1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package icmp
import (
"fmt"
"io"
"time"
"gvisor.dev/gvisor/pkg/bufferv2"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/checksum"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/ports"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/tcpip/transport"
"gvisor.dev/gvisor/pkg/tcpip/transport/internal/network"
"gvisor.dev/gvisor/pkg/waiter"
)
// +stateify savable
type icmpPacket struct {
icmpPacketEntry
senderAddress tcpip.FullAddress
packetInfo tcpip.IPPacketInfo
data stack.PacketBufferPtr
receivedAt time.Time `state:".(int64)"`
// tosOrTClass stores either the Type of Service for IPv4 or the Traffic Class
// for IPv6.
tosOrTClass uint8
// ttlOrHopLimit stores either the TTL for IPv4 or the HopLimit for IPv6
ttlOrHopLimit uint8
}
// endpoint represents an ICMP endpoint. This struct serves as the interface
// between users of the endpoint and the protocol implementation; it is legal to
// have concurrent goroutines make calls into the endpoint, they are properly
// synchronized.
//
// +stateify savable
type endpoint struct {
tcpip.DefaultSocketOptionsHandler
// The following fields are initialized at creation time and are
// immutable.
stack *stack.Stack `state:"manual"`
transProto tcpip.TransportProtocolNumber
waiterQueue *waiter.Queue
uniqueID uint64
net network.Endpoint
stats tcpip.TransportEndpointStats
ops tcpip.SocketOptions
// The following fields are used to manage the receive queue, and are
// protected by rcvMu.
rcvMu sync.Mutex `state:"nosave"`
rcvReady bool
rcvList icmpPacketList
rcvBufSize int
rcvClosed bool
// The following fields are protected by the mu mutex.
mu sync.RWMutex `state:"nosave"`
// frozen indicates if the packets should be delivered to the endpoint
// during restore.
frozen bool
ident uint16
}
func newEndpoint(s *stack.Stack, netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, waiterQueue *waiter.Queue) (tcpip.Endpoint, tcpip.Error) {
ep := &endpoint{
stack: s,
transProto: transProto,
waiterQueue: waiterQueue,
uniqueID: s.UniqueID(),
}
ep.ops.InitHandler(ep, ep.stack, tcpip.GetStackSendBufferLimits, tcpip.GetStackReceiveBufferLimits)
ep.ops.SetSendBufferSize(32*1024, false /* notify */)
ep.ops.SetReceiveBufferSize(32*1024, false /* notify */)
ep.net.Init(s, netProto, transProto, &ep.ops, waiterQueue)
// Override with stack defaults.
var ss tcpip.SendBufferSizeOption
if err := s.Option(&ss); err == nil {
ep.ops.SetSendBufferSize(int64(ss.Default), false /* notify */)
}
var rs tcpip.ReceiveBufferSizeOption
if err := s.Option(&rs); err == nil {
ep.ops.SetReceiveBufferSize(int64(rs.Default), false /* notify */)
}
return ep, nil
}
// WakeupWriters implements tcpip.SocketOptionsHandler.
func (e *endpoint) WakeupWriters() {
e.net.MaybeSignalWritable()
}
// UniqueID implements stack.TransportEndpoint.UniqueID.
func (e *endpoint) UniqueID() uint64 {
return e.uniqueID
}
// Abort implements stack.TransportEndpoint.Abort.
func (e *endpoint) Abort() {
e.Close()
}
// Close puts the endpoint in a closed state and frees all resources
// associated with it.
func (e *endpoint) Close() {
notify := func() bool {
e.mu.Lock()
defer e.mu.Unlock()
switch state := e.net.State(); state {
case transport.DatagramEndpointStateInitial:
case transport.DatagramEndpointStateClosed:
return false
case transport.DatagramEndpointStateBound, transport.DatagramEndpointStateConnected:
info := e.net.Info()
info.ID.LocalPort = e.ident
e.stack.UnregisterTransportEndpoint([]tcpip.NetworkProtocolNumber{info.NetProto}, e.transProto, info.ID, e, ports.Flags{}, tcpip.NICID(e.ops.GetBindToDevice()))
default:
panic(fmt.Sprintf("unhandled state = %s", state))
}
e.net.Shutdown()
e.net.Close()
e.rcvMu.Lock()
defer e.rcvMu.Unlock()
e.rcvClosed = true
e.rcvBufSize = 0
for !e.rcvList.Empty() {
p := e.rcvList.Front()
e.rcvList.Remove(p)
p.data.DecRef()
}
return true
}()
if notify {
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
}
}
// ModerateRecvBuf implements tcpip.Endpoint.ModerateRecvBuf.
func (*endpoint) ModerateRecvBuf(int) {}
// SetOwner implements tcpip.Endpoint.SetOwner.
func (e *endpoint) SetOwner(owner tcpip.PacketOwner) {
e.net.SetOwner(owner)
}
// Read implements tcpip.Endpoint.Read.
func (e *endpoint) Read(dst io.Writer, opts tcpip.ReadOptions) (tcpip.ReadResult, tcpip.Error) {
e.rcvMu.Lock()
if e.rcvList.Empty() {
var err tcpip.Error = &tcpip.ErrWouldBlock{}
if e.rcvClosed {
e.stats.ReadErrors.ReadClosed.Increment()
err = &tcpip.ErrClosedForReceive{}
}
e.rcvMu.Unlock()
return tcpip.ReadResult{}, err
}
p := e.rcvList.Front()
if !opts.Peek {
e.rcvList.Remove(p)
defer p.data.DecRef()
e.rcvBufSize -= p.data.Data().Size()
}
e.rcvMu.Unlock()
// Control Messages
// TODO(https://gvisor.dev/issue/7012): Share control message code with other
// network endpoints.
cm := tcpip.ReceivableControlMessages{
HasTimestamp: true,
Timestamp: p.receivedAt,
}
switch netProto := e.net.NetProto(); netProto {
case header.IPv4ProtocolNumber:
if e.ops.GetReceiveTOS() {
cm.HasTOS = true
cm.TOS = p.tosOrTClass
}
if e.ops.GetReceivePacketInfo() {
cm.HasIPPacketInfo = true
cm.PacketInfo = p.packetInfo
}
if e.ops.GetReceiveTTL() {
cm.HasTTL = true
cm.TTL = p.ttlOrHopLimit
}
case header.IPv6ProtocolNumber:
if e.ops.GetReceiveTClass() {
cm.HasTClass = true
// Although TClass is an 8-bit value it's read in the CMsg as a uint32.
cm.TClass = uint32(p.tosOrTClass)
}
if e.ops.GetIPv6ReceivePacketInfo() {
cm.HasIPv6PacketInfo = true
cm.IPv6PacketInfo = tcpip.IPv6PacketInfo{
NIC: p.packetInfo.NIC,
Addr: p.packetInfo.DestinationAddr,
}
}
if e.ops.GetReceiveHopLimit() {
cm.HasHopLimit = true
cm.HopLimit = p.ttlOrHopLimit
}
default:
panic(fmt.Sprintf("unrecognized network protocol = %d", netProto))
}
res := tcpip.ReadResult{
Total: p.data.Data().Size(),
ControlMessages: cm,
}
if opts.NeedRemoteAddr {
res.RemoteAddr = p.senderAddress
}
n, err := p.data.Data().ReadTo(dst, opts.Peek)
if n == 0 && err != nil {
return res, &tcpip.ErrBadBuffer{}
}
res.Count = n
return res, nil
}
// prepareForWrite prepares the endpoint for sending data. In particular, it
// binds it if it's still in the initial state. To do so, it must first
// reacquire the mutex in exclusive mode.
//
// Returns true for retry if preparation should be retried.
// +checklocksread:e.mu
func (e *endpoint) prepareForWriteInner(to *tcpip.FullAddress) (retry bool, err tcpip.Error) {
switch e.net.State() {
case transport.DatagramEndpointStateInitial:
case transport.DatagramEndpointStateConnected:
return false, nil
case transport.DatagramEndpointStateBound:
if to == nil {
return false, &tcpip.ErrDestinationRequired{}
}
return false, nil
default:
return false, &tcpip.ErrInvalidEndpointState{}
}
e.mu.RUnlock()
e.mu.Lock()
defer e.mu.DowngradeLock()
// The state changed when we released the shared locked and re-acquired
// it in exclusive mode. Try again.
if e.net.State() != transport.DatagramEndpointStateInitial {
return true, nil
}
// The state is still 'initial', so try to bind the endpoint.
if err := e.bindLocked(tcpip.FullAddress{}); err != nil {
return false, err
}
return true, nil
}
// Write writes data to the endpoint's peer. This method does not block
// if the data cannot be written.
func (e *endpoint) Write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, tcpip.Error) {
n, err := e.write(p, opts)
switch err.(type) {
case nil:
e.stats.PacketsSent.Increment()
case *tcpip.ErrMessageTooLong, *tcpip.ErrInvalidOptionValue:
e.stats.WriteErrors.InvalidArgs.Increment()
case *tcpip.ErrClosedForSend:
e.stats.WriteErrors.WriteClosed.Increment()
case *tcpip.ErrInvalidEndpointState:
e.stats.WriteErrors.InvalidEndpointState.Increment()
case *tcpip.ErrHostUnreachable, *tcpip.ErrBroadcastDisabled, *tcpip.ErrNetworkUnreachable:
// Errors indicating any problem with IP routing of the packet.
e.stats.SendErrors.NoRoute.Increment()
default:
// For all other errors when writing to the network layer.
e.stats.SendErrors.SendToNetworkFailed.Increment()
}
return n, err
}
func (e *endpoint) prepareForWrite(opts tcpip.WriteOptions) (network.WriteContext, uint16, tcpip.Error) {
e.mu.RLock()
defer e.mu.RUnlock()
// Prepare for write.
for {
retry, err := e.prepareForWriteInner(opts.To)
if err != nil {
return network.WriteContext{}, 0, err
}
if !retry {
break
}
}
ctx, err := e.net.AcquireContextForWrite(opts)
return ctx, e.ident, err
}
func (e *endpoint) write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, tcpip.Error) {
ctx, ident, err := e.prepareForWrite(opts)
if err != nil {
return 0, err
}
defer ctx.Release()
// Prevents giant buffer allocations.
if p.Len() > header.DatagramMaximumSize {
return 0, &tcpip.ErrMessageTooLong{}
}
v := bufferv2.NewView(p.Len())
defer v.Release()
if _, err := io.CopyN(v, p, int64(p.Len())); err != nil {
return 0, &tcpip.ErrBadBuffer{}
}
n := v.Size()
switch netProto, pktInfo := e.net.NetProto(), ctx.PacketInfo(); netProto {
case header.IPv4ProtocolNumber:
if err := send4(e.stack, &ctx, ident, v, pktInfo.MaxHeaderLength); err != nil {
return 0, err
}
case header.IPv6ProtocolNumber:
if err := send6(e.stack, &ctx, ident, v, pktInfo.LocalAddress, pktInfo.RemoteAddress, pktInfo.MaxHeaderLength); err != nil {
return 0, err
}
default:
panic(fmt.Sprintf("unhandled network protocol = %d", netProto))
}
return int64(n), nil
}
var _ tcpip.SocketOptionsHandler = (*endpoint)(nil)
// HasNIC implements tcpip.SocketOptionsHandler.
func (e *endpoint) HasNIC(id int32) bool {
return e.stack.HasNIC(tcpip.NICID(id))
}
// SetSockOpt implements tcpip.Endpoint.
func (e *endpoint) SetSockOpt(opt tcpip.SettableSocketOption) tcpip.Error {
return e.net.SetSockOpt(opt)
}
// SetSockOptInt implements tcpip.Endpoint.
func (e *endpoint) SetSockOptInt(opt tcpip.SockOptInt, v int) tcpip.Error {
return e.net.SetSockOptInt(opt, v)
}
// GetSockOptInt implements tcpip.Endpoint.
func (e *endpoint) GetSockOptInt(opt tcpip.SockOptInt) (int, tcpip.Error) {
switch opt {
case tcpip.ReceiveQueueSizeOption:
v := 0
e.rcvMu.Lock()
if !e.rcvList.Empty() {
p := e.rcvList.Front()
v = p.data.Data().Size()
}
e.rcvMu.Unlock()
return v, nil
default:
return e.net.GetSockOptInt(opt)
}
}
// GetSockOpt implements tcpip.Endpoint.
func (e *endpoint) GetSockOpt(opt tcpip.GettableSocketOption) tcpip.Error {
return e.net.GetSockOpt(opt)
}
func send4(s *stack.Stack, ctx *network.WriteContext, ident uint16, data *bufferv2.View, maxHeaderLength uint16) tcpip.Error {
if data.Size() < header.ICMPv4MinimumSize {
return &tcpip.ErrInvalidEndpointState{}
}
pkt := ctx.TryNewPacketBuffer(header.ICMPv4MinimumSize+int(maxHeaderLength), bufferv2.Buffer{})
if pkt.IsNil() {
return &tcpip.ErrWouldBlock{}
}
defer pkt.DecRef()
icmpv4 := header.ICMPv4(pkt.TransportHeader().Push(header.ICMPv4MinimumSize))
pkt.TransportProtocolNumber = header.ICMPv4ProtocolNumber
copy(icmpv4, data.AsSlice())
// Set the ident to the user-specified port. Sequence number should
// already be set by the user.
icmpv4.SetIdent(ident)
data.TrimFront(header.ICMPv4MinimumSize)
// Linux performs these basic checks.
if icmpv4.Type() != header.ICMPv4Echo || icmpv4.Code() != 0 {
return &tcpip.ErrInvalidEndpointState{}
}
icmpv4.SetChecksum(0)
icmpv4.SetChecksum(^checksum.Checksum(icmpv4, checksum.Checksum(data.AsSlice(), 0)))
pkt.Data().AppendView(data.Clone())
// Because this icmp endpoint is implemented in the transport layer, we can
// only increment the 'stack-wide' stats but we can't increment the
// 'per-NetworkEndpoint' stats.
stats := s.Stats().ICMP.V4.PacketsSent
if err := ctx.WritePacket(pkt, false /* headerIncluded */); err != nil {
stats.Dropped.Increment()
return err
}
stats.EchoRequest.Increment()
return nil
}
func send6(s *stack.Stack, ctx *network.WriteContext, ident uint16, data *bufferv2.View, src, dst tcpip.Address, maxHeaderLength uint16) tcpip.Error {
if data.Size() < header.ICMPv6EchoMinimumSize {
return &tcpip.ErrInvalidEndpointState{}
}
pkt := ctx.TryNewPacketBuffer(header.ICMPv6MinimumSize+int(maxHeaderLength), bufferv2.Buffer{})
if pkt.IsNil() {
return &tcpip.ErrWouldBlock{}
}
defer pkt.DecRef()
icmpv6 := header.ICMPv6(pkt.TransportHeader().Push(header.ICMPv6MinimumSize))
pkt.TransportProtocolNumber = header.ICMPv6ProtocolNumber
copy(icmpv6, data.AsSlice())
// Set the ident. Sequence number is provided by the user.
icmpv6.SetIdent(ident)
data.TrimFront(header.ICMPv6MinimumSize)
if icmpv6.Type() != header.ICMPv6EchoRequest || icmpv6.Code() != 0 {
return &tcpip.ErrInvalidEndpointState{}
}
pkt.Data().AppendView(data.Clone())
pktData := pkt.Data()
icmpv6.SetChecksum(header.ICMPv6Checksum(header.ICMPv6ChecksumParams{
Header: icmpv6,
Src: src,
Dst: dst,
PayloadCsum: pktData.Checksum(),
PayloadLen: pktData.Size(),
}))
// Because this icmp endpoint is implemented in the transport layer, we can
// only increment the 'stack-wide' stats but we can't increment the
// 'per-NetworkEndpoint' stats.
stats := s.Stats().ICMP.V6.PacketsSent
if err := ctx.WritePacket(pkt, false /* headerIncluded */); err != nil {
stats.Dropped.Increment()
return err
}
stats.EchoRequest.Increment()
return nil
}
// Disconnect implements tcpip.Endpoint.Disconnect.
func (*endpoint) Disconnect() tcpip.Error {
return &tcpip.ErrNotSupported{}
}
// Connect connects the endpoint to its peer. Specifying a NIC is optional.
func (e *endpoint) Connect(addr tcpip.FullAddress) tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
err := e.net.ConnectAndThen(addr, func(netProto tcpip.NetworkProtocolNumber, previousID, nextID stack.TransportEndpointID) tcpip.Error {
nextID.LocalPort = e.ident
nextID, err := e.registerWithStack(netProto, nextID)
if err != nil {
return err
}
e.ident = nextID.LocalPort
return nil
})
if err != nil {
return err
}
e.rcvMu.Lock()
e.rcvReady = true
e.rcvMu.Unlock()
return nil
}
// ConnectEndpoint is not supported.
func (*endpoint) ConnectEndpoint(tcpip.Endpoint) tcpip.Error {
return &tcpip.ErrInvalidEndpointState{}
}
// Shutdown closes the read and/or write end of the endpoint connection
// to its peer.
func (e *endpoint) Shutdown(flags tcpip.ShutdownFlags) tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
switch state := e.net.State(); state {
case transport.DatagramEndpointStateInitial, transport.DatagramEndpointStateClosed:
return &tcpip.ErrNotConnected{}
case transport.DatagramEndpointStateBound, transport.DatagramEndpointStateConnected:
default:
panic(fmt.Sprintf("unhandled state = %s", state))
}
if flags&tcpip.ShutdownWrite != 0 {
if err := e.net.Shutdown(); err != nil {
return err
}
}
if flags&tcpip.ShutdownRead != 0 {
e.rcvMu.Lock()
wasClosed := e.rcvClosed
e.rcvClosed = true
e.rcvMu.Unlock()
if !wasClosed {
e.waiterQueue.Notify(waiter.ReadableEvents)
}
}
return nil
}
// Listen is not supported by UDP, it just fails.
func (*endpoint) Listen(int) tcpip.Error {
return &tcpip.ErrNotSupported{}
}
// Accept is not supported by UDP, it just fails.
func (*endpoint) Accept(*tcpip.FullAddress) (tcpip.Endpoint, *waiter.Queue, tcpip.Error) {
return nil, nil, &tcpip.ErrNotSupported{}
}
func (e *endpoint) registerWithStack(netProto tcpip.NetworkProtocolNumber, id stack.TransportEndpointID) (stack.TransportEndpointID, tcpip.Error) {
bindToDevice := tcpip.NICID(e.ops.GetBindToDevice())
if id.LocalPort != 0 {
// The endpoint already has a local port, just attempt to
// register it.
return id, e.stack.RegisterTransportEndpoint([]tcpip.NetworkProtocolNumber{netProto}, e.transProto, id, e, ports.Flags{}, bindToDevice)
}
// We need to find a port for the endpoint.
_, err := e.stack.PickEphemeralPort(e.stack.Rand(), func(p uint16) (bool, tcpip.Error) {
id.LocalPort = p
err := e.stack.RegisterTransportEndpoint([]tcpip.NetworkProtocolNumber{netProto}, e.transProto, id, e, ports.Flags{}, bindToDevice)
switch err.(type) {
case nil:
return true, nil
case *tcpip.ErrPortInUse:
return false, nil
default:
return false, err
}
})
return id, err
}
func (e *endpoint) bindLocked(addr tcpip.FullAddress) tcpip.Error {
// Don't allow binding once endpoint is not in the initial state
// anymore.
if e.net.State() != transport.DatagramEndpointStateInitial {
return &tcpip.ErrInvalidEndpointState{}
}
err := e.net.BindAndThen(addr, func(boundNetProto tcpip.NetworkProtocolNumber, boundAddr tcpip.Address) tcpip.Error {
id := stack.TransportEndpointID{
LocalPort: addr.Port,
LocalAddress: addr.Addr,
}
id, err := e.registerWithStack(boundNetProto, id)
if err != nil {
return err
}
e.ident = id.LocalPort
return nil
})
if err != nil {
return err
}
e.rcvMu.Lock()
e.rcvReady = true
e.rcvMu.Unlock()
return nil
}
func (e *endpoint) isBroadcastOrMulticast(nicID tcpip.NICID, addr tcpip.Address) bool {
return addr == header.IPv4Broadcast ||
header.IsV4MulticastAddress(addr) ||
header.IsV6MulticastAddress(addr) ||
e.stack.IsSubnetBroadcast(nicID, e.net.NetProto(), addr)
}
// Bind binds the endpoint to a specific local address and port.
// Specifying a NIC is optional.
func (e *endpoint) Bind(addr tcpip.FullAddress) tcpip.Error {
if len(addr.Addr) != 0 && e.isBroadcastOrMulticast(addr.NIC, addr.Addr) {
return &tcpip.ErrBadLocalAddress{}
}
e.mu.Lock()
defer e.mu.Unlock()
return e.bindLocked(addr)
}
// GetLocalAddress returns the address to which the endpoint is bound.
func (e *endpoint) GetLocalAddress() (tcpip.FullAddress, tcpip.Error) {
e.mu.RLock()
defer e.mu.RUnlock()
addr := e.net.GetLocalAddress()
addr.Port = e.ident
return addr, nil
}
// GetRemoteAddress returns the address to which the endpoint is connected.
func (e *endpoint) GetRemoteAddress() (tcpip.FullAddress, tcpip.Error) {
e.mu.RLock()
defer e.mu.RUnlock()
if addr, connected := e.net.GetRemoteAddress(); connected {
return addr, nil
}
return tcpip.FullAddress{}, &tcpip.ErrNotConnected{}
}
// Readiness returns the current readiness of the endpoint. For example, if
// waiter.EventIn is set, the endpoint is immediately readable.
func (e *endpoint) Readiness(mask waiter.EventMask) waiter.EventMask {
var result waiter.EventMask
if e.net.HasSendSpace() {
result |= waiter.WritableEvents & mask
}
// Determine if the endpoint is readable if requested.
if (mask & waiter.ReadableEvents) != 0 {
e.rcvMu.Lock()
if !e.rcvList.Empty() || e.rcvClosed {
result |= waiter.ReadableEvents
}
e.rcvMu.Unlock()
}
return result
}
// HandlePacket is called by the stack when new packets arrive to this transport
// endpoint.
func (e *endpoint) HandlePacket(id stack.TransportEndpointID, pkt stack.PacketBufferPtr) {
// Only accept echo replies.
switch e.net.NetProto() {
case header.IPv4ProtocolNumber:
h := header.ICMPv4(pkt.TransportHeader().Slice())
if len(h) < header.ICMPv4MinimumSize || h.Type() != header.ICMPv4EchoReply {
e.stack.Stats().DroppedPackets.Increment()
e.stats.ReceiveErrors.MalformedPacketsReceived.Increment()
return
}
case header.IPv6ProtocolNumber:
h := header.ICMPv6(pkt.TransportHeader().Slice())
if len(h) < header.ICMPv6MinimumSize || h.Type() != header.ICMPv6EchoReply {
e.stack.Stats().DroppedPackets.Increment()
e.stats.ReceiveErrors.MalformedPacketsReceived.Increment()
return
}
}
e.rcvMu.Lock()
// Drop the packet if our buffer is currently full.
if !e.rcvReady || e.rcvClosed {
e.rcvMu.Unlock()
e.stack.Stats().DroppedPackets.Increment()
e.stats.ReceiveErrors.ClosedReceiver.Increment()
return
}
rcvBufSize := e.ops.GetReceiveBufferSize()
if e.frozen || e.rcvBufSize >= int(rcvBufSize) {
e.rcvMu.Unlock()
e.stack.Stats().DroppedPackets.Increment()
e.stats.ReceiveErrors.ReceiveBufferOverflow.Increment()
return
}
wasEmpty := e.rcvBufSize == 0
net := pkt.Network()
dstAddr := net.DestinationAddress()
// Push new packet into receive list and increment the buffer size.
packet := &icmpPacket{
senderAddress: tcpip.FullAddress{
NIC: pkt.NICID,
Addr: id.RemoteAddress,
},
packetInfo: tcpip.IPPacketInfo{
// Linux does not 'prepare' [1] in_pktinfo on socket buffers destined to
// ping sockets (unlike UDP/RAW sockets). However the interface index [2]
// and the Header Destination Address [3] are always filled.
// [1] https://github.com/torvalds/linux/blob/dcb85f85fa6/net/ipv4/ip_sockglue.c#L1392
// [2] https://github.com/torvalds/linux/blob/dcb85f85fa6/net/ipv4/ip_input.c#L510
// [3] https://github.com/torvalds/linux/blob/dcb85f85fa6/net/ipv4/ip_sockglue.c#L60
NIC: pkt.NICID,
DestinationAddr: dstAddr,
},
}
// Save any useful information from the network header to the packet.
packet.tosOrTClass, _ = net.TOS()
switch pkt.NetworkProtocolNumber {
case header.IPv4ProtocolNumber:
packet.ttlOrHopLimit = header.IPv4(pkt.NetworkHeader().Slice()).TTL()
case header.IPv6ProtocolNumber:
packet.ttlOrHopLimit = header.IPv6(pkt.NetworkHeader().Slice()).HopLimit()
}
// ICMP socket's data includes ICMP header but no others. Trim all other
// headers from the front of the packet.
pktBuf := pkt.ToBuffer()
pktBuf.TrimFront(int64(pkt.HeaderSize() - len(pkt.TransportHeader().Slice())))
packet.data = stack.NewPacketBuffer(stack.PacketBufferOptions{Payload: pktBuf})
e.rcvList.PushBack(packet)
e.rcvBufSize += packet.data.Data().Size()
packet.receivedAt = e.stack.Clock().Now()
e.rcvMu.Unlock()
e.stats.PacketsReceived.Increment()
// Notify any waiters that there's data to be read now.
if wasEmpty {
e.waiterQueue.Notify(waiter.ReadableEvents)
}
}
// HandleError implements stack.TransportEndpoint.
func (*endpoint) HandleError(stack.TransportError, stack.PacketBufferPtr) {}
// State implements tcpip.Endpoint.State. The ICMP endpoint currently doesn't
// expose internal socket state.
func (e *endpoint) State() uint32 {
return uint32(e.net.State())
}
// Info returns a copy of the endpoint info.
func (e *endpoint) Info() tcpip.EndpointInfo {
e.mu.RLock()
defer e.mu.RUnlock()
ret := e.net.Info()
ret.ID.LocalPort = e.ident
return &ret
}
// Stats returns a pointer to the endpoint stats.
func (e *endpoint) Stats() tcpip.EndpointStats {
return &e.stats
}
// Wait implements stack.TransportEndpoint.Wait.
func (*endpoint) Wait() {}
// LastError implements tcpip.Endpoint.LastError.
func (*endpoint) LastError() tcpip.Error {
return nil
}
// SocketOptions implements tcpip.Endpoint.SocketOptions.
func (e *endpoint) SocketOptions() *tcpip.SocketOptions {
return &e.ops
}
// freeze prevents any more packets from being delivered to the endpoint.
func (e *endpoint) freeze() {
e.mu.Lock()
e.frozen = true
e.mu.Unlock()
}
// thaw unfreezes a previously frozen endpoint using endpoint.freeze() allows
// new packets to be delivered again.
func (e *endpoint) thaw() {
e.mu.Lock()
e.frozen = false
e.mu.Unlock()
}
|