1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"container/list"
"crypto/sha1"
"encoding/binary"
"fmt"
"hash"
"io"
"time"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/ports"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/waiter"
)
const (
// tsLen is the length, in bits, of the timestamp in the SYN cookie.
tsLen = 8
// tsMask is a mask for timestamp values (i.e., tsLen bits).
tsMask = (1 << tsLen) - 1
// tsOffset is the offset, in bits, of the timestamp in the SYN cookie.
tsOffset = 24
// hashMask is the mask for hash values (i.e., tsOffset bits).
hashMask = (1 << tsOffset) - 1
// maxTSDiff is the maximum allowed difference between a received cookie
// timestamp and the current timestamp. If the difference is greater
// than maxTSDiff, the cookie is expired.
maxTSDiff = 2
)
var (
// mssTable is a slice containing the possible MSS values that we
// encode in the SYN cookie with two bits.
mssTable = []uint16{536, 1300, 1440, 1460}
)
func encodeMSS(mss uint16) uint32 {
for i := len(mssTable) - 1; i > 0; i-- {
if mss >= mssTable[i] {
return uint32(i)
}
}
return 0
}
// listenContext is used by a listening endpoint to store state used while
// listening for connections. This struct is allocated by the listen goroutine
// and must not be accessed or have its methods called concurrently as they
// may mutate the stored objects.
type listenContext struct {
stack *stack.Stack
protocol *protocol
// rcvWnd is the receive window that is sent by this listening context
// in the initial SYN-ACK.
rcvWnd seqnum.Size
// nonce are random bytes that are initialized once when the context
// is created and used to seed the hash function when generating
// the SYN cookie.
nonce [2][sha1.BlockSize]byte
// listenEP is a reference to the listening endpoint associated with
// this context. Can be nil if the context is created by the forwarder.
listenEP *endpoint
// hasherMu protects hasher.
hasherMu sync.Mutex
// hasher is the hash function used to generate a SYN cookie.
hasher hash.Hash
// v6Only is true if listenEP is a dual stack socket and has the
// IPV6_V6ONLY option set.
v6Only bool
// netProto indicates the network protocol(IPv4/v6) for the listening
// endpoint.
netProto tcpip.NetworkProtocolNumber
}
// timeStamp returns an 8-bit timestamp with a granularity of 64 seconds.
func timeStamp(clock tcpip.Clock) uint32 {
return uint32(clock.NowMonotonic().Sub(tcpip.MonotonicTime{}).Seconds()) >> 6 & tsMask
}
// newListenContext creates a new listen context.
func newListenContext(stk *stack.Stack, protocol *protocol, listenEP *endpoint, rcvWnd seqnum.Size, v6Only bool, netProto tcpip.NetworkProtocolNumber) *listenContext {
l := &listenContext{
stack: stk,
protocol: protocol,
rcvWnd: rcvWnd,
hasher: sha1.New(),
v6Only: v6Only,
netProto: netProto,
listenEP: listenEP,
}
for i := range l.nonce {
if _, err := io.ReadFull(stk.SecureRNG(), l.nonce[i][:]); err != nil {
panic(err)
}
}
return l
}
// cookieHash calculates the cookieHash for the given id, timestamp and nonce
// index. The hash is used to create and validate cookies.
func (l *listenContext) cookieHash(id stack.TransportEndpointID, ts uint32, nonceIndex int) uint32 {
// Initialize block with fixed-size data: local ports and v.
var payload [8]byte
binary.BigEndian.PutUint16(payload[0:], id.LocalPort)
binary.BigEndian.PutUint16(payload[2:], id.RemotePort)
binary.BigEndian.PutUint32(payload[4:], ts)
// Feed everything to the hasher.
l.hasherMu.Lock()
l.hasher.Reset()
// Per hash.Hash.Writer:
//
// It never returns an error.
l.hasher.Write(payload[:])
l.hasher.Write(l.nonce[nonceIndex][:])
l.hasher.Write([]byte(id.LocalAddress))
l.hasher.Write([]byte(id.RemoteAddress))
// Finalize the calculation of the hash and return the first 4 bytes.
h := l.hasher.Sum(nil)
l.hasherMu.Unlock()
return binary.BigEndian.Uint32(h[:])
}
// createCookie creates a SYN cookie for the given id and incoming sequence
// number.
func (l *listenContext) createCookie(id stack.TransportEndpointID, seq seqnum.Value, data uint32) seqnum.Value {
ts := timeStamp(l.stack.Clock())
v := l.cookieHash(id, 0, 0) + uint32(seq) + (ts << tsOffset)
v += (l.cookieHash(id, ts, 1) + data) & hashMask
return seqnum.Value(v)
}
// isCookieValid checks if the supplied cookie is valid for the given id and
// sequence number. If it is, it also returns the data originally encoded in the
// cookie when createCookie was called.
func (l *listenContext) isCookieValid(id stack.TransportEndpointID, cookie seqnum.Value, seq seqnum.Value) (uint32, bool) {
ts := timeStamp(l.stack.Clock())
v := uint32(cookie) - l.cookieHash(id, 0, 0) - uint32(seq)
cookieTS := v >> tsOffset
if ((ts - cookieTS) & tsMask) > maxTSDiff {
return 0, false
}
return (v - l.cookieHash(id, cookieTS, 1)) & hashMask, true
}
// createConnectingEndpoint creates a new endpoint in a connecting state, with
// the connection parameters given by the arguments. The newly created endpoint
// will be locked.
// +checklocksacquire:n.mu
func (l *listenContext) createConnectingEndpoint(s *segment, rcvdSynOpts header.TCPSynOptions, queue *waiter.Queue) (n *endpoint, _ tcpip.Error) {
// Create a new endpoint.
netProto := l.netProto
if netProto == 0 {
netProto = s.pkt.NetworkProtocolNumber
}
route, err := l.stack.FindRoute(s.pkt.NICID, s.pkt.Network().DestinationAddress(), s.pkt.Network().SourceAddress(), s.pkt.NetworkProtocolNumber, false /* multicastLoop */)
if err != nil {
return nil, err // +checklocksignore
}
n = newEndpoint(l.stack, l.protocol, netProto, queue)
n.mu.Lock()
n.ops.SetV6Only(l.v6Only)
n.TransportEndpointInfo.ID = s.id
n.boundNICID = s.pkt.NICID
n.route = route
n.effectiveNetProtos = []tcpip.NetworkProtocolNumber{s.pkt.NetworkProtocolNumber}
n.ops.SetReceiveBufferSize(int64(l.rcvWnd), false /* notify */)
n.amss = calculateAdvertisedMSS(n.userMSS, n.route)
n.setEndpointState(StateConnecting)
n.maybeEnableTimestamp(rcvdSynOpts)
n.maybeEnableSACKPermitted(rcvdSynOpts)
n.initGSO()
// Bootstrap the auto tuning algorithm. Starting at zero will result in
// a large step function on the first window adjustment causing the
// window to grow to a really large value.
initWnd := n.initialReceiveWindow()
n.rcvQueueMu.Lock()
n.RcvAutoParams.PrevCopiedBytes = initWnd
n.rcvQueueMu.Unlock()
return n, nil
}
// startHandshake creates a new endpoint in connecting state and then sends
// the SYN-ACK for the TCP 3-way handshake. It returns the state of the
// handshake in progress, which includes the new endpoint in the SYN-RCVD
// state.
//
// On success, a handshake h is returned.
//
// NOTE: h.ep.mu is not held and must be acquired if any state needs to be
// modified.
//
// Precondition: if l.listenEP != nil, l.listenEP.mu must be locked.
func (l *listenContext) startHandshake(s *segment, opts header.TCPSynOptions, queue *waiter.Queue, owner tcpip.PacketOwner) (h *handshake, _ tcpip.Error) {
// Create new endpoint.
irs := s.sequenceNumber
isn := generateSecureISN(s.id, l.stack.Clock(), l.protocol.seqnumSecret)
ep, err := l.createConnectingEndpoint(s, opts, queue)
if err != nil {
return nil, err // +checklocksignore
}
ep.owner = owner
// listenEP is nil when listenContext is used by tcp.Forwarder.
deferAccept := time.Duration(0)
if l.listenEP != nil {
if l.listenEP.EndpointState() != StateListen {
// Ensure we release any registrations done by the newly
// created endpoint.
ep.mu.Unlock()
ep.Close()
return nil, &tcpip.ErrConnectionAborted{} // +checklocksignore
}
// Propagate any inheritable options from the listening endpoint
// to the newly created endpoint.
l.listenEP.propagateInheritableOptionsLocked(ep) // +checklocksforce
if !ep.reserveTupleLocked() {
ep.mu.Unlock()
ep.Close()
return nil, &tcpip.ErrConnectionAborted{} // +checklocksignore
}
deferAccept = l.listenEP.deferAccept
}
// Register new endpoint so that packets are routed to it.
if err := ep.stack.RegisterTransportEndpoint(
ep.effectiveNetProtos,
ProtocolNumber,
ep.TransportEndpointInfo.ID,
ep,
ep.boundPortFlags,
ep.boundBindToDevice,
); err != nil {
ep.mu.Unlock()
ep.Close()
ep.drainClosingSegmentQueue()
return nil, err // +checklocksignore
}
ep.isRegistered = true
// Initialize and start the handshake.
h = ep.newPassiveHandshake(isn, irs, opts, deferAccept)
h.listenEP = l.listenEP
h.start()
h.ep.mu.Unlock()
return h, nil
}
// performHandshake performs a TCP 3-way handshake. On success, the new
// established endpoint is returned.
//
// Precondition: if l.listenEP != nil, l.listenEP.mu must be locked.
func (l *listenContext) performHandshake(s *segment, opts header.TCPSynOptions, queue *waiter.Queue, owner tcpip.PacketOwner) (*endpoint, tcpip.Error) {
waitEntry, notifyCh := waiter.NewChannelEntry(waiter.WritableEvents)
queue.EventRegister(&waitEntry)
defer queue.EventUnregister(&waitEntry)
h, err := l.startHandshake(s, opts, queue, owner)
if err != nil {
return nil, err
}
// performHandshake is used by the Forwarder which will block till the
// handshake either succeeds or fails. We do this by registering for
// events above and block on the notification channel.
<-notifyCh
ep := h.ep
ep.mu.Lock()
if !ep.EndpointState().connected() {
ep.stack.Stats().TCP.FailedConnectionAttempts.Increment()
ep.stats.FailedConnectionAttempts.Increment()
ep.h = nil
ep.mu.Unlock()
ep.Close()
ep.notifyAborted()
ep.drainClosingSegmentQueue()
err := ep.LastError()
if err == nil {
// If err was nil then return the best error we can to indicate
// a connection failure.
err = &tcpip.ErrConnectionAborted{}
}
return nil, err
}
ep.isConnectNotified = true
// Transfer any state from the completed handshake to the endpoint.
//
// Update the receive window scaling. We can't do it before the
// handshake because it's possible that the peer doesn't support window
// scaling.
ep.rcv.RcvWndScale = ep.h.effectiveRcvWndScale()
// Clean up handshake state stored in the endpoint so that it can be
// GCed.
ep.h = nil
ep.mu.Unlock()
return ep, nil
}
// propagateInheritableOptionsLocked propagates any options set on the listening
// endpoint to the newly created endpoint.
//
// +checklocks:e.mu
// +checklocks:n.mu
func (e *endpoint) propagateInheritableOptionsLocked(n *endpoint) {
n.userTimeout = e.userTimeout
n.portFlags = e.portFlags
n.boundBindToDevice = e.boundBindToDevice
n.boundPortFlags = e.boundPortFlags
n.userMSS = e.userMSS
}
// reserveTupleLocked reserves an accepted endpoint's tuple.
//
// Precondition: e.propagateInheritableOptionsLocked has been called.
//
// +checklocks:e.mu
func (e *endpoint) reserveTupleLocked() bool {
dest := tcpip.FullAddress{
Addr: e.TransportEndpointInfo.ID.RemoteAddress,
Port: e.TransportEndpointInfo.ID.RemotePort,
}
portRes := ports.Reservation{
Networks: e.effectiveNetProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: e.TransportEndpointInfo.ID.LocalPort,
Flags: e.boundPortFlags,
BindToDevice: e.boundBindToDevice,
Dest: dest,
}
if !e.stack.ReserveTuple(portRes) {
e.stack.Stats().TCP.FailedPortReservations.Increment()
return false
}
e.isPortReserved = true
e.boundDest = dest
return true
}
// notifyAborted wakes up any waiters on registered, but not accepted
// endpoints.
//
// This is strictly not required normally as a socket that was never accepted
// can't really have any registered waiters except when stack.Wait() is called
// which waits for all registered endpoints to stop and expects an EventHUp.
func (e *endpoint) notifyAborted() {
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
}
func (e *endpoint) acceptQueueIsFull() bool {
e.acceptMu.Lock()
full := e.acceptQueue.isFull()
e.acceptMu.Unlock()
return full
}
// +stateify savable
type acceptQueue struct {
// NB: this could be an endpointList, but ilist only permits endpoints to
// belong to one list at a time, and endpoints are already stored in the
// dispatcher's list.
endpoints list.List `state:".([]*endpoint)"`
// pendingEndpoints is a set of all endpoints for which a handshake is
// in progress.
pendingEndpoints map[*endpoint]struct{}
// capacity is the maximum number of endpoints that can be in endpoints.
capacity int
}
func (a *acceptQueue) isFull() bool {
return a.endpoints.Len() >= a.capacity
}
// handleListenSegment is called when a listening endpoint receives a segment
// and needs to handle it.
//
// +checklocks:e.mu
func (e *endpoint) handleListenSegment(ctx *listenContext, s *segment) tcpip.Error {
e.rcvQueueMu.Lock()
rcvClosed := e.RcvClosed
e.rcvQueueMu.Unlock()
if rcvClosed || s.flags.Contains(header.TCPFlagSyn|header.TCPFlagAck) {
// If the endpoint is shutdown, reply with reset.
//
// RFC 793 section 3.4 page 35 (figure 12) outlines that a RST
// must be sent in response to a SYN-ACK while in the listen
// state to prevent completing a handshake from an old SYN.
return replyWithReset(e.stack, s, e.sendTOS, e.ipv4TTL, e.ipv6HopLimit)
}
switch {
case s.flags.Contains(header.TCPFlagRst):
e.stack.Stats().DroppedPackets.Increment()
return nil
case s.flags.Contains(header.TCPFlagSyn):
if e.acceptQueueIsFull() {
e.stack.Stats().TCP.ListenOverflowSynDrop.Increment()
e.stats.ReceiveErrors.ListenOverflowSynDrop.Increment()
e.stack.Stats().DroppedPackets.Increment()
return nil
}
opts := parseSynSegmentOptions(s)
useSynCookies, err := func() (bool, tcpip.Error) {
var alwaysUseSynCookies tcpip.TCPAlwaysUseSynCookies
if err := e.stack.TransportProtocolOption(header.TCPProtocolNumber, &alwaysUseSynCookies); err != nil {
panic(fmt.Sprintf("TransportProtocolOption(%d, %T) = %s", header.TCPProtocolNumber, alwaysUseSynCookies, err))
}
if alwaysUseSynCookies {
return true, nil
}
e.acceptMu.Lock()
defer e.acceptMu.Unlock()
// The capacity of the accepted queue would always be one greater than the
// listen backlog. But, the SYNRCVD connections count is always checked
// against the listen backlog value for Linux parity reason.
// https://github.com/torvalds/linux/blob/7acac4b3196/include/net/inet_connection_sock.h#L280
if len(e.acceptQueue.pendingEndpoints) == e.acceptQueue.capacity-1 {
return true, nil
}
h, err := ctx.startHandshake(s, opts, &waiter.Queue{}, e.owner)
if err != nil {
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
return false, err
}
e.acceptQueue.pendingEndpoints[h.ep] = struct{}{}
return false, nil
}()
if err != nil {
return err
}
if !useSynCookies {
return nil
}
net := s.pkt.Network()
route, err := e.stack.FindRoute(s.pkt.NICID, net.DestinationAddress(), net.SourceAddress(), s.pkt.NetworkProtocolNumber, false /* multicastLoop */)
if err != nil {
return err
}
defer route.Release()
// Send SYN without window scaling because we currently
// don't encode this information in the cookie.
//
// Enable Timestamp option if the original syn did have
// the timestamp option specified.
//
// Use the user supplied MSS on the listening socket for
// new connections, if available.
synOpts := header.TCPSynOptions{
WS: -1,
TS: opts.TS,
TSEcr: opts.TSVal,
MSS: calculateAdvertisedMSS(e.userMSS, route),
}
if opts.TS {
offset := e.protocol.tsOffset(net.DestinationAddress(), net.SourceAddress())
now := e.stack.Clock().NowMonotonic()
synOpts.TSVal = offset.TSVal(now)
}
cookie := ctx.createCookie(s.id, s.sequenceNumber, encodeMSS(opts.MSS))
fields := tcpFields{
id: s.id,
ttl: calculateTTL(route, e.ipv4TTL, e.ipv6HopLimit),
tos: e.sendTOS,
flags: header.TCPFlagSyn | header.TCPFlagAck,
seq: cookie,
ack: s.sequenceNumber + 1,
rcvWnd: ctx.rcvWnd,
}
if err := e.sendSynTCP(route, fields, synOpts); err != nil {
return err
}
e.stack.Stats().TCP.ListenOverflowSynCookieSent.Increment()
return nil
case s.flags.Contains(header.TCPFlagAck):
iss := s.ackNumber - 1
irs := s.sequenceNumber - 1
// Since SYN cookies are in use this is potentially an ACK to a
// SYN-ACK we sent but don't have a half open connection state
// as cookies are being used to protect against a potential SYN
// flood. In such cases validate the cookie and if valid create
// a fully connected endpoint and deliver to the accept queue.
//
// If not, silently drop the ACK to avoid leaking information
// when under a potential syn flood attack.
//
// Validate the cookie.
data, ok := ctx.isCookieValid(s.id, iss, irs)
if !ok || int(data) >= len(mssTable) {
e.stack.Stats().TCP.ListenOverflowInvalidSynCookieRcvd.Increment()
e.stack.Stats().DroppedPackets.Increment()
// When not using SYN cookies, as per RFC 793, section 3.9, page 64:
// Any acknowledgment is bad if it arrives on a connection still in
// the LISTEN state. An acceptable reset segment should be formed
// for any arriving ACK-bearing segment. The RST should be
// formatted as follows:
//
// <SEQ=SEG.ACK><CTL=RST>
//
// Send a reset as this is an ACK for which there is no
// half open connections and we are not using cookies
// yet.
//
// The only time we should reach here when a connection
// was opened and closed really quickly and a delayed
// ACK was received from the sender.
return replyWithReset(e.stack, s, e.sendTOS, e.ipv4TTL, e.ipv6HopLimit)
}
// As an edge case when SYN-COOKIES are in use and we receive a
// segment that has data and is valid we should check if it
// already matches a created endpoint and redirect the segment
// rather than try and create a new endpoint. This can happen
// where the final ACK for the handshake and other data packets
// arrive at the same time and are queued to the listening
// endpoint before the listening endpoint has had time to
// process the first ACK and create the endpoint that matches
// the incoming packet's full 5 tuple.
netProtos := []tcpip.NetworkProtocolNumber{s.pkt.NetworkProtocolNumber}
// If the local address is an IPv4 Address then also look for IPv6
// dual stack endpoints.
if s.id.LocalAddress.To4() != "" {
netProtos = []tcpip.NetworkProtocolNumber{header.IPv4ProtocolNumber, header.IPv6ProtocolNumber}
}
for _, netProto := range netProtos {
if newEP := e.stack.FindTransportEndpoint(netProto, ProtocolNumber, s.id, s.pkt.NICID); newEP != nil && newEP != e {
tcpEP := newEP.(*endpoint)
if !tcpEP.EndpointState().connected() {
continue
}
if !tcpEP.enqueueSegment(s) {
// Just silently drop the segment as we failed
// to queue, we don't want to generate a RST
// further below or try and create a new
// endpoint etc.
return nil
}
tcpEP.notifyProcessor()
return nil
}
}
// Keep hold of acceptMu until the new endpoint is in the accept queue (or
// if there is an error), to guarantee that we will keep our spot in the
// queue even if another handshake from the syn queue completes.
e.acceptMu.Lock()
if e.acceptQueue.isFull() {
// Silently drop the ack as the application can't accept
// the connection at this point. The ack will be
// retransmitted by the sender anyway and we can
// complete the connection at the time of retransmit if
// the backlog has space.
e.acceptMu.Unlock()
e.stack.Stats().TCP.ListenOverflowAckDrop.Increment()
e.stats.ReceiveErrors.ListenOverflowAckDrop.Increment()
e.stack.Stats().DroppedPackets.Increment()
return nil
}
e.stack.Stats().TCP.ListenOverflowSynCookieRcvd.Increment()
// Create newly accepted endpoint and deliver it.
rcvdSynOptions := header.TCPSynOptions{
MSS: mssTable[data],
// Disable Window scaling as original SYN is
// lost.
WS: -1,
}
// When syn cookies are in use we enable timestamp only
// if the ack specifies the timestamp option assuming
// that the other end did in fact negotiate the
// timestamp option in the original SYN.
if s.parsedOptions.TS {
rcvdSynOptions.TS = true
rcvdSynOptions.TSVal = s.parsedOptions.TSVal
rcvdSynOptions.TSEcr = s.parsedOptions.TSEcr
}
n, err := ctx.createConnectingEndpoint(s, rcvdSynOptions, &waiter.Queue{})
if err != nil {
e.acceptMu.Unlock()
return err
}
// Propagate any inheritable options from the listening endpoint
// to the newly created endpoint.
e.propagateInheritableOptionsLocked(n)
if !n.reserveTupleLocked() {
n.mu.Unlock()
e.acceptMu.Unlock()
n.Close()
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
return nil
}
// Register new endpoint so that packets are routed to it.
if err := n.stack.RegisterTransportEndpoint(
n.effectiveNetProtos,
ProtocolNumber,
n.TransportEndpointInfo.ID,
n,
n.boundPortFlags,
n.boundBindToDevice,
); err != nil {
n.mu.Unlock()
e.acceptMu.Unlock()
n.Close()
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
return err
}
n.isRegistered = true
net := s.pkt.Network()
n.TSOffset = n.protocol.tsOffset(net.DestinationAddress(), net.SourceAddress())
// Switch state to connected.
n.isConnectNotified = true
h := handshake{
ep: n,
iss: iss,
ackNum: irs + 1,
rcvWnd: seqnum.Size(n.initialReceiveWindow()),
sndWnd: s.window,
rcvWndScale: e.rcvWndScaleForHandshake(),
sndWndScale: rcvdSynOptions.WS,
mss: rcvdSynOptions.MSS,
sampleRTTWithTSOnly: true,
}
h.ep.AssertLockHeld(n)
h.transitionToStateEstablishedLocked(s)
n.mu.Unlock()
// Requeue the segment if the ACK completing the handshake has more info
// to be processed by the newly established endpoint.
if (s.flags.Contains(header.TCPFlagFin) || s.payloadSize() > 0) && n.enqueueSegment(s) {
n.notifyProcessor()
}
e.stack.Stats().TCP.PassiveConnectionOpenings.Increment()
// Deliver the endpoint to the accept queue.
e.acceptQueue.endpoints.PushBack(n)
e.acceptMu.Unlock()
e.waiterQueue.Notify(waiter.ReadableEvents)
return nil
default:
e.stack.Stats().DroppedPackets.Increment()
return nil
}
}
|