addresses that a host is
// required to recognize, plus the following addresses as identifying
// itself:
//
// o The All-Routers multicast addresses defined in Section 2.7.1.
//
// As per RFC 4291 section 2.7.1,
//
// All Routers Addresses: FF01:0:0:0:0:0:0:2
// FF02:0:0:0:0:0:0:2
// FF05:0:0:0:0:0:0:2
//
// The above multicast addresses identify the group of all IPv6 routers,
// within scope 1 (interface-local), 2 (link-local), or 5 (site-local).
for _, g := range allRoutersGroups {
if err := e.joinGroupLocked(g); err != nil {
// joinGroupLocked only returns an error if the group address is not a
// valid IPv6 multicast address.
panic(fmt.Sprintf("e.joinGroupLocked(%s): %s", g, err))
}
}
} else {
for _, g := range allRoutersGroups {
switch err := e.leaveGroupLocked(g).(type) {
case nil:
case *tcpip.ErrBadLocalAddress:
// The endpoint may have already left the multicast group.
default:
panic(fmt.Sprintf("e.leaveGroupLocked(%s): %s", g, err))
}
}
}
e.mu.ndp.forwardingChanged(forwarding)
return prevForwarding
}
// MulticastForwarding implements stack.MulticastForwardingNetworkEndpoint.
func (e *endpoint) MulticastForwarding() bool {
return e.multicastForwarding.Load() == forwardingEnabled
}
// SetMulticastForwarding implements stack.MulticastForwardingNetworkEndpoint.
func (e *endpoint) SetMulticastForwarding(forwarding bool) bool {
updatedForwarding := uint32(forwardingDisabled)
if forwarding {
updatedForwarding = forwardingEnabled
}
return e.multicastForwarding.Swap(updatedForwarding) != forwardingDisabled
}
// Enable implements stack.NetworkEndpoint.
func (e *endpoint) Enable() tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
// If the NIC is not enabled, the endpoint can't do anything meaningful so
// don't enable the endpoint.
if !e.nic.Enabled() {
return &tcpip.ErrNotPermitted{}
}
// If the endpoint is already enabled, there is nothing for it to do.
if !e.setEnabled(true) {
return nil
}
// Perform DAD on the all the unicast IPv6 endpoints that are in the permanent
// state.
//
// Addresses may have already completed DAD but in the time since the endpoint
// was last enabled, other devices may have acquired the same addresses.
var err tcpip.Error
e.mu.addressableEndpointState.ForEachEndpoint(func(addressEndpoint stack.AddressEndpoint) bool {
addr := addressEndpoint.AddressWithPrefix().Address
if !header.IsV6UnicastAddress(addr) {
return true
}
switch kind := addressEndpoint.GetKind(); kind {
case stack.Permanent:
addressEndpoint.SetKind(stack.PermanentTentative)
fallthrough
case stack.PermanentTentative:
err = e.mu.ndp.startDuplicateAddressDetection(addr, addressEndpoint)
return err == nil
case stack.Temporary, stack.PermanentExpired:
return true
default:
panic(fmt.Sprintf("address %s has unknown kind %d", addressEndpoint.AddressWithPrefix(), kind))
}
})
// It is important to enable after starting DAD on all the addresses so that
// if DAD is disabled, the Tentative state is not observed.
//
// Must be called after Enabled has been set.
e.mu.addressableEndpointState.OnNetworkEndpointEnabledChanged()
if err != nil {
return err
}
// Groups may have been joined when the endpoint was disabled, or the
// endpoint may have left groups from the perspective of MLD when the
// endpoint was disabled. Either way, we need to let routers know to
// send us multicast traffic.
e.mu.mld.initializeAll()
// Join the IPv6 All-Nodes Multicast group if the stack is configured to
// use IPv6. This is required to ensure that this node properly receives
// and responds to the various NDP messages that are destined to the
// all-nodes multicast address. An example is the Neighbor Advertisement
// when we perform Duplicate Address Detection, or Router Advertisement
// when we do Router Discovery. See RFC 4862, section 5.4.2 and RFC 4861
// section 4.2 for more information.
//
// Also auto-generate an IPv6 link-local address based on the endpoint's
// link address if it is configured to do so. Note, each interface is
// required to have IPv6 link-local unicast address, as per RFC 4291
// section 2.1.
// Join the All-Nodes multicast group before starting DAD as responses to DAD
// (NDP NS) messages may be sent to the All-Nodes multicast group if the
// source address of the NDP NS is the unspecified address, as per RFC 4861
// section 7.2.4.
if err := e.joinGroupLocked(header.IPv6AllNodesMulticastAddress); err != nil {
// joinGroupLocked only returns an error if the group address is not a valid
// IPv6 multicast address.
panic(fmt.Sprintf("e.joinGroupLocked(%s): %s", header.IPv6AllNodesMulticastAddress, err))
}
// Do not auto-generate an IPv6 link-local address for loopback devices.
if e.protocol.options.AutoGenLinkLocal && !e.nic.IsLoopback() {
// The valid and preferred lifetime is infinite for the auto-generated
// link-local address.
e.mu.ndp.doSLAAC(header.IPv6LinkLocalPrefix.Subnet(), header.NDPInfiniteLifetime, header.NDPInfiniteLifetime)
}
e.mu.ndp.startSolicitingRouters()
return nil
}
// Enabled implements stack.NetworkEndpoint.
func (e *endpoint) Enabled() bool {
return e.nic.Enabled() && e.isEnabled()
}
// isEnabled returns true if the endpoint is enabled, regardless of the
// enabled status of the NIC.
func (e *endpoint) isEnabled() bool {
return e.enabled.Load() == 1
}
// setEnabled sets the enabled status for the endpoint.
//
// Returns true if the enabled status was updated.
func (e *endpoint) setEnabled(v bool) bool {
if v {
return e.enabled.Swap(1) == 0
}
return e.enabled.Swap(0) == 1
}
// Disable implements stack.NetworkEndpoint.
func (e *endpoint) Disable() {
e.mu.Lock()
defer e.mu.Unlock()
e.disableLocked()
}
func (e *endpoint) disableLocked() {
if !e.Enabled() {
return
}
e.mu.ndp.stopSolicitingRouters()
e.mu.ndp.cleanupState()
// The endpoint may have already left the multicast group.
switch err := e.leaveGroupLocked(header.IPv6AllNodesMulticastAddress).(type) {
case nil, *tcpip.ErrBadLocalAddress:
default:
panic(fmt.Sprintf("unexpected error when leaving group = %s: %s", header.IPv6AllNodesMulticastAddress, err))
}
// Leave groups from the perspective of MLD so that routers know that
// we are no longer interested in the group.
e.mu.mld.softLeaveAll()
// Stop DAD for all the tentative unicast addresses.
e.mu.addressableEndpointState.ForEachEndpoint(func(addressEndpoint stack.AddressEndpoint) bool {
addrWithPrefix := addressEndpoint.AddressWithPrefix()
switch kind := addressEndpoint.GetKind(); kind {
case stack.Permanent, stack.PermanentTentative:
if header.IsV6UnicastAddress(addrWithPrefix.Address) {
e.mu.ndp.stopDuplicateAddressDetection(addrWithPrefix.Address, &stack.DADAborted{})
}
case stack.Temporary, stack.PermanentExpired:
default:
panic(fmt.Sprintf("address %s has unknown address kind %d", addrWithPrefix, kind))
}
return true
})
if !e.setEnabled(false) {
panic("should have only done work to disable the endpoint if it was enabled")
}
// Must be called after Enabled has been set.
e.mu.addressableEndpointState.OnNetworkEndpointEnabledChanged()
}
// DefaultTTL is the default hop limit for this endpoint.
func (e *endpoint) DefaultTTL() uint8 {
return e.protocol.DefaultTTL()
}
// MTU implements stack.NetworkEndpoint. It returns the link-layer MTU minus the
// network layer max header length.
func (e *endpoint) MTU() uint32 {
networkMTU, err := calculateNetworkMTU(e.nic.MTU(), header.IPv6MinimumSize)
if err != nil {
return 0
}
return networkMTU
}
// MaxHeaderLength returns the maximum length needed by ipv6 headers (and
// underlying protocols).
func (e *endpoint) MaxHeaderLength() uint16 {
// TODO(gvisor.dev/issues/5035): The maximum header length returned here does
// not open the possibility for the caller to know about size required for
// extension headers.
return e.nic.MaxHeaderLength() + header.IPv6MinimumSize
}
func addIPHeader(srcAddr, dstAddr tcpip.Address, pkt stack.PacketBufferPtr, params stack.NetworkHeaderParams, extensionHeaders header.IPv6ExtHdrSerializer) tcpip.Error {
extHdrsLen := extensionHeaders.Length()
length := pkt.Size() + extensionHeaders.Length()
if length > math.MaxUint16 {
return &tcpip.ErrMessageTooLong{}
}
header.IPv6(pkt.NetworkHeader().Push(header.IPv6MinimumSize + extHdrsLen)).Encode(&header.IPv6Fields{
PayloadLength: uint16(length),
TransportProtocol: params.Protocol,
HopLimit: params.TTL,
TrafficClass: params.TOS,
SrcAddr: srcAddr,
DstAddr: dstAddr,
ExtensionHeaders: extensionHeaders,
})
pkt.NetworkProtocolNumber = ProtocolNumber
return nil
}
func packetMustBeFragmented(pkt stack.PacketBufferPtr, networkMTU uint32) bool {
payload := len(pkt.TransportHeader().Slice()) + pkt.Data().Size()
return pkt.GSOOptions.Type == stack.GSONone && uint32(payload) > networkMTU
}
// handleFragments fragments pkt and calls the handler function on each
// fragment. It returns the number of fragments handled and the number of
// fragments left to be processed. The IP header must already be present in the
// original packet. The transport header protocol number is required to avoid
// parsing the IPv6 extension headers.
func (e *endpoint) handleFragments(r *stack.Route, networkMTU uint32, pkt stack.PacketBufferPtr, transProto tcpip.TransportProtocolNumber, handler func(stack.PacketBufferPtr) tcpip.Error) (int, int, tcpip.Error) {
networkHeader := header.IPv6(pkt.NetworkHeader().Slice())
// TODO(gvisor.dev/issue/3912): Once the Authentication or ESP Headers are
// supported for outbound packets, their length should not affect the fragment
// maximum payload length because they should only be transmitted once.
fragmentPayloadLen := (networkMTU - header.IPv6FragmentHeaderSize) &^ 7
if fragmentPayloadLen < header.IPv6FragmentExtHdrFragmentOffsetBytesPerUnit {
// We need at least 8 bytes of space left for the fragmentable part because
// the fragment payload must obviously be non-zero and must be a multiple
// of 8 as per RFC 8200 section 4.5:
// Each complete fragment, except possibly the last ("rightmost") one, is
// an integer multiple of 8 octets long.
return 0, 1, &tcpip.ErrMessageTooLong{}
}
if fragmentPayloadLen < uint32(len(pkt.TransportHeader().Slice())) {
// As per RFC 8200 Section 4.5, the Transport Header is expected to be small
// enough to fit in the first fragment.
return 0, 1, &tcpip.ErrMessageTooLong{}
}
pf := fragmentation.MakePacketFragmenter(pkt, fragmentPayloadLen, calculateFragmentReserve(pkt))
defer pf.Release()
id := e.protocol.ids[hashRoute(r, e.protocol.hashIV)%buckets].Add(1)
var n int
for {
fragPkt, more := buildNextFragment(&pf, networkHeader, transProto, id)
err := handler(fragPkt)
fragPkt.DecRef()
if err != nil {
return n, pf.RemainingFragmentCount() + 1, err
}
n++
if !more {
return n, pf.RemainingFragmentCount(), nil
}
}
}
// WritePacket writes a packet to the given destination address and protocol.
func (e *endpoint) WritePacket(r *stack.Route, params stack.NetworkHeaderParams, pkt stack.PacketBufferPtr) tcpip.Error {
dstAddr := r.RemoteAddress()
if err := addIPHeader(r.LocalAddress(), dstAddr, pkt, params, nil /* extensionHeaders */); err != nil {
return err
}
// iptables filtering. All packets that reach here are locally
// generated.
outNicName := e.protocol.stack.FindNICNameFromID(e.nic.ID())
if ok := e.protocol.stack.IPTables().CheckOutput(pkt, r, outNicName); !ok {
// iptables is telling us to drop the packet.
e.stats.ip.IPTablesOutputDropped.Increment()
return nil
}
// If the packet is manipulated as per DNAT Output rules, handle packet
// based on destination address and do not send the packet to link
// layer.
//
// We should do this for every packet, rather than only DNATted packets, but
// removing this check short circuits broadcasts before they are sent out to
// other hosts.
if netHeader := header.IPv6(pkt.NetworkHeader().Slice()); dstAddr != netHeader.DestinationAddress() {
if ep := e.protocol.findEndpointWithAddress(netHeader.DestinationAddress()); ep != nil {
// Since we rewrote the packet but it is being routed back to us, we
// can safely assume the checksum is valid.
ep.handleLocalPacket(pkt, true /* canSkipRXChecksum */)
return nil
}
}
return e.writePacket(r, pkt, params.Protocol, false /* headerIncluded */)
}
func (e *endpoint) writePacket(r *stack.Route, pkt stack.PacketBufferPtr, protocol tcpip.TransportProtocolNumber, headerIncluded bool) tcpip.Error {
if r.Loop()&stack.PacketLoop != 0 {
// If the packet was generated by the stack (not a raw/packet endpoint
// where a packet may be written with the header included), then we can
// safely assume the checksum is valid.
e.handleLocalPacket(pkt, !headerIncluded /* canSkipRXChecksum */)
}
if r.Loop()&stack.PacketOut == 0 {
return nil
}
// Postrouting NAT can only change the source address, and does not alter the
// route or outgoing interface of the packet.
outNicName := e.protocol.stack.FindNICNameFromID(e.nic.ID())
if ok := e.protocol.stack.IPTables().CheckPostrouting(pkt, r, e, outNicName); !ok {
// iptables is telling us to drop the packet.
e.stats.ip.IPTablesPostroutingDropped.Increment()
return nil
}
stats := e.stats.ip
networkMTU, err := calculateNetworkMTU(e.nic.MTU(), uint32(len(pkt.NetworkHeader().Slice())))
if err != nil {
stats.OutgoingPacketErrors.Increment()
return err
}
if packetMustBeFragmented(pkt, networkMTU) {
if pkt.NetworkPacketInfo.IsForwardedPacket {
// As per RFC 2460, section 4.5:
// Unlike IPv4, fragmentation in IPv6 is performed only by source nodes,
// not by routers along a packet's delivery path.
return &tcpip.ErrMessageTooLong{}
}
sent, remain, err := e.handleFragments(r, networkMTU, pkt, protocol, func(fragPkt stack.PacketBufferPtr) tcpip.Error {
// TODO(gvisor.dev/issue/3884): Evaluate whether we want to send each
// fragment one by one using WritePacket() (current strategy) or if we
// want to create a PacketBufferList from the fragments and feed it to
// WritePackets(). It'll be faster but cost more memory.
return e.nic.WritePacket(r, fragPkt)
})
stats.PacketsSent.IncrementBy(uint64(sent))
stats.OutgoingPacketErrors.IncrementBy(uint64(remain))
return err
}
if err := e.nic.WritePacket(r, pkt); err != nil {
stats.OutgoingPacketErrors.Increment()
return err
}
stats.PacketsSent.Increment()
return nil
}
// WriteHeaderIncludedPacket implements stack.NetworkEndpoint.
func (e *endpoint) WriteHeaderIncludedPacket(r *stack.Route, pkt stack.PacketBufferPtr) tcpip.Error {
// The packet already has an IP header, but there are a few required checks.
h, ok := pkt.Data().PullUp(header.IPv6MinimumSize)
if !ok {
return &tcpip.ErrMalformedHeader{}
}
ipH := header.IPv6(h)
// Always set the payload length.
pktSize := pkt.Data().Size()
ipH.SetPayloadLength(uint16(pktSize - header.IPv6MinimumSize))
// Set the source address when zero.
if ipH.SourceAddress() == header.IPv6Any {
ipH.SetSourceAddress(r.LocalAddress())
}
// Populate the packet buffer's network header and don't allow an invalid
// packet to be sent.
//
// Note that parsing only makes sure that the packet is well formed as per the
// wire format. We also want to check if the header's fields are valid before
// sending the packet.
proto, _, _, _, ok := parse.IPv6(pkt)
if !ok || !header.IPv6(pkt.NetworkHeader().Slice()).IsValid(pktSize) {
return &tcpip.ErrMalformedHeader{}
}
return e.writePacket(r, pkt, proto, true /* headerIncluded */)
}
func validateAddressesForForwarding(h header.IPv6) ip.ForwardingError {
// As per RFC 4291 section 2.5.6,
//
// Routers must not forward any packets with Link-Local source or
// destination addresses to other links.
if header.IsV6LinkLocalUnicastAddress(h.SourceAddress()) {
return &ip.ErrLinkLocalSourceAddress{}
}
if header.IsV6LinkLocalUnicastAddress(h.DestinationAddress()) || header.IsV6LinkLocalMulticastAddress(h.DestinationAddress()) {
return &ip.ErrLinkLocalDestinationAddress{}
}
return nil
}
// forwardUnicastPacket attempts to forward a unicast packet to its final
// destination.
func (e *endpoint) forwardUnicastPacket(pkt stack.PacketBufferPtr) ip.ForwardingError {
h := header.IPv6(pkt.NetworkHeader().Slice())
if err := validateAddressesForForwarding(h); err != nil {
return err
}
hopLimit := h.HopLimit()
if hopLimit <= 1 {
// As per RFC 4443 section 3.3,
//
// If a router receives a packet with a Hop Limit of zero, or if a
// router decrements a packet's Hop Limit to zero, it MUST discard the
// packet and originate an ICMPv6 Time Exceeded message with Code 0 to
// the source of the packet. This indicates either a routing loop or
// too small an initial Hop Limit value.
//
// We return the original error rather than the result of returning
// the ICMP packet because the original error is more relevant to
// the caller.
_ = e.protocol.returnError(&icmpReasonHopLimitExceeded{}, pkt, false /* deliveredLocally */)
return &ip.ErrTTLExceeded{}
}
stk := e.protocol.stack
dstAddr := h.DestinationAddress()
// Check if the destination is owned by the stack.
if ep := e.protocol.findEndpointWithAddress(dstAddr); ep != nil {
inNicName := stk.FindNICNameFromID(e.nic.ID())
outNicName := stk.FindNICNameFromID(ep.nic.ID())
if ok := stk.IPTables().CheckForward(pkt, inNicName, outNicName); !ok {
// iptables is telling us to drop the packet.
e.stats.ip.IPTablesForwardDropped.Increment()
return nil
}
// The packet originally arrived on e so provide its NIC as the input NIC.
ep.handleValidatedPacket(h, pkt, e.nic.Name() /* inNICName */)
return nil
}
// Check extension headers for any errors requiring action during forwarding.
if err := e.processExtensionHeaders(h, pkt, true /* forwarding */); err != nil {
return &ip.ErrParameterProblem{}
}
r, err := stk.FindRoute(0, "", dstAddr, ProtocolNumber, false /* multicastLoop */)
switch err.(type) {
case nil:
// TODO(https://gvisor.dev/issues/8105): We should not observe ErrHostUnreachable from route
// lookups.
case *tcpip.ErrHostUnreachable, *tcpip.ErrNetworkUnreachable:
// We return the original error rather than the result of returning the
// ICMP packet because the original error is more relevant to the caller.
_ = e.protocol.returnError(&icmpReasonNetUnreachable{}, pkt, false /* deliveredLocally */)
return &ip.ErrHostUnreachable{}
default:
return &ip.ErrOther{Err: err}
}
defer r.Release()
return e.forwardPacketWithRoute(r, pkt)
}
// forwardPacketWithRoute emits the pkt using the provided route.
//
// This method should be invoked by the endpoint that received the pkt.
func (e *endpoint) forwardPacketWithRoute(route *stack.Route, pkt stack.PacketBufferPtr) ip.ForwardingError {
h := header.IPv6(pkt.NetworkHeader().Slice())
stk := e.protocol.stack
inNicName := stk.FindNICNameFromID(e.nic.ID())
outNicName := stk.FindNICNameFromID(route.NICID())
if ok := stk.IPTables().CheckForward(pkt, inNicName, outNicName); !ok {
// iptables is telling us to drop the packet.
e.stats.ip.IPTablesForwardDropped.Increment()
return nil
}
hopLimit := h.HopLimit()
// We need to do a deep copy of the IP packet because
// WriteHeaderIncludedPacket takes ownership of the packet buffer, but we do
// not own it.
newPkt := pkt.DeepCopyForForwarding(int(route.MaxHeaderLength()))
defer newPkt.DecRef()
newHdr := header.IPv6(newPkt.NetworkHeader().Slice())
// As per RFC 8200 section 3,
//
// Hop Limit 8-bit unsigned integer. Decremented by 1 by
// each node that forwards the packet.
newHdr.SetHopLimit(hopLimit - 1)
forwardToEp, ok := e.protocol.getEndpointForNIC(route.NICID())
if !ok {
// The interface was removed after we obtained the route.
return &ip.ErrUnknownOutputEndpoint{}
}
switch err := forwardToEp.writePacket(route, newPkt, newPkt.TransportProtocolNumber, true /* headerIncluded */); err.(type) {
case nil:
return nil
case *tcpip.ErrMessageTooLong:
// As per RFC 4443, section 3.2:
// A Packet Too Big MUST be sent by a router in response to a packet that
// it cannot forward because the packet is larger than the MTU of the
// outgoing link.
_ = e.protocol.returnError(&icmpReasonPacketTooBig{}, pkt, false /* deliveredLocally */)
return &ip.ErrMessageTooLong{}
default:
return &ip.ErrOther{Err: err}
}
}
// HandlePacket is called by the link layer when new ipv6 packets arrive for
// this endpoint.
func (e *endpoint) HandlePacket(pkt stack.PacketBufferPtr) {
stats := e.stats.ip
stats.PacketsReceived.Increment()
if !e.isEnabled() {
stats.DisabledPacketsReceived.Increment()
return
}
hView, ok := e.protocol.parseAndValidate(pkt)
if !ok {
stats.MalformedPacketsReceived.Increment()
return
}
defer hView.Release()
h := header.IPv6(hView.AsSlice())
if !e.nic.IsLoopback() {
if !e.protocol.options.AllowExternalLoopbackTraffic {
if header.IsV6LoopbackAddress(h.SourceAddress()) {
stats.InvalidSourceAddressesReceived.Increment()
return
}
if header.IsV6LoopbackAddress(h.DestinationAddress()) {
stats.InvalidDestinationAddressesReceived.Increment()
return
}
}
if e.protocol.stack.HandleLocal() {
addressEndpoint := e.AcquireAssignedAddress(header.IPv6(pkt.NetworkHeader().Slice()).SourceAddress(), e.nic.Promiscuous(), stack.CanBePrimaryEndpoint)
if addressEndpoint != nil {
addressEndpoint.DecRef()
// The source address is one of our own, so we never should have gotten
// a packet like this unless HandleLocal is false or our NIC is the
// loopback interface.
stats.InvalidSourceAddressesReceived.Increment()
return
}
}
// Loopback traffic skips the prerouting chain.
inNicName := e.protocol.stack.FindNICNameFromID(e.nic.ID())
if ok := e.protocol.stack.IPTables().CheckPrerouting(pkt, e, inNicName); !ok {
// iptables is telling us to drop the packet.
stats.IPTablesPreroutingDropped.Increment()
return
}
}
e.handleValidatedPacket(h, pkt, e.nic.Name() /* inNICName */)
}
// handleLocalPacket is like HandlePacket except it does not perform the
// prerouting iptables hook or check for loopback traffic that originated from
// outside of the netstack (i.e. martian loopback packets).
func (e *endpoint) handleLocalPacket(pkt stack.PacketBufferPtr, canSkipRXChecksum bool) {
stats := e.stats.ip
stats.PacketsReceived.Increment()
pkt = pkt.CloneToInbound()
defer pkt.DecRef()
pkt.RXChecksumValidated = canSkipRXChecksum
hView, ok := e.protocol.parseAndValidate(pkt)
if !ok {
stats.MalformedPacketsReceived.Increment()
return
}
defer hView.Release()
h := header.IPv6(hView.AsSlice())
e.handleValidatedPacket(h, pkt, e.nic.Name() /* inNICName */)
}
// forwardMulticastPacket validates a multicast pkt and attempts to forward it.
//
// This method should be invoked for incoming multicast packets using the
// endpoint that received the packet.
func (e *endpoint) forwardMulticastPacket(h header.IPv6, pkt stack.PacketBufferPtr) ip.ForwardingError {
if err := validateAddressesForForwarding(h); err != nil {
return err
}
// Check extension headers for any errors.
if err := e.processExtensionHeaders(h, pkt, true /* forwarding */); err != nil {
return &ip.ErrParameterProblem{}
}
routeKey := stack.UnicastSourceAndMulticastDestination{
Source: h.SourceAddress(),
Destination: h.DestinationAddress(),
}
// The pkt has been validated. Consequently, if a route is not found, then
// the pkt can safely be queued.
result, hasBufferSpace := e.protocol.multicastRouteTable.GetRouteOrInsertPending(routeKey, pkt)
if !hasBufferSpace {
// Unable to queue the pkt. Silently drop it.
return &ip.ErrNoMulticastPendingQueueBufferSpace{}
}
switch result.GetRouteResultState {
case multicast.InstalledRouteFound:
// Attempt to forward the pkt using an existing route.
return e.forwardValidatedMulticastPacket(pkt, result.InstalledRoute)
case multicast.NoRouteFoundAndPendingInserted:
e.emitMulticastEvent(func(disp stack.MulticastForwardingEventDispatcher) {
disp.OnMissingRoute(stack.MulticastPacketContext{
stack.UnicastSourceAndMulticastDestination{h.SourceAddress(), h.DestinationAddress()},
e.nic.ID(),
})
})
case multicast.PacketQueuedInPendingRoute:
default:
panic(fmt.Sprintf("unexpected GetRouteResultState: %s", result.GetRouteResultState))
}
return &ip.ErrHostUnreachable{}
}
// forwardValidatedMulticastPacket attempts to forward the pkt using the
// provided installedRoute.
//
// This method should be invoked by the endpoint that received the pkt.
func (e *endpoint) forwardValidatedMulticastPacket(pkt stack.PacketBufferPtr, installedRoute *multicast.InstalledRoute) ip.ForwardingError {
// Per RFC 1812 section 5.2.1.3,
//
// Based on the IP source and destination addresses found in the datagram
// header, the router determines whether the datagram has been received
// on the proper interface for forwarding. If not, the datagram is
// dropped silently.
if e.nic.ID() != installedRoute.ExpectedInputInterface {
h := header.IPv6(pkt.NetworkHeader().Slice())
e.emitMulticastEvent(func(disp stack.MulticastForwardingEventDispatcher) {
disp.OnUnexpectedInputInterface(stack.MulticastPacketContext{
stack.UnicastSourceAndMulticastDestination{h.SourceAddress(), h.DestinationAddress()},
e.nic.ID(),
}, installedRoute.ExpectedInputInterface)
})
return &ip.ErrUnexpectedMulticastInputInterface{}
}
for _, outgoingInterface := range installedRoute.OutgoingInterfaces {
if err := e.forwardMulticastPacketForOutgoingInterface(pkt, outgoingInterface); err != nil {
e.handleForwardingError(err)
continue
}
// The pkt was successfully forwarded. Mark the route as used.
installedRoute.SetLastUsedTimestamp(e.protocol.stack.Clock().NowMonotonic())
}
return nil
}
// forwardMulticastPacketForOutgoingInterface attempts to forward the pkt out
// of the provided outgoing interface.
//
// This method should be invoked by the endpoint that received the pkt.
func (e *endpoint) forwardMulticastPacketForOutgoingInterface(pkt stack.PacketBufferPtr, outgoingInterface stack.MulticastRouteOutgoingInterface) ip.ForwardingError {
h := header.IPv6(pkt.NetworkHeader().Slice())
// Per RFC 1812 section 5.2.1.3,
//
// A copy of the multicast datagram is forwarded out each outgoing
// interface whose minimum TTL value is less than or equal to the TTL
// value in the datagram header.
//
// Copying of the packet is deferred to forwardPacketWithRoute since unicast
// and multicast both require a copy.
if outgoingInterface.MinTTL > h.HopLimit() {
return &ip.ErrTTLExceeded{}
}
route := e.protocol.stack.NewRouteForMulticast(outgoingInterface.ID, h.DestinationAddress(), e.NetworkProtocolNumber())
if route == nil {
// Failed to convert to a stack.Route. This likely means that the outgoing
// endpoint no longer exists.
return &ip.ErrHostUnreachable{}
}
defer route.Release()
return e.forwardPacketWithRoute(route, pkt)
}
// handleForwardingError processes the provided err and increments any relevant
// counters.
func (e *endpoint) handleForwardingError(err ip.ForwardingError) {
stats := e.stats.ip
switch err.(type) {
case nil:
return
case *ip.ErrLinkLocalSourceAddress:
stats.Forwarding.LinkLocalSource.Increment()
case *ip.ErrLinkLocalDestinationAddress:
stats.Forwarding.LinkLocalDestination.Increment()
case *ip.ErrTTLExceeded:
stats.Forwarding.ExhaustedTTL.Increment()
case *ip.ErrHostUnreachable:
stats.Forwarding.Unrouteable.Increment()
case *ip.ErrParameterProblem:
stats.Forwarding.ExtensionHeaderProblem.Increment()
case *ip.ErrMessageTooLong:
stats.Forwarding.PacketTooBig.Increment()
case *ip.ErrNoMulticastPendingQueueBufferSpace:
stats.Forwarding.NoMulticastPendingQueueBufferSpace.Increment()
case *ip.ErrUnexpectedMulticastInputInterface:
stats.Forwarding.UnexpectedMulticastInputInterface.Increment()
case *ip.ErrUnknownOutputEndpoint:
stats.Forwarding.UnknownOutputEndpoint.Increment()
default:
panic(fmt.Sprintf("unrecognized forwarding error: %s", err))
}
stats.Forwarding.Errors.Increment()
}
func (e *endpoint) handleValidatedPacket(h header.IPv6, pkt stack.PacketBufferPtr, inNICName string) {
pkt.NICID = e.nic.ID()
// Raw socket packets are delivered based solely on the transport protocol
// number. We only require that the packet be valid IPv6.
e.dispatcher.DeliverRawPacket(h.TransportProtocol(), pkt)
stats := e.stats.ip
stats.ValidPacketsReceived.Increment()
srcAddr := h.SourceAddress()
dstAddr := h.DestinationAddress()
// As per RFC 4291 section 2.7:
// Multicast addresses must not be used as source addresses in IPv6
// packets or appear in any Routing header.
if header.IsV6MulticastAddress(srcAddr) {
stats.InvalidSourceAddressesReceived.Increment()
return
}
if header.IsV6MulticastAddress(dstAddr) {
// Handle all packets destined to a multicast address separately. Unlike
// unicast, these packets can be both delivered locally and forwarded. See
// RFC 1812 section 5.2.3 for details regarding the forwarding/local
// delivery decision.
multicastForwading := e.MulticastForwarding() && e.protocol.multicastForwarding()
if multicastForwading {
e.handleForwardingError(e.forwardMulticastPacket(h, pkt))
}
if e.IsInGroup(dstAddr) {
e.deliverPacketLocally(h, pkt, inNICName)
return
}
if !multicastForwading {
// Only consider the destination address invalid if we didn't attempt to
// forward the pkt and it was not delivered locally.
stats.InvalidDestinationAddressesReceived.Increment()
}
return
}
// The destination address should be an address we own for us to receive the
// packet. Otherwise, attempt to forward the packet.
if addressEndpoint := e.AcquireAssignedAddress(dstAddr, e.nic.Promiscuous(), stack.CanBePrimaryEndpoint); addressEndpoint != nil {
addressEndpoint.DecRef()
e.deliverPacketLocally(h, pkt, inNICName)
} else if e.Forwarding() {
e.handleForwardingError(e.forwardUnicastPacket(pkt))
} else {
stats.InvalidDestinationAddressesReceived.Increment()
}
}
func (e *endpoint) deliverPacketLocally(h header.IPv6, pkt stack.PacketBufferPtr, inNICName string) {
stats := e.stats.ip
// iptables filtering. All packets that reach here are intended for
// this machine and need not be forwarded.
if ok := e.protocol.stack.IPTables().CheckInput(pkt, inNICName); !ok {
// iptables is telling us to drop the packet.
stats.IPTablesInputDropped.Increment()
return
}
// Any returned error is only useful for terminating execution early, but
// we have nothing left to do, so we can drop it.
_ = e.processExtensionHeaders(h, pkt, false /* forwarding */)
}
func (e *endpoint) processExtensionHeader(it *header.IPv6PayloadIterator, pkt *stack.PacketBufferPtr, h header.IPv6, routerAlert **header.IPv6RouterAlertOption, hasFragmentHeader *bool, forwarding bool) (bool, error) {
stats := e.stats.ip
dstAddr := h.DestinationAddress()
// Keep track of the start of the previous header so we can report the
// special case of a Hop by Hop at a location other than at the start.
previousHeaderStart := it.HeaderOffset()
extHdr, done, err := it.Next()
if err != nil {
stats.MalformedPacketsReceived.Increment()
return true, err
}
if done {
return true, nil
}
defer extHdr.Release()
// As per RFC 8200, section 4:
//
// Extension headers (except for the Hop-by-Hop Options header) are
// not processed, inserted, or deleted by any node along a packet's
// delivery path until the packet reaches the node identified in the
// Destination Address field of the IPv6 header.
//
// Furthermore, as per RFC 8200 section 4.1, the Hop By Hop extension
// header is restricted to appear first in the list of extension headers.
//
// Therefore, we can immediately return once we hit any header other
// than the Hop-by-Hop header while forwarding a packet.
if forwarding {
if _, ok := extHdr.(header.IPv6HopByHopOptionsExtHdr); !ok {
return true, nil
}
}
switch extHdr := extHdr.(type) {
case header.IPv6HopByHopOptionsExtHdr:
if err := e.processIPv6HopByHopOptionsExtHdr(&extHdr, it, *pkt, dstAddr, routerAlert, previousHeaderStart, forwarding); err != nil {
return true, err
}
case header.IPv6RoutingExtHdr:
if err := e.processIPv6RoutingExtHeader(&extHdr, it, *pkt); err != nil {
return true, err
}
case header.IPv6FragmentExtHdr:
*hasFragmentHeader = true
if extHdr.IsAtomic() {
// This fragment extension header indicates that this packet is an
// atomic fragment. An atomic fragment is a fragment that contains
// all the data required to reassemble a full packet. As per RFC 6946,
// atomic fragments must not interfere with "normal" fragmented traffic
// so we skip processing the fragment instead of feeding it through the
// reassembly process below.
return false, nil
}
if err := e.processFragmentExtHdr(&extHdr, it, pkt, h); err != nil {
return true, err
}
case header.IPv6DestinationOptionsExtHdr:
if err := e.processIPv6DestinationOptionsExtHdr(&extHdr, it, *pkt, dstAddr); err != nil {
return true, err
}
case header.IPv6RawPayloadHeader:
if err := e.processIPv6RawPayloadHeader(&extHdr, it, *pkt, *routerAlert, previousHeaderStart, *hasFragmentHeader); err != nil {
return true, err
}
default:
// Since the iterator returns IPv6RawPayloadHeader for unknown Extension
// Header IDs this should never happen unless we missed a supported type
// here.
panic(fmt.Sprintf("unrecognized type from it.Next() = %T", extHdr))
}
return false, nil
}
// processExtensionHeaders processes the extension headers in the given packet.
// Returns an error if the processing of a header failed or if the packet should
// be discarded.
func (e *endpoint) processExtensionHeaders(h header.IPv6, pkt stack.PacketBufferPtr, forwarding bool) error {
// Create a VV to parse the packet. We don't plan to modify anything here.
// vv consists of:
// - Any IPv6 header bytes after the first 40 (i.e. extensions).
// - The transport header, if present.
// - Any other payload data.
v := pkt.NetworkHeader().View()
if v != nil {
v.TrimFront(header.IPv6MinimumSize)
}
buf := bufferv2.MakeWithView(v)
buf.Append(pkt.TransportHeader().View())
dataBuf := pkt.Data().ToBuffer()
buf.Merge(&dataBuf)
it := header.MakeIPv6PayloadIterator(header.IPv6ExtensionHeaderIdentifier(h.NextHeader()), buf)
// Add a reference to pkt because fragment header processing can replace this
// packet with a new one that has an extra reference. Adding a reference here
// keeps the two in parity so they can both be DecRef'd the same way.
pkt.IncRef()
defer func() {
pkt.DecRef()
it.Release()
}()
var (
hasFragmentHeader bool
routerAlert *header.IPv6RouterAlertOption
)
for {
if done, err := e.processExtensionHeader(&it, &pkt, h, &routerAlert, &hasFragmentHeader, forwarding); err != nil || done {
return err
}
}
}
func (e *endpoint) processIPv6RawPayloadHeader(extHdr *header.IPv6RawPayloadHeader, it *header.IPv6PayloadIterator, pkt stack.PacketBufferPtr, routerAlert *header.IPv6RouterAlertOption, previousHeaderStart uint32, hasFragmentHeader bool) error {
stats := e.stats.ip
// If the last header in the payload isn't a known IPv6 extension header,
// handle it as if it is transport layer data.Ã¥
// Calculate the number of octets parsed from data. We want to consume all
// the data except the unparsed portion located at the end, whose size is
// extHdr.Buf.Size().
trim := pkt.Data().Size() - int(extHdr.Buf.Size())
// For unfragmented packets, extHdr still contains the transport header.
// Consume that too.
//
// For reassembled fragments, pkt.TransportHeader is unset, so this is a
// no-op and pkt.Data begins with the transport header.
trim += len(pkt.TransportHeader().Slice())
if _, ok := pkt.Data().Consume(trim); !ok {
stats.MalformedPacketsReceived.Increment()
return fmt.Errorf("could not consume %d bytes", trim)
}
proto := tcpip.TransportProtocolNumber(extHdr.Identifier)
// If the packet was reassembled from a fragment, it will not have a
// transport header set yet.
if len(pkt.TransportHeader().Slice()) == 0 {
e.protocol.parseTransport(pkt, proto)
}
stats.PacketsDelivered.Increment()
if proto == header.ICMPv6ProtocolNumber {
e.handleICMP(pkt, hasFragmentHeader, routerAlert)
return nil
}
stats.PacketsDelivered.Increment()
switch res := e.dispatcher.DeliverTransportPacket(proto, pkt); res {
case stack.TransportPacketHandled:
return nil
case stack.TransportPacketDestinationPortUnreachable:
// As per RFC 4443 section 3.1:
// A destination node SHOULD originate a Destination Unreachable
// message with Code 4 in response to a packet for which the
// transport protocol (e.g., UDP) has no listener, if that transport
// protocol has no alternative means to inform the sender.
_ = e.protocol.returnError(&icmpReasonPortUnreachable{}, pkt, true /* deliveredLocally */)
return fmt.Errorf("destination port unreachable")
case stack.TransportPacketProtocolUnreachable:
// As per RFC 8200 section 4. (page 7):
// Extension headers are numbered from IANA IP Protocol Numbers
// [IANA-PN], the same values used for IPv4 and IPv6. When
// processing a sequence of Next Header values in a packet, the
// first one that is not an extension header [IANA-EH] indicates
// that the next item in the packet is the corresponding upper-layer
// header.
// With more related information on page 8:
// If, as a result of processing a header, the destination node is
// required to proceed to the next header but the Next Header value
// in the current header is unrecognized by the node, it should
// discard the packet and send an ICMP Parameter Problem message to
// the source of the packet, with an ICMP Code value of 1
// ("unrecognized Next Header type encountered") and the ICMP
// Pointer field containing the offset of the unrecognized value
// within the original packet.
//
// Which when taken together indicate that an unknown protocol should
// be treated as an unrecognized next header value.
// The location of the Next Header field is in a different place in
// the initial IPv6 header than it is in the extension headers so
// treat it specially.
prevHdrIDOffset := uint32(header.IPv6NextHeaderOffset)
if previousHeaderStart != 0 {
prevHdrIDOffset = previousHeaderStart
}
_ = e.protocol.returnError(&icmpReasonParameterProblem{
code: header.ICMPv6UnknownHeader,
pointer: prevHdrIDOffset,
}, pkt, true /* deliveredLocally */)
return fmt.Errorf("transport protocol unreachable")
default:
panic(fmt.Sprintf("unrecognized result from DeliverTransportPacket = %d", res))
}
}
func (e *endpoint) processIPv6RoutingExtHeader(extHdr *header.IPv6RoutingExtHdr, it *header.IPv6PayloadIterator, pkt stack.PacketBufferPtr) error {
// As per RFC 8200 section 4.4, if a node encounters a routing header with
// an unrecognized routing type value, with a non-zero Segments Left
// value, the node must discard the packet and send an ICMP Parameter
// Problem, Code 0 to the packet's Source Address, pointing to the
// unrecognized Routing Type.
//
// If the Segments Left is 0, the node must ignore the Routing extension
// header and process the next header in the packet.
//
// Note, the stack does not yet handle any type of routing extension
// header, so we just make sure Segments Left is zero before processing
// the next extension header.
if extHdr.SegmentsLeft() == 0 {
return nil
}
_ = e.protocol.returnError(&icmpReasonParameterProblem{
code: header.ICMPv6ErroneousHeader,
pointer: it.ParseOffset(),
}, pkt, true /* deliveredLocally */)
return fmt.Errorf("found unrecognized routing type with non-zero segments left in header = %#v", extHdr)
}
func (e *endpoint) processIPv6DestinationOptionsExtHdr(extHdr *header.IPv6DestinationOptionsExtHdr, it *header.IPv6PayloadIterator, pkt stack.PacketBufferPtr, dstAddr tcpip.Address) error {
stats := e.stats.ip
optsIt := extHdr.Iter()
var uopt *header.IPv6UnknownExtHdrOption
defer func() {
if uopt != nil {
uopt.Data.Release()
}
}()
for {
opt, done, err := optsIt.Next()
if err != nil {
stats.MalformedPacketsReceived.Increment()
return err
}
if uo, ok := opt.(*header.IPv6UnknownExtHdrOption); ok {
uopt = uo
}
if done {
break
}
// We currently do not support any IPv6 Destination extension header
// options.
switch opt.UnknownAction() {
case header.IPv6OptionUnknownActionSkip:
case header.IPv6OptionUnknownActionDiscard:
return fmt.Errorf("found unknown destination header option = %#v with discard action", opt)
case header.IPv6OptionUnknownActionDiscardSendICMPNoMulticastDest:
if header.IsV6MulticastAddress(dstAddr) {
if uo, ok := opt.(*header.IPv6UnknownExtHdrOption); ok {
uopt = uo
}
return fmt.Errorf("found unknown destination header option %#v with discard action", opt)
}
fallthrough
case header.IPv6OptionUnknownActionDiscardSendICMP:
// This case satisfies a requirement of RFC 8200 section 4.2
// which states that an unknown option starting with bits [10] should:
//
// discard the packet and, regardless of whether or not the
// packet's Destination Address was a multicast address, send an
// ICMP Parameter Problem, Code 2, message to the packet's
// Source Address, pointing to the unrecognized Option Type.
//
_ = e.protocol.returnError(&icmpReasonParameterProblem{
code: header.ICMPv6UnknownOption,
pointer: it.ParseOffset() + optsIt.OptionOffset(),
respondToMulticast: true,
}, pkt, true /* deliveredLocally */)
return fmt.Errorf("found unknown destination header option %#v with discard action", opt)
default:
panic(fmt.Sprintf("unrecognized action for an unrecognized Destination extension header option = %#v", opt))
}
if uopt != nil {
uopt.Data.Release()
uopt = nil
}
}
return nil
}
func (e *endpoint) processIPv6HopByHopOptionsExtHdr(extHdr *header.IPv6HopByHopOptionsExtHdr, it *header.IPv6PayloadIterator, pkt stack.PacketBufferPtr, dstAddr tcpip.Address, routerAlert **header.IPv6RouterAlertOption, previousHeaderStart uint32, forwarding bool) error {
stats := e.stats.ip
// As per RFC 8200 section 4.1, the Hop By Hop extension header is
// restricted to appear immediately after an IPv6 fixed header.
if previousHeaderStart != 0 {
_ = e.protocol.returnError(&icmpReasonParameterProblem{
code: header.ICMPv6UnknownHeader,
pointer: previousHeaderStart,
}, pkt, !forwarding /* deliveredLocally */)
return fmt.Errorf("found Hop-by-Hop header = %#v with non-zero previous header offset = %d", extHdr, previousHeaderStart)
}
optsIt := extHdr.Iter()
var uopt *header.IPv6UnknownExtHdrOption
defer func() {
if uopt != nil {
uopt.Data.Release()
}
}()
for {
opt, done, err := optsIt.Next()
if err != nil {
stats.MalformedPacketsReceived.Increment()
return err
}
if uo, ok := opt.(*header.IPv6UnknownExtHdrOption); ok {
uopt = uo
}
if done {
break
}
switch opt := opt.(type) {
case *header.IPv6RouterAlertOption:
if *routerAlert != nil {
// As per RFC 2711 section 3, there should be at most one Router
// Alert option per packet.
//
// There MUST only be one option of this type, regardless of
// value, per Hop-by-Hop header.
stats.MalformedPacketsReceived.Increment()
return fmt.Errorf("found multiple Router Alert options (%#v, %#v)", opt, *routerAlert)
}
*routerAlert = opt
stats.OptionRouterAlertReceived.Increment()
default:
switch opt.UnknownAction() {
case header.IPv6OptionUnknownActionSkip:
case header.IPv6OptionUnknownActionDiscard:
return fmt.Errorf("found unknown Hop-by-Hop header option = %#v with discard action", opt)
case header.IPv6OptionUnknownActionDiscardSendICMPNoMulticastDest:
if header.IsV6MulticastAddress(dstAddr) {
return fmt.Errorf("found unknown hop-by-hop header option = %#v with discard action", opt)
}
fallthrough
case header.IPv6OptionUnknownActionDiscardSendICMP:
// This case satisfies a requirement of RFC 8200 section 4.2 which
// states that an unknown option starting with bits [10] should:
//
// discard the packet and, regardless of whether or not the
// packet's Destination Address was a multicast address, send an
// ICMP Parameter Problem, Code 2, message to the packet's
// Source Address, pointing to the unrecognized Option Type.
_ = e.protocol.returnError(&icmpReasonParameterProblem{
code: header.ICMPv6UnknownOption,
pointer: it.ParseOffset() + optsIt.OptionOffset(),
respondToMulticast: true,
}, pkt, !forwarding /* deliveredLocally */)
return fmt.Errorf("found unknown hop-by-hop header option = %#v with discard action", opt)
default:
panic(fmt.Sprintf("unrecognized action for an unrecognized Hop By Hop extension header option = %#v", opt))
}
}
if uopt != nil {
uopt.Data.Release()
uopt = nil
}
}
return nil
}
func (e *endpoint) processFragmentExtHdr(extHdr *header.IPv6FragmentExtHdr, it *header.IPv6PayloadIterator, pkt *stack.PacketBufferPtr, h header.IPv6) error {
stats := e.stats.ip
fragmentFieldOffset := it.ParseOffset()
// Don't consume the iterator if we have the first fragment because we
// will use it to validate that the first fragment holds the upper layer
// header.
rawPayload := it.AsRawHeader(extHdr.FragmentOffset() != 0 /* consume */)
defer rawPayload.Release()
if extHdr.FragmentOffset() == 0 {
// Check that the iterator ends with a raw payload as the first fragment
// should include all headers up to and including any upper layer
// headers, as per RFC 8200 section 4.5; only upper layer data
// (non-headers) should follow the fragment extension header.
var lastHdr header.IPv6PayloadHeader
for {
it, done, err := it.Next()
if err != nil {
stats.MalformedPacketsReceived.Increment()
stats.MalformedFragmentsReceived.Increment()
return err
}
if done {
break
}
it.Release()
lastHdr = it
}
// If the last header is a raw header, then the last portion of the IPv6
// payload is not a known IPv6 extension header. Note, this does not
// mean that the last portion is an upper layer header or not an
// extension header because:
// 1) we do not yet support all extension headers
// 2) we do not validate the upper layer header before reassembling.
//
// This check makes sure that a known IPv6 extension header is not
// present after the Fragment extension header in a non-initial
// fragment.
//
// TODO(#2196): Support IPv6 Authentication and Encapsulated
// Security Payload extension headers.
// TODO(#2333): Validate that the upper layer header is valid.
switch lastHdr.(type) {
case header.IPv6RawPayloadHeader:
default:
stats.MalformedPacketsReceived.Increment()
stats.MalformedFragmentsReceived.Increment()
return fmt.Errorf("known extension header = %#v present after fragment header in a non-initial fragment", lastHdr)
}
}
fragmentPayloadLen := rawPayload.Buf.Size()
if fragmentPayloadLen == 0 {
// Drop the packet as it's marked as a fragment but has no payload.
stats.MalformedPacketsReceived.Increment()
stats.MalformedFragmentsReceived.Increment()
return fmt.Errorf("fragment has no payload")
}
// As per RFC 2460 Section 4.5:
//
// If the length of a fragment, as derived from the fragment packet's
// Payload Length field, is not a multiple of 8 octets and the M flag
// of that fragment is 1, then that fragment must be discarded and an
// ICMP Parameter Problem, Code 0, message should be sent to the source
// of the fragment, pointing to the Payload Length field of the
// fragment packet.
if extHdr.More() && fragmentPayloadLen%header.IPv6FragmentExtHdrFragmentOffsetBytesPerUnit != 0 {
stats.MalformedPacketsReceived.Increment()
stats.MalformedFragmentsReceived.Increment()
_ = e.protocol.returnError(&icmpReasonParameterProblem{
code: header.ICMPv6ErroneousHeader,
pointer: header.IPv6PayloadLenOffset,
}, *pkt, true /* deliveredLocally */)
return fmt.Errorf("found fragment length = %d that is not a multiple of 8 octets", fragmentPayloadLen)
}
// The packet is a fragment, let's try to reassemble it.
start := extHdr.FragmentOffset() * header.IPv6FragmentExtHdrFragmentOffsetBytesPerUnit
// As per RFC 2460 Section 4.5:
//
// If the length and offset of a fragment are such that the Payload
// Length of the packet reassembled from that fragment would exceed
// 65,535 octets, then that fragment must be discarded and an ICMP
// Parameter Problem, Code 0, message should be sent to the source of
// the fragment, pointing to the Fragment Offset field of the fragment
// packet.
lengthAfterReassembly := int(start) + int(fragmentPayloadLen)
if lengthAfterReassembly > header.IPv6MaximumPayloadSize {
stats.MalformedPacketsReceived.Increment()
stats.MalformedFragmentsReceived.Increment()
_ = e.protocol.returnError(&icmpReasonParameterProblem{
code: header.ICMPv6ErroneousHeader,
pointer: fragmentFieldOffset,
}, *pkt, true /* deliveredLocally */)
return fmt.Errorf("determined that reassembled packet length = %d would exceed allowed length = %d", lengthAfterReassembly, header.IPv6MaximumPayloadSize)
}
// Note that pkt doesn't have its transport header set after reassembly,
// and won't until DeliverNetworkPacket sets it.
resPkt, proto, ready, err := e.protocol.fragmentation.Process(
// IPv6 ignores the Protocol field since the ID only needs to be unique
// across source-destination pairs, as per RFC 8200 section 4.5.
fragmentation.FragmentID{
Source: h.SourceAddress(),
Destination: h.DestinationAddress(),
ID: extHdr.ID(),
},
start,
start+uint16(fragmentPayloadLen)-1,
extHdr.More(),
uint8(rawPayload.Identifier),
*pkt,
)
if err != nil {
stats.MalformedPacketsReceived.Increment()
stats.MalformedFragmentsReceived.Increment()
return err
}
if ready {
// We create a new iterator with the reassembled packet because we could
// have more extension headers in the reassembled payload, as per RFC
// 8200 section 4.5. We also use the NextHeader value from the first
// fragment.
it.Release()
*it = header.MakeIPv6PayloadIterator(header.IPv6ExtensionHeaderIdentifier(proto), resPkt.Data().ToBuffer())
(*pkt).DecRef()
*pkt = resPkt
}
return nil
}
// Close cleans up resources associated with the endpoint.
func (e *endpoint) Close() {
e.mu.Lock()
e.disableLocked()
e.mu.addressableEndpointState.Cleanup()
e.mu.Unlock()
e.protocol.forgetEndpoint(e.nic.ID())
}
// NetworkProtocolNumber implements stack.NetworkEndpoint.
func (e *endpoint) NetworkProtocolNumber() tcpip.NetworkProtocolNumber {
return e.protocol.Number()
}
// AddAndAcquirePermanentAddress implements stack.AddressableEndpoint.
func (e *endpoint) AddAndAcquirePermanentAddress(addr tcpip.AddressWithPrefix, properties stack.AddressProperties) (stack.AddressEndpoint, tcpip.Error) {
// TODO(b/169350103): add checks here after making sure we no longer receive
// an empty address.
e.mu.Lock()
defer e.mu.Unlock()
// The dance of registering the dispatcher after adding the address makes it
// so that the tentative state is skipped if DAD is disabled.
addrDisp := properties.Disp
properties.Disp = nil
addressEndpoint, err := e.addAndAcquirePermanentAddressLocked(addr, properties)
if addrDisp != nil && err == nil {
addressEndpoint.RegisterDispatcher(addrDisp)
}
return addressEndpoint, err
}
// addAndAcquirePermanentAddressLocked is like AddAndAcquirePermanentAddress but
// with locking requirements.
//
// addAndAcquirePermanentAddressLocked also joins the passed address's
// solicited-node multicast group and start duplicate address detection.
//
// Precondition: e.mu must be write locked.
func (e *endpoint) addAndAcquirePermanentAddressLocked(addr tcpip.AddressWithPrefix, properties stack.AddressProperties) (stack.AddressEndpoint, tcpip.Error) {
addressEndpoint, err := e.mu.addressableEndpointState.AddAndAcquireAddress(addr, properties, stack.PermanentTentative)
if err != nil {
return nil, err
}
if !header.IsV6UnicastAddress(addr.Address) {
return addressEndpoint, nil
}
if e.Enabled() {
if err := e.mu.ndp.startDuplicateAddressDetection(addr.Address, addressEndpoint); err != nil {
return nil, err
}
}
snmc := header.SolicitedNodeAddr(addr.Address)
if err := e.joinGroupLocked(snmc); err != nil {
// joinGroupLocked only returns an error if the group address is not a valid
// IPv6 multicast address.
panic(fmt.Sprintf("e.joinGroupLocked(%s): %s", snmc, err))
}
return addressEndpoint, nil
}
// RemovePermanentAddress implements stack.AddressableEndpoint.
func (e *endpoint) RemovePermanentAddress(addr tcpip.Address) tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
addressEndpoint := e.getAddressRLocked(addr)
if addressEndpoint == nil || !addressEndpoint.GetKind().IsPermanent() {
return &tcpip.ErrBadLocalAddress{}
}
return e.removePermanentEndpointLocked(addressEndpoint, true /* allowSLAACInvalidation */, stack.AddressRemovalManualAction, &stack.DADAborted{})
}
// removePermanentEndpointLocked is like removePermanentAddressLocked except
// it works with a stack.AddressEndpoint.
//
// Precondition: e.mu must be write locked.
func (e *endpoint) removePermanentEndpointLocked(addressEndpoint stack.AddressEndpoint, allowSLAACInvalidation bool, reason stack.AddressRemovalReason, dadResult stack.DADResult) tcpip.Error {
addr := addressEndpoint.AddressWithPrefix()
// If we are removing an address generated via SLAAC, cleanup
// its SLAAC resources and notify the integrator.
if addressEndpoint.ConfigType() == stack.AddressConfigSlaac {
if addressEndpoint.Temporary() {
e.mu.ndp.cleanupTempSLAACAddrResourcesAndNotify(addr)
} else {
e.mu.ndp.cleanupSLAACAddrResourcesAndNotify(addr, allowSLAACInvalidation)
}
}
return e.removePermanentEndpointInnerLocked(addressEndpoint, reason, dadResult)
}
// removePermanentEndpointInnerLocked is like removePermanentEndpointLocked
// except it does not cleanup SLAAC address state.
//
// Precondition: e.mu must be write locked.
func (e *endpoint) removePermanentEndpointInnerLocked(addressEndpoint stack.AddressEndpoint, reason stack.AddressRemovalReason, dadResult stack.DADResult) tcpip.Error {
addr := addressEndpoint.AddressWithPrefix()
e.mu.ndp.stopDuplicateAddressDetection(addr.Address, dadResult)
if err := e.mu.addressableEndpointState.RemovePermanentEndpoint(addressEndpoint, reason); err != nil {
return err
}
snmc := header.SolicitedNodeAddr(addr.Address)
err := e.leaveGroupLocked(snmc)
// The endpoint may have already left the multicast group.
if _, ok := err.(*tcpip.ErrBadLocalAddress); ok {
err = nil
}
return err
}
// hasPermanentAddressLocked returns true if the endpoint has a permanent
// address equal to the passed address.
//
// Precondition: e.mu must be read or write locked.
func (e *endpoint) hasPermanentAddressRLocked(addr tcpip.Address) bool {
addressEndpoint := e.getAddressRLocked(addr)
if addressEndpoint == nil {
return false
}
return addressEndpoint.GetKind().IsPermanent()
}
// getAddressRLocked returns the endpoint for the passed address.
//
// Precondition: e.mu must be read or write locked.
func (e *endpoint) getAddressRLocked(localAddr tcpip.Address) stack.AddressEndpoint {
return e.mu.addressableEndpointState.GetAddress(localAddr)
}
// SetDeprecated implements stack.AddressableEndpoint.
func (e *endpoint) SetDeprecated(addr tcpip.Address, deprecated bool) tcpip.Error {
e.mu.RLock()
defer e.mu.RUnlock()
return e.mu.addressableEndpointState.SetDeprecated(addr, deprecated)
}
// SetLifetimes implements stack.AddressableEndpoint.
func (e *endpoint) SetLifetimes(addr tcpip.Address, lifetimes stack.AddressLifetimes) tcpip.Error {
e.mu.RLock()
defer e.mu.RUnlock()
return e.mu.addressableEndpointState.SetLifetimes(addr, lifetimes)
}
// MainAddress implements stack.AddressableEndpoint.
func (e *endpoint) MainAddress() tcpip.AddressWithPrefix {
e.mu.RLock()
defer e.mu.RUnlock()
return e.mu.addressableEndpointState.MainAddress()
}
// AcquireAssignedAddress implements stack.AddressableEndpoint.
func (e *endpoint) AcquireAssignedAddress(localAddr tcpip.Address, allowTemp bool, tempPEB stack.PrimaryEndpointBehavior) stack.AddressEndpoint {
e.mu.RLock()
defer e.mu.RUnlock()
return e.acquireAddressOrCreateTempLocked(localAddr, allowTemp, tempPEB)
}
// acquireAddressOrCreateTempLocked is like AcquireAssignedAddress but with
// locking requirements.
//
// Precondition: e.mu must be write locked.
func (e *endpoint) acquireAddressOrCreateTempLocked(localAddr tcpip.Address, allowTemp bool, tempPEB stack.PrimaryEndpointBehavior) stack.AddressEndpoint {
return e.mu.addressableEndpointState.AcquireAssignedAddress(localAddr, allowTemp, tempPEB)
}
// AcquireOutgoingPrimaryAddress implements stack.AddressableEndpoint.
func (e *endpoint) AcquireOutgoingPrimaryAddress(remoteAddr tcpip.Address, allowExpired bool) stack.AddressEndpoint {
e.mu.RLock()
defer e.mu.RUnlock()
return e.acquireOutgoingPrimaryAddressRLocked(remoteAddr, allowExpired)
}
// getLinkLocalAddressRLocked returns a link-local address from the primary list
// of addresses, if one is available.
//
// See stack.PrimaryEndpointBehavior for more details about the primary list.
//
// Precondition: e.mu must be read locked.
func (e *endpoint) getLinkLocalAddressRLocked() tcpip.Address {
var linkLocalAddr tcpip.Address
e.mu.addressableEndpointState.ForEachPrimaryEndpoint(func(addressEndpoint stack.AddressEndpoint) bool {
if addressEndpoint.IsAssigned(false /* allowExpired */) {
if addr := addressEndpoint.AddressWithPrefix().Address; header.IsV6LinkLocalUnicastAddress(addr) {
linkLocalAddr = addr
return false
}
}
return true
})
return linkLocalAddr
}
// acquireOutgoingPrimaryAddressRLocked is like AcquireOutgoingPrimaryAddress
// but with locking requirements.
//
// Precondition: e.mu must be read locked.
func (e *endpoint) acquireOutgoingPrimaryAddressRLocked(remoteAddr tcpip.Address, allowExpired bool) stack.AddressEndpoint {
// addrCandidate is a candidate for Source Address Selection, as per
// RFC 6724 section 5.
type addrCandidate struct {
addressEndpoint stack.AddressEndpoint
addr tcpip.Address
scope header.IPv6AddressScope
label uint8
matchingPrefix uint8
}
if len(remoteAddr) == 0 {
return e.mu.addressableEndpointState.AcquireOutgoingPrimaryAddress(remoteAddr, allowExpired)
}
// Create a candidate set of available addresses we can potentially use as a
// source address.
var cs []addrCandidate
e.mu.addressableEndpointState.ForEachPrimaryEndpoint(func(addressEndpoint stack.AddressEndpoint) bool {
// If r is not valid for outgoing connections, it is not a valid endpoint.
if !addressEndpoint.IsAssigned(allowExpired) {
return true
}
addr := addressEndpoint.AddressWithPrefix().Address
scope, err := header.ScopeForIPv6Address(addr)
if err != nil {
// Should never happen as we got r from the primary IPv6 endpoint list and
// ScopeForIPv6Address only returns an error if addr is not an IPv6
// address.
panic(fmt.Sprintf("header.ScopeForIPv6Address(%s): %s", addr, err))
}
cs = append(cs, addrCandidate{
addressEndpoint: addressEndpoint,
addr: addr,
scope: scope,
label: getLabel(addr),
matchingPrefix: remoteAddr.MatchingPrefix(addr),
})
return true
})
remoteScope, err := header.ScopeForIPv6Address(remoteAddr)
if err != nil {
// primaryIPv6Endpoint should never be called with an invalid IPv6 address.
panic(fmt.Sprintf("header.ScopeForIPv6Address(%s): %s", remoteAddr, err))
}
remoteLabel := getLabel(remoteAddr)
// Sort the addresses as per RFC 6724 section 5 rules 1-3.
//
// TODO(b/146021396): Implement rules 4, 5 of RFC 6724 section 5.
sort.Slice(cs, func(i, j int) bool {
sa := cs[i]
sb := cs[j]
// Prefer same address as per RFC 6724 section 5 rule 1.
if sa.addr == remoteAddr {
return true
}
if sb.addr == remoteAddr {
return false
}
// Prefer appropriate scope as per RFC 6724 section 5 rule 2.
if sa.scope < sb.scope {
return sa.scope >= remoteScope
} else if sb.scope < sa.scope {
return sb.scope < remoteScope
}
// Avoid deprecated addresses as per RFC 6724 section 5 rule 3.
if saDep, sbDep := sa.addressEndpoint.Deprecated(), sb.addressEndpoint.Deprecated(); saDep != sbDep {
// If sa is not deprecated, it is preferred over sb.
return sbDep
}
// Prefer matching label as per RFC 6724 section 5 rule 6.
if sa, sb := sa.label == remoteLabel, sb.label == remoteLabel; sa != sb {
if sa {
return true
}
if sb {
return false
}
}
// Prefer temporary addresses as per RFC 6724 section 5 rule 7.
if saTemp, sbTemp := sa.addressEndpoint.Temporary(), sb.addressEndpoint.Temporary(); saTemp != sbTemp {
return saTemp
}
// Use longest matching prefix as per RFC 6724 section 5 rule 8.
if sa.matchingPrefix > sb.matchingPrefix {
return true
}
if sb.matchingPrefix > sa.matchingPrefix {
return false
}
// sa and sb are equal, return the endpoint that is closest to the front of
// the primary endpoint list.
return i < j
})
// Return the most preferred address that can have its reference count
// incremented.
for _, c := range cs {
if c.addressEndpoint.IncRef() {
return c.addressEndpoint
}
}
return nil
}
// PrimaryAddresses implements stack.AddressableEndpoint.
func (e *endpoint) PrimaryAddresses() []tcpip.AddressWithPrefix {
e.mu.RLock()
defer e.mu.RUnlock()
return e.mu.addressableEndpointState.PrimaryAddresses()
}
// PermanentAddresses implements stack.AddressableEndpoint.
func (e *endpoint) PermanentAddresses() []tcpip.AddressWithPrefix {
e.mu.RLock()
defer e.mu.RUnlock()
return e.mu.addressableEndpointState.PermanentAddresses()
}
// JoinGroup implements stack.GroupAddressableEndpoint.
func (e *endpoint) JoinGroup(addr tcpip.Address) tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
return e.joinGroupLocked(addr)
}
// joinGroupLocked is like JoinGroup but with locking requirements.
//
// Precondition: e.mu must be locked.
func (e *endpoint) joinGroupLocked(addr tcpip.Address) tcpip.Error {
if !header.IsV6MulticastAddress(addr) {
return &tcpip.ErrBadAddress{}
}
e.mu.mld.joinGroup(addr)
return nil
}
// LeaveGroup implements stack.GroupAddressableEndpoint.
func (e *endpoint) LeaveGroup(addr tcpip.Address) tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
return e.leaveGroupLocked(addr)
}
// leaveGroupLocked is like LeaveGroup but with locking requirements.
//
// Precondition: e.mu must be locked.
func (e *endpoint) leaveGroupLocked(addr tcpip.Address) tcpip.Error {
return e.mu.mld.leaveGroup(addr)
}
// IsInGroup implements stack.GroupAddressableEndpoint.
func (e *endpoint) IsInGroup(addr tcpip.Address) bool {
e.mu.RLock()
defer e.mu.RUnlock()
return e.mu.mld.isInGroup(addr)
}
// Stats implements stack.NetworkEndpoint.
func (e *endpoint) Stats() stack.NetworkEndpointStats {
return &e.stats.localStats
}
var _ stack.NetworkProtocol = (*protocol)(nil)
var _ stack.MulticastForwardingNetworkProtocol = (*protocol)(nil)
var _ stack.RejectIPv6WithHandler = (*protocol)(nil)
var _ fragmentation.TimeoutHandler = (*protocol)(nil)
type protocol struct {
stack *stack.Stack
options Options
mu struct {
sync.RWMutex
// eps is keyed by NICID to allow protocol methods to retrieve an endpoint
// when handling a packet, by looking at which NIC handled the packet.
eps map[tcpip.NICID]*endpoint
// ICMP types for which the stack's global rate limiting must apply.
icmpRateLimitedTypes map[header.ICMPv6Type]struct{}
// multicastForwardingDisp is the multicast forwarding event dispatcher that
// an integrator can provide to receive multicast forwarding events. Note
// that multicast packets will only be forwarded if this is non-nil.
multicastForwardingDisp stack.MulticastForwardingEventDispatcher
}
ids []atomicbitops.Uint32
hashIV uint32
// defaultTTL is the current default TTL for the protocol. Only the
// uint8 portion of it is meaningful.
defaultTTL atomicbitops.Uint32
fragmentation *fragmentation.Fragmentation
icmpRateLimiter *stack.ICMPRateLimiter
multicastRouteTable multicast.RouteTable
}
// Number returns the ipv6 protocol number.
func (p *protocol) Number() tcpip.NetworkProtocolNumber {
return ProtocolNumber
}
// MinimumPacketSize returns the minimum valid ipv6 packet size.
func (p *protocol) MinimumPacketSize() int {
return header.IPv6MinimumSize
}
// ParseAddresses implements stack.NetworkProtocol.
func (*protocol) ParseAddresses(b []byte) (src, dst tcpip.Address) {
h := header.IPv6(b)
return h.SourceAddress(), h.DestinationAddress()
}
// NewEndpoint creates a new ipv6 endpoint.
func (p *protocol) NewEndpoint(nic stack.NetworkInterface, dispatcher stack.TransportDispatcher) stack.NetworkEndpoint {
e := &endpoint{
nic: nic,
dispatcher: dispatcher,
protocol: p,
}
// NDP options must be 8 octet aligned and the first 2 bytes are used for
// the type and length fields leaving 6 octets as the minimum size for a
// nonce option without padding.
const nonceSize = 6
// As per RFC 7527 section 4.1,
//
// If any probe is looped back within RetransTimer milliseconds after
// having sent DupAddrDetectTransmits NS(DAD) messages, the interface
// continues with another MAX_MULTICAST_SOLICIT number of NS(DAD)
// messages transmitted RetransTimer milliseconds apart.
//
// Value taken from RFC 4861 section 10.
const maxMulticastSolicit = 3
dadOptions := ip.DADOptions{
Clock: p.stack.Clock(),
SecureRNG: p.stack.SecureRNG(),
NonceSize: nonceSize,
ExtendDADTransmits: maxMulticastSolicit,
Protocol: &e.mu.ndp,
NICID: nic.ID(),
}
e.mu.Lock()
e.mu.addressableEndpointState.Init(e, stack.AddressableEndpointStateOptions{HiddenWhileDisabled: true})
e.mu.ndp.init(e, dadOptions)
e.mu.mld.init(e)
e.dad.mu.Lock()
e.dad.mu.dad.Init(&e.dad.mu, p.options.DADConfigs, dadOptions)
e.dad.mu.Unlock()
e.mu.Unlock()
stackStats := p.stack.Stats()
tcpip.InitStatCounters(reflect.ValueOf(&e.stats.localStats).Elem())
e.stats.ip.Init(&e.stats.localStats.IP, &stackStats.IP)
e.stats.icmp.init(&e.stats.localStats.ICMP, &stackStats.ICMP.V6)
p.mu.Lock()
defer p.mu.Unlock()
p.mu.eps[nic.ID()] = e
return e
}
func (p *protocol) findEndpointWithAddress(addr tcpip.Address) *endpoint {
p.mu.RLock()
defer p.mu.RUnlock()
for _, e := range p.mu.eps {
if addressEndpoint := e.AcquireAssignedAddress(addr, false /* allowTemp */, stack.NeverPrimaryEndpoint); addressEndpoint != nil {
addressEndpoint.DecRef()
return e
}
}
return nil
}
func (p *protocol) getEndpointForNIC(id tcpip.NICID) (*endpoint, bool) {
p.mu.RLock()
defer p.mu.RUnlock()
ep, ok := p.mu.eps[id]
return ep, ok
}
func (p *protocol) forgetEndpoint(nicID tcpip.NICID) {
p.mu.Lock()
defer p.mu.Unlock()
delete(p.mu.eps, nicID)
}
// SetOption implements stack.NetworkProtocol.
func (p *protocol) SetOption(option tcpip.SettableNetworkProtocolOption) tcpip.Error {
switch v := option.(type) {
case *tcpip.DefaultTTLOption:
p.SetDefaultTTL(uint8(*v))
return nil
default:
return &tcpip.ErrUnknownProtocolOption{}
}
}
// Option implements stack.NetworkProtocol.
func (p *protocol) Option(option tcpip.GettableNetworkProtocolOption) tcpip.Error {
switch v := option.(type) {
case *tcpip.DefaultTTLOption:
*v = tcpip.DefaultTTLOption(p.DefaultTTL())
return nil
default:
return &tcpip.ErrUnknownProtocolOption{}
}
}
// SetDefaultTTL sets the default TTL for endpoints created with this protocol.
func (p *protocol) SetDefaultTTL(ttl uint8) {
p.defaultTTL.Store(uint32(ttl))
}
// DefaultTTL returns the default TTL for endpoints created with this protocol.
func (p *protocol) DefaultTTL() uint8 {
return uint8(p.defaultTTL.Load())
}
// emitMulticastEvent emits a multicast forwarding event using the provided
// generator if a valid event dispatcher exists.
func (e *endpoint) emitMulticastEvent(eventGenerator func(stack.MulticastForwardingEventDispatcher)) {
e.protocol.mu.RLock()
defer e.protocol.mu.RUnlock()
if mcastDisp := e.protocol.mu.multicastForwardingDisp; mcastDisp != nil {
eventGenerator(mcastDisp)
}
}
// Close implements stack.TransportProtocol.
func (p *protocol) Close() {
p.fragmentation.Release()
p.multicastRouteTable.Close()
}
func validateUnicastSourceAndMulticastDestination(addresses stack.UnicastSourceAndMulticastDestination) tcpip.Error {
if !header.IsV6UnicastAddress(addresses.Source) || header.IsV6LinkLocalUnicastAddress(addresses.Source) {
return &tcpip.ErrBadAddress{}
}
if !header.IsV6MulticastAddress(addresses.Destination) || header.IsV6LinkLocalMulticastAddress(addresses.Destination) {
return &tcpip.ErrBadAddress{}
}
return nil
}
func (p *protocol) multicastForwarding() bool {
p.mu.RLock()
defer p.mu.RUnlock()
return p.mu.multicastForwardingDisp != nil
}
func (p *protocol) newInstalledRoute(route stack.MulticastRoute) (*multicast.InstalledRoute, tcpip.Error) {
if len(route.OutgoingInterfaces) == 0 {
return nil, &tcpip.ErrMissingRequiredFields{}
}
if !p.stack.HasNIC(route.ExpectedInputInterface) {
return nil, &tcpip.ErrUnknownNICID{}
}
for _, outgoingInterface := range route.OutgoingInterfaces {
if route.ExpectedInputInterface == outgoingInterface.ID {
return nil, &tcpip.ErrMulticastInputCannotBeOutput{}
}
if !p.stack.HasNIC(outgoingInterface.ID) {
return nil, &tcpip.ErrUnknownNICID{}
}
}
return p.multicastRouteTable.NewInstalledRoute(route), nil
}
// AddMulticastRoute implements stack.MulticastForwardingNetworkProtocol.
func (p *protocol) AddMulticastRoute(addresses stack.UnicastSourceAndMulticastDestination, route stack.MulticastRoute) tcpip.Error {
if !p.multicastForwarding() {
return &tcpip.ErrNotPermitted{}
}
if err := validateUnicastSourceAndMulticastDestination(addresses); err != nil {
return err
}
installedRoute, err := p.newInstalledRoute(route)
if err != nil {
return err
}
pendingPackets := p.multicastRouteTable.AddInstalledRoute(addresses, installedRoute)
for _, pkt := range pendingPackets {
p.forwardPendingMulticastPacket(pkt, installedRoute)
}
return nil
}
// RemoveMulticastRoute implements
// stack.MulticastForwardingNetworkProtocol.RemoveMulticastRoute.
func (p *protocol) RemoveMulticastRoute(addresses stack.UnicastSourceAndMulticastDestination) tcpip.Error {
if err := validateUnicastSourceAndMulticastDestination(addresses); err != nil {
return err
}
if removed := p.multicastRouteTable.RemoveInstalledRoute(addresses); !removed {
return &tcpip.ErrHostUnreachable{}
}
return nil
}
// MulticastRouteLastUsedTime implements
// stack.MulticastForwardingNetworkProtocol.
func (p *protocol) MulticastRouteLastUsedTime(addresses stack.UnicastSourceAndMulticastDestination) (tcpip.MonotonicTime, tcpip.Error) {
if err := validateUnicastSourceAndMulticastDestination(addresses); err != nil {
return tcpip.MonotonicTime{}, err
}
timestamp, found := p.multicastRouteTable.GetLastUsedTimestamp(addresses)
if !found {
return tcpip.MonotonicTime{}, &tcpip.ErrHostUnreachable{}
}
return timestamp, nil
}
// EnableMulticastForwarding implements
// stack.MulticastForwardingNetworkProtocol.EnableMulticastForwarding.
func (p *protocol) EnableMulticastForwarding(disp stack.MulticastForwardingEventDispatcher) (bool, tcpip.Error) {
p.mu.Lock()
defer p.mu.Unlock()
if p.mu.multicastForwardingDisp != nil {
return true, nil
}
if disp == nil {
return false, &tcpip.ErrInvalidOptionValue{}
}
p.mu.multicastForwardingDisp = disp
return false, nil
}
// DisableMulticastForwarding implements
// stack.MulticastForwardingNetworkProtocol.DisableMulticastForwarding.
func (p *protocol) DisableMulticastForwarding() {
p.mu.Lock()
defer p.mu.Unlock()
p.mu.multicastForwardingDisp = nil
p.multicastRouteTable.RemoveAllInstalledRoutes()
}
func (p *protocol) forwardPendingMulticastPacket(pkt stack.PacketBufferPtr, installedRoute *multicast.InstalledRoute) {
defer pkt.DecRef()
// Attempt to forward the packet using the endpoint that it originally
// arrived on. This ensures that the packet is only forwarded if it
// matches the route's expected input interface (see 5a of RFC 1812 section
// 5.2.1.3).
ep, ok := p.getEndpointForNIC(pkt.NICID)
if !ok {
// The endpoint that the packet arrived on no longer exists. Silently
// drop the pkt.
return
}
if !ep.MulticastForwarding() {
return
}
ep.handleForwardingError(ep.forwardValidatedMulticastPacket(pkt, installedRoute))
}
// Wait implements stack.TransportProtocol.
func (*protocol) Wait() {}
// parseAndValidate parses the packet (including its transport layer header) and
// returns a view containing the parsed IP header. The caller is responsible
// for releasing the returned View.
//
// Returns true if the IP header was successfully parsed.
func (p *protocol) parseAndValidate(pkt stack.PacketBufferPtr) (*bufferv2.View, bool) {
transProtoNum, hasTransportHdr, ok := p.Parse(pkt)
if !ok {
return nil, false
}
h := header.IPv6(pkt.NetworkHeader().Slice())
// Do not include the link header's size when calculating the size of the IP
// packet.
if !h.IsValid(pkt.Size() - len(pkt.LinkHeader().Slice())) {
return nil, false
}
if hasTransportHdr {
p.parseTransport(pkt, transProtoNum)
}
return pkt.NetworkHeader().View(), true
}
func (p *protocol) parseTransport(pkt stack.PacketBufferPtr, transProtoNum tcpip.TransportProtocolNumber) {
if transProtoNum == header.ICMPv6ProtocolNumber {
// The transport layer will handle transport layer parsing errors.
_ = parse.ICMPv6(pkt)
return
}
switch err := p.stack.ParsePacketBufferTransport(transProtoNum, pkt); err {
case stack.ParsedOK:
case stack.UnknownTransportProtocol, stack.TransportLayerParseError:
// The transport layer will handle unknown protocols and transport layer
// parsing errors.
default:
panic(fmt.Sprintf("unexpected error parsing transport header = %d", err))
}
}
// Parse implements stack.NetworkProtocol.
func (*protocol) Parse(pkt stack.PacketBufferPtr) (proto tcpip.TransportProtocolNumber, hasTransportHdr bool, ok bool) {
proto, _, fragOffset, fragMore, ok := parse.IPv6(pkt)
if !ok {
return 0, false, false
}
return proto, !fragMore && fragOffset == 0, true
}
// allowICMPReply reports whether an ICMP reply with provided type may
// be sent following the rate mask options and global ICMP rate limiter.
func (p *protocol) allowICMPReply(icmpType header.ICMPv6Type) bool {
p.mu.RLock()
defer p.mu.RUnlock()
if _, ok := p.mu.icmpRateLimitedTypes[icmpType]; ok {
return p.stack.AllowICMPMessage()
}
return true
}
// SendRejectionError implements stack.RejectIPv6WithHandler.
func (p *protocol) SendRejectionError(pkt stack.PacketBufferPtr, rejectWith stack.RejectIPv6WithICMPType, inputHook bool) tcpip.Error {
switch rejectWith {
case stack.RejectIPv6WithICMPNoRoute:
return p.returnError(&icmpReasonNetUnreachable{}, pkt, inputHook)
case stack.RejectIPv6WithICMPAddrUnreachable:
return p.returnError(&icmpReasonHostUnreachable{}, pkt, inputHook)
case stack.RejectIPv6WithICMPPortUnreachable:
return p.returnError(&icmpReasonPortUnreachable{}, pkt, inputHook)
case stack.RejectIPv6WithICMPAdminProhibited:
return p.returnError(&icmpReasonAdministrativelyProhibited{}, pkt, inputHook)
default:
panic(fmt.Sprintf("unhandled %[1]T = %[1]d", rejectWith))
}
}
// calculateNetworkMTU calculates the network-layer payload MTU based on the
// link-layer payload MTU and the length of every IPv6 header.
// Note that this is different than the Payload Length field of the IPv6 header,
// which includes the length of the extension headers.
func calculateNetworkMTU(linkMTU, networkHeadersLen uint32) (uint32, tcpip.Error) {
if linkMTU < header.IPv6MinimumMTU {
return 0, &tcpip.ErrInvalidEndpointState{}
}
// As per RFC 7112 section 5, we should discard packets if their IPv6 header
// is bigger than 1280 bytes (ie, the minimum link MTU) since we do not
// support PMTU discovery:
// Hosts that do not discover the Path MTU MUST limit the IPv6 Header Chain
// length to 1280 bytes. Limiting the IPv6 Header Chain length to 1280
// bytes ensures that the header chain length does not exceed the IPv6
// minimum MTU.
if networkHeadersLen > header.IPv6MinimumMTU {
return 0, &tcpip.ErrMalformedHeader{}
}
networkMTU := linkMTU - networkHeadersLen
if networkMTU > maxPayloadSize {
networkMTU = maxPayloadSize
}
return networkMTU, nil
}
// Options holds options to configure a new protocol.
type Options struct {
// NDPConfigs is the default NDP configurations used by interfaces.
NDPConfigs NDPConfigurations
// AutoGenLinkLocal determines whether or not the stack attempts to
// auto-generate a link-local address for newly enabled non-loopback
// NICs.
//
// Note, setting this to true does not mean that a link-local address is
// assigned right away, or at all. If Duplicate Address Detection is enabled,
// an address is only assigned if it successfully resolves. If it fails, no
// further attempts are made to auto-generate a link-local address.
//
// The generated link-local address follows RFC 4291 Appendix A guidelines.
AutoGenLinkLocal bool
// NDPDisp is the NDP event dispatcher that an integrator can provide to
// receive NDP related events.
NDPDisp NDPDispatcher
// OpaqueIIDOpts hold the options for generating opaque interface
// identifiers (IIDs) as outlined by RFC 7217.
OpaqueIIDOpts OpaqueInterfaceIdentifierOptions
// TempIIDSeed is used to seed the initial temporary interface identifier
// history value used to generate IIDs for temporary SLAAC addresses.
//
// Temporary SLAAC addresses are short-lived addresses which are unpredictable
// and random from the perspective of other nodes on the network. It is
// recommended that the seed be a random byte buffer of at least
// header.IIDSize bytes to make sure that temporary SLAAC addresses are
// sufficiently random. It should follow minimum randomness requirements for
// security as outlined by RFC 4086.
//
// Note: using a nil value, the same seed across netstack program runs, or a
// seed that is too small would reduce randomness and increase predictability,
// defeating the purpose of temporary SLAAC addresses.
TempIIDSeed []byte
// MLD holds options for MLD.
MLD MLDOptions
// DADConfigs holds the default DAD configurations used by IPv6 endpoints.
DADConfigs stack.DADConfigurations
// AllowExternalLoopbackTraffic indicates that inbound loopback packets (i.e.
// martian loopback packets) should be accepted.
AllowExternalLoopbackTraffic bool
}
// NewProtocolWithOptions returns an IPv6 network protocol.
func NewProtocolWithOptions(opts Options) stack.NetworkProtocolFactory {
opts.NDPConfigs.validate()
ids := hash.RandN32(buckets)
hashIV := hash.RandN32(1)[0]
atomicIds := make([]atomicbitops.Uint32, len(ids))
for i := range ids {
atomicIds[i] = atomicbitops.FromUint32(ids[i])
}
return func(s *stack.Stack) stack.NetworkProtocol {
p := &protocol{
stack: s,
options: opts,
ids: atomicIds,
hashIV: hashIV,
}
p.fragmentation = fragmentation.NewFragmentation(header.IPv6FragmentExtHdrFragmentOffsetBytesPerUnit, fragmentation.HighFragThreshold, fragmentation.LowFragThreshold, ReassembleTimeout, s.Clock(), p)
p.mu.eps = make(map[tcpip.NICID]*endpoint)
p.SetDefaultTTL(DefaultTTL)
// Set default ICMP rate limiting to Linux defaults.
//
// Default: 0-1,3-127 (rate limit ICMPv6 errors except Packet Too Big)
// See https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt.
defaultIcmpTypes := make(map[header.ICMPv6Type]struct{})
for i := header.ICMPv6Type(0); i < header.ICMPv6EchoRequest; i++ {
switch i {
case header.ICMPv6PacketTooBig:
// Do not rate limit packet too big by default.
default:
defaultIcmpTypes[i] = struct{}{}
}
}
p.mu.icmpRateLimitedTypes = defaultIcmpTypes
if err := p.multicastRouteTable.Init(multicast.DefaultConfig(s.Clock())); err != nil {
panic(fmt.Sprintf("p.multicastRouteTable.Init(_): %s", err))
}
return p
}
}
// NewProtocol is equivalent to NewProtocolWithOptions with an empty Options.
func NewProtocol(s *stack.Stack) stack.NetworkProtocol {
return NewProtocolWithOptions(Options{})(s)
}
func calculateFragmentReserve(pkt stack.PacketBufferPtr) int {
return pkt.AvailableHeaderBytes() + len(pkt.NetworkHeader().Slice()) + header.IPv6FragmentHeaderSize
}
// hashRoute calculates a hash value for the given route. It uses the source &
// destination address and 32-bit number to generate the hash.
func hashRoute(r *stack.Route, hashIV uint32) uint32 {
// The FNV-1a was chosen because it is a fast hashing algorithm, and
// cryptographic properties are not needed here.
h := fnv.New32a()
if _, err := h.Write([]byte(r.LocalAddress())); err != nil {
panic(fmt.Sprintf("Hash.Write: %s, but Hash' implementation of Write is not expected to ever return an error", err))
}
if _, err := h.Write([]byte(r.RemoteAddress())); err != nil {
panic(fmt.Sprintf("Hash.Write: %s, but Hash' implementation of Write is not expected to ever return an error", err))
}
s := make([]byte, 4)
binary.LittleEndian.PutUint32(s, hashIV)
if _, err := h.Write(s); err != nil {
panic(fmt.Sprintf("Hash.Write: %s, but Hash' implementation of Write is not expected ever to return an error", err))
}
return h.Sum32()
}
func buildNextFragment(pf *fragmentation.PacketFragmenter, originalIPHeaders header.IPv6, transportProto tcpip.TransportProtocolNumber, id uint32) (stack.PacketBufferPtr, bool) {
fragPkt, offset, copied, more := pf.BuildNextFragment()
fragPkt.NetworkProtocolNumber = ProtocolNumber
originalIPHeadersLength := len(originalIPHeaders)
s := header.IPv6ExtHdrSerializer{&header.IPv6SerializableFragmentExtHdr{
FragmentOffset: uint16(offset / header.IPv6FragmentExtHdrFragmentOffsetBytesPerUnit),
M: more,
Identification: id,
}}
fragmentIPHeadersLength := originalIPHeadersLength + s.Length()
fragmentIPHeaders := header.IPv6(fragPkt.NetworkHeader().Push(fragmentIPHeadersLength))
// Copy the IPv6 header and any extension headers already populated.
if copied := copy(fragmentIPHeaders, originalIPHeaders); copied != originalIPHeadersLength {
panic(fmt.Sprintf("wrong number of bytes copied into fragmentIPHeaders: got %d, want %d", copied, originalIPHeadersLength))
}
nextHeader, _ := s.Serialize(transportProto, fragmentIPHeaders[originalIPHeadersLength:])
fragmentIPHeaders.SetNextHeader(nextHeader)
fragmentIPHeaders.SetPayloadLength(uint16(copied + fragmentIPHeadersLength - header.IPv6MinimumSize))
return fragPkt, more
}
|