1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
// Copyright 2022 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stack
import (
"fmt"
"time"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
)
// TODO(b/256037250): I still see the occasional SACK block in the zero-loss
// benchmark, which should not happen.
// TODO(b/256037250): Some dispatchers, e.g. XDP and RecvMmsg, can receive
// multiple packets at a time. Even if the GRO interval is 0, there is an
// opportunity for coalescing.
// TODO(b/256037250): We're doing some header parsing here, which presents the
// opportunity to skip it later.
// TODO(b/256037250): Disarm or ignore the timer when GRO is empty.
// TODO(b/256037250): We may be able to remove locking by pairing
// groDispatchers with link endpoint dispatchers.
const (
// groNBuckets is the number of GRO buckets.
groNBuckets = 8
groNBucketsMask = groNBuckets - 1
// groBucketSize is the size of each GRO bucket.
groBucketSize = 8
// groMaxPacketSize is the maximum size of a GRO'd packet.
groMaxPacketSize = 1 << 16 // 65KB.
)
// A groBucket holds packets that are undergoing GRO.
type groBucket struct {
// mu protects the fields of a bucket.
mu sync.Mutex
// count is the number of packets in the bucket.
// +checklocks:mu
count int
// packets is the linked list of packets.
// +checklocks:mu
packets groPacketList
// packetsPrealloc and allocIdxs are used to preallocate and reuse
// groPacket structs and avoid allocation.
// +checklocks:mu
packetsPrealloc [groBucketSize]groPacket
// +checklocks:mu
allocIdxs [groBucketSize]int
}
// +checklocks:gb.mu
func (gb *groBucket) full() bool {
return gb.count == groBucketSize
}
// insert inserts pkt into the bucket.
// +checklocks:gb.mu
func (gb *groBucket) insert(pkt PacketBufferPtr, ipHdr header.IPv4, tcpHdr header.TCP, ep NetworkEndpoint) {
groPkt := &gb.packetsPrealloc[gb.allocIdxs[gb.count]]
*groPkt = groPacket{
pkt: pkt,
created: time.Now(),
ep: ep,
ipHdr: ipHdr,
tcpHdr: tcpHdr,
initialLength: ipHdr.TotalLength(),
idx: groPkt.idx,
}
gb.count++
gb.packets.PushBack(groPkt)
}
// removeOldest removes the oldest packet from gb and returns the contained
// PacketBufferPtr. gb must not be empty.
// +checklocks:gb.mu
func (gb *groBucket) removeOldest() PacketBufferPtr {
pkt := gb.packets.Front()
gb.packets.Remove(pkt)
gb.count--
gb.allocIdxs[gb.count] = pkt.idx
ret := pkt.pkt
pkt.reset()
return ret
}
// removeOne removes a packet from gb. It also resets pkt to its zero value.
// +checklocks:gb.mu
func (gb *groBucket) removeOne(pkt *groPacket) {
gb.packets.Remove(pkt)
gb.count--
gb.allocIdxs[gb.count] = pkt.idx
pkt.reset()
}
// findGROPacket returns the groPkt that matches ipHdr and tcpHdr, or nil if
// none exists. It also returns whether the groPkt should be flushed based on
// differences between the two headers.
// +checklocks:gb.mu
func (gb *groBucket) findGROPacket(ipHdr header.IPv4, tcpHdr header.TCP) (*groPacket, bool) {
for groPkt := gb.packets.Front(); groPkt != nil; groPkt = groPkt.Next() {
// Do the addresses match?
if ipHdr.SourceAddress() != groPkt.ipHdr.SourceAddress() || ipHdr.DestinationAddress() != groPkt.ipHdr.DestinationAddress() {
continue
}
// Do the ports match?
if tcpHdr.SourcePort() != groPkt.tcpHdr.SourcePort() || tcpHdr.DestinationPort() != groPkt.tcpHdr.DestinationPort() {
continue
}
// We've found a packet of the same flow.
// IP checks.
TOS, _ := ipHdr.TOS()
groTOS, _ := groPkt.ipHdr.TOS()
if ipHdr.TTL() != groPkt.ipHdr.TTL() || TOS != groTOS {
return groPkt, true
}
// TCP checks.
flags := tcpHdr.Flags()
groPktFlags := groPkt.tcpHdr.Flags()
dataOff := tcpHdr.DataOffset()
if flags&header.TCPFlagCwr != 0 || // Is congestion control occurring?
(flags^groPktFlags)&^(header.TCPFlagCwr|header.TCPFlagFin|header.TCPFlagPsh) != 0 || // Do the flags differ besides CRW, FIN, and PSH?
tcpHdr.AckNumber() != groPkt.tcpHdr.AckNumber() || // Do the ACKs match?
dataOff != groPkt.tcpHdr.DataOffset() || // Are the TCP headers the same length?
groPkt.tcpHdr.SequenceNumber()+uint32(groPkt.payloadSize()) != tcpHdr.SequenceNumber() { // Does the incoming packet match the expected sequence number?
return groPkt, true
}
// The options, including timestamps, must be identical.
for i := header.TCPMinimumSize; i < int(dataOff); i++ {
if tcpHdr[i] != groPkt.tcpHdr[i] {
return groPkt, true
}
}
// There's an upper limit on coalesced packet size.
if int(ipHdr.TotalLength())-header.IPv4MinimumSize-int(dataOff)+groPkt.pkt.Data().Size() >= groMaxPacketSize {
return groPkt, true
}
return groPkt, false
}
return nil, false
}
// A groPacket is packet undergoing GRO. It may be several packets coalesced
// together.
type groPacket struct {
// groPacketEntry is an intrusive list.
groPacketEntry
// pkt is the coalesced packet.
pkt PacketBufferPtr
// ipHdr is the IP header for the coalesced packet.
ipHdr header.IPv4
// tcpHdr is the TCP header for the coalesced packet.
tcpHdr header.TCP
// created is when the packet was received.
created time.Time
// ep is the endpoint to which the packet will be sent after GRO.
ep NetworkEndpoint
// initialLength is the length of the first packet in the flow. It is
// used as a best-effort guess at MSS: senders will send MSS-sized
// packets until they run out of data, so we coalesce as long as
// packets are the same size.
initialLength uint16
// idx is the groPacket's index in its bucket packetsPrealloc. It is
// immutable.
idx int
}
// reset resets all mutable fields of the groPacket.
func (pk *groPacket) reset() {
*pk = groPacket{
idx: pk.idx,
}
}
// payloadSize is the payload size of the coalesced packet, which does not
// include the network or transport headers.
func (pk *groPacket) payloadSize() uint16 {
return pk.ipHdr.TotalLength() - header.IPv4MinimumSize - uint16(pk.tcpHdr.DataOffset())
}
// groDispatcher coalesces incoming packets to increase throughput.
type groDispatcher struct {
// newInterval notifies about changes to the interval.
newInterval chan struct{}
// intervalNS is the interval in nanoseconds.
intervalNS atomicbitops.Int64
// stop instructs the GRO dispatcher goroutine to stop.
stop chan struct{}
buckets [groNBuckets]groBucket
wg sync.WaitGroup
}
func (gd *groDispatcher) init(interval time.Duration) {
gd.intervalNS.Store(interval.Nanoseconds())
gd.newInterval = make(chan struct{}, 1)
gd.stop = make(chan struct{})
for i := range gd.buckets {
bucket := &gd.buckets[i]
bucket.mu.Lock()
for j := range bucket.packetsPrealloc {
bucket.allocIdxs[j] = j
bucket.packetsPrealloc[j].idx = j
}
bucket.mu.Unlock()
}
gd.start(interval)
}
// start spawns a goroutine that flushes the GRO periodically based on the
// interval.
func (gd *groDispatcher) start(interval time.Duration) {
gd.wg.Add(1)
go func(interval time.Duration) {
defer gd.wg.Done()
var ch <-chan time.Time
if interval == 0 {
// Never run.
ch = make(<-chan time.Time)
} else {
ticker := time.NewTicker(interval)
ch = ticker.C
}
for {
select {
case <-gd.newInterval:
interval = time.Duration(gd.intervalNS.Load()) * time.Nanosecond
if interval == 0 {
// Never run. Flush any existing GRO packets.
gd.flushAll()
ch = make(<-chan time.Time)
} else {
ticker := time.NewTicker(interval)
ch = ticker.C
}
case <-ch:
gd.flush()
case <-gd.stop:
return
}
}
}(interval)
}
func (gd *groDispatcher) getInterval() time.Duration {
return time.Duration(gd.intervalNS.Load()) * time.Nanosecond
}
func (gd *groDispatcher) setInterval(interval time.Duration) {
gd.intervalNS.Store(interval.Nanoseconds())
gd.newInterval <- struct{}{}
}
// dispatch sends pkt up the stack after it undergoes GRO coalescing.
func (gd *groDispatcher) dispatch(pkt PacketBufferPtr, netProto tcpip.NetworkProtocolNumber, ep NetworkEndpoint) {
// If GRO is disabled simply pass the packet along.
if gd.intervalNS.Load() == 0 {
ep.HandlePacket(pkt)
return
}
// Immediately get the IPv4 and TCP headers. We need a way to hash the
// packet into its bucket, which requires addresses and ports. Linux
// simply gets a hash passed by hardware, but we're not so lucky.
// We only GRO IPv4 packets.
if netProto != header.IPv4ProtocolNumber {
ep.HandlePacket(pkt)
return
}
// We only GRO TCP4 packets. The check for the transport protocol
// number is done below so that we can PullUp both the IP and TCP
// headers together.
hdrBytes, ok := pkt.Data().PullUp(header.IPv4MinimumSize + header.TCPMinimumSize)
if !ok {
ep.HandlePacket(pkt)
return
}
ipHdr := header.IPv4(hdrBytes)
// We only handle atomic packets. That's the vast majority of traffic,
// and simplifies handling.
if ipHdr.FragmentOffset() != 0 || ipHdr.Flags()&header.IPv4FlagMoreFragments != 0 || ipHdr.Flags()&header.IPv4FlagDontFragment == 0 {
ep.HandlePacket(pkt)
return
}
// We only handle TCP packets without IP options.
if ipHdr.HeaderLength() != header.IPv4MinimumSize || tcpip.TransportProtocolNumber(ipHdr.Protocol()) != header.TCPProtocolNumber {
ep.HandlePacket(pkt)
return
}
tcpHdr := header.TCP(hdrBytes[header.IPv4MinimumSize:])
dataOff := tcpHdr.DataOffset()
if dataOff < header.TCPMinimumSize {
// Malformed packet: will be handled further up the stack.
ep.HandlePacket(pkt)
return
}
hdrBytes, ok = pkt.Data().PullUp(header.IPv4MinimumSize + int(dataOff))
if !ok {
// Malformed packet: will be handled further up the stack.
ep.HandlePacket(pkt)
return
}
tcpHdr = header.TCP(hdrBytes[header.IPv4MinimumSize:])
// If either checksum is bad, flush the packet. Since we don't know
// what bits were flipped, we can't identify this packet with a flow.
tcpPayloadSize := ipHdr.TotalLength() - header.IPv4MinimumSize - uint16(dataOff)
if !pkt.RXChecksumValidated {
if !ipHdr.IsValid(pkt.Data().Size()) || !ipHdr.IsChecksumValid() {
ep.HandlePacket(pkt)
return
}
payloadChecksum := pkt.Data().ChecksumAtOffset(header.IPv4MinimumSize + int(dataOff))
if !tcpHdr.IsChecksumValid(ipHdr.SourceAddress(), ipHdr.DestinationAddress(), payloadChecksum, tcpPayloadSize) {
ep.HandlePacket(pkt)
return
}
// We've validated the checksum, no reason for others to do it
// again.
pkt.RXChecksumValidated = true
}
// Now we can get the bucket for the packet.
bucket := &gd.buckets[gd.bucketForPacket(ipHdr, tcpHdr)&groNBucketsMask]
bucket.mu.Lock()
groPkt, flushGROPkt := bucket.findGROPacket(ipHdr, tcpHdr)
// Flush groPkt or merge the packets.
flags := tcpHdr.Flags()
if flushGROPkt {
// Flush the existing GRO packet. Don't hold bucket.mu while
// processing the packet.
pkt := groPkt.pkt
bucket.removeOne(groPkt)
bucket.mu.Unlock()
ep.HandlePacket(pkt)
pkt.DecRef()
bucket.mu.Lock()
groPkt = nil
} else if groPkt != nil {
// Merge pkt in to GRO packet.
buf := pkt.Data().ToBuffer()
buf.TrimFront(header.IPv4MinimumSize + int64(dataOff))
groPkt.pkt.Data().MergeBuffer(&buf)
buf.Release()
// Add flags from the packet to the GRO packet.
groPkt.tcpHdr.SetFlags(uint8(groPkt.tcpHdr.Flags() | (flags & (header.TCPFlagFin | header.TCPFlagPsh))))
// Update the IP total length.
groPkt.ipHdr.SetTotalLength(groPkt.ipHdr.TotalLength() + uint16(tcpPayloadSize))
pkt = PacketBufferPtr{}
}
// Flush if the packet isn't the same size as the previous packets or
// if certain flags are set. The reason for checking size equality is:
// - If the packet is smaller than the others, this is likely the end
// of some message. Peers will send MSS-sized packets until they have
// insufficient data to do so.
// - If the packet is larger than the others, this packet is either
// malformed, a local GSO packet, or has already been handled by host
// GRO.
flush := header.TCPFlags(flags)&(header.TCPFlagUrg|header.TCPFlagPsh|header.TCPFlagRst|header.TCPFlagSyn|header.TCPFlagFin) != 0
if groPkt != nil {
flush = flush || ipHdr.TotalLength() != groPkt.initialLength
}
switch {
case flush && groPkt != nil:
// A merge occurred and we need to flush groPkt.
pkt := groPkt.pkt
bucket.removeOne(groPkt)
bucket.mu.Unlock()
ep.HandlePacket(pkt)
pkt.DecRef()
case flush && groPkt == nil:
// No merge occurred and the incoming packet needs to be flushed.
bucket.mu.Unlock()
ep.HandlePacket(pkt)
case !flush && groPkt == nil:
// New flow and we don't need to flush. Insert pkt into GRO.
if bucket.full() {
// Head is always the oldest packet
toFlush := bucket.removeOldest()
bucket.insert(pkt.IncRef(), ipHdr, tcpHdr, ep)
bucket.mu.Unlock()
ep.HandlePacket(toFlush)
toFlush.DecRef()
} else {
bucket.insert(pkt.IncRef(), ipHdr, tcpHdr, ep)
bucket.mu.Unlock()
}
default:
// A merge occurred and we don't need to flush anything.
bucket.mu.Unlock()
}
}
func (gd *groDispatcher) bucketForPacket(ipHdr header.IPv4, tcpHdr header.TCP) int {
// TODO(b/256037250): Use jenkins or checksum. Write a test to print
// distribution.
var sum int
for _, val := range []byte(ipHdr.SourceAddress()) {
sum += int(val)
}
for _, val := range []byte(ipHdr.DestinationAddress()) {
sum += int(val)
}
sum += int(tcpHdr.SourcePort())
sum += int(tcpHdr.DestinationPort())
return sum
}
// flush sends any packets older than interval up the stack.
func (gd *groDispatcher) flush() {
interval := gd.intervalNS.Load()
old := time.Now().Add(-time.Duration(interval) * time.Nanosecond)
gd.flushSince(old)
}
func (gd *groDispatcher) flushSince(old time.Time) {
type pair struct {
pkt PacketBufferPtr
ep NetworkEndpoint
}
for i := range gd.buckets {
// Put packets in a slice so we don't have to hold bucket.mu
// when we call HandlePacket.
var pairsBacking [groNBuckets]pair
pairs := pairsBacking[:0]
bucket := &gd.buckets[i]
bucket.mu.Lock()
for groPkt := bucket.packets.Front(); groPkt != nil; groPkt = groPkt.Next() {
if groPkt.created.Before(old) {
pairs = append(pairs, pair{groPkt.pkt, groPkt.ep})
bucket.removeOne(groPkt)
} else {
// Packets are ordered by age, so we can move
// on once we find one that's too new.
break
}
}
bucket.mu.Unlock()
for _, pair := range pairs {
pair.ep.HandlePacket(pair.pkt)
pair.pkt.DecRef()
}
}
}
func (gd *groDispatcher) flushAll() {
gd.flushSince(time.Now())
}
// close stops the GRO goroutine and releases any held packets.
func (gd *groDispatcher) close() {
gd.stop <- struct{}{}
gd.wg.Wait()
for i := range gd.buckets {
bucket := &gd.buckets[i]
bucket.mu.Lock()
for groPkt := bucket.packets.Front(); groPkt != nil; groPkt = groPkt.Next() {
groPkt.pkt.DecRef()
}
bucket.mu.Unlock()
}
}
// String implements fmt.Stringer.
func (gd *groDispatcher) String() string {
ret := "GRO state: \n"
for i := range gd.buckets {
bucket := &gd.buckets[i]
bucket.mu.Lock()
ret += fmt.Sprintf("bucket %d: %d packets: ", i, bucket.count)
for groPkt := bucket.packets.Front(); groPkt != nil; groPkt = groPkt.Next() {
ret += fmt.Sprintf("%s (%d), ", groPkt.created, groPkt.pkt.Data().Size())
}
ret += "\n"
bucket.mu.Unlock()
}
return ret
}
|