1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"encoding/binary"
"fmt"
"math"
"time"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/checksum"
"gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/waiter"
)
// InitialRTO is the initial retransmission timeout.
// https://github.com/torvalds/linux/blob/7c636d4d20f/include/net/tcp.h#L142
const InitialRTO = time.Second
// maxSegmentsPerWake is the maximum number of segments to process in the main
// protocol goroutine per wake-up. Yielding [after this number of segments are
// processed] allows other events to be processed as well (e.g., timeouts,
// resets, etc.).
const maxSegmentsPerWake = 100
type handshakeState int
// The following are the possible states of the TCP connection during a 3-way
// handshake. A depiction of the states and transitions can be found in RFC 793,
// page 23.
const (
handshakeSynSent handshakeState = iota
handshakeSynRcvd
handshakeCompleted
)
const (
// Maximum space available for options.
maxOptionSize = 40
)
// handshake holds the state used during a TCP 3-way handshake.
//
// NOTE: handshake.ep.mu is held during handshake processing. It is released if
// we are going to block and reacquired when we start processing an event.
//
// +stateify savable
type handshake struct {
ep *endpoint
listenEP *endpoint
state handshakeState
active bool
flags header.TCPFlags
ackNum seqnum.Value
// iss is the initial send sequence number, as defined in RFC 793.
iss seqnum.Value
// rcvWnd is the receive window, as defined in RFC 793.
rcvWnd seqnum.Size
// sndWnd is the send window, as defined in RFC 793.
sndWnd seqnum.Size
// mss is the maximum segment size received from the peer.
mss uint16
// sndWndScale is the send window scale, as defined in RFC 1323. A
// negative value means no scaling is supported by the peer.
sndWndScale int
// rcvWndScale is the receive window scale, as defined in RFC 1323.
rcvWndScale int
// startTime is the time at which the first SYN/SYN-ACK was sent.
startTime tcpip.MonotonicTime
// deferAccept if non-zero will drop the final ACK for a passive
// handshake till an ACK segment with data is received or the timeout is
// hit.
deferAccept time.Duration
// acked is true if the the final ACK for a 3-way handshake has
// been received. This is required to stop retransmitting the
// original SYN-ACK when deferAccept is enabled.
acked bool
// sendSYNOpts is the cached values for the SYN options to be sent.
sendSYNOpts header.TCPSynOptions
// sampleRTTWithTSOnly is true when the segment was retransmitted or we can't
// tell; then RTT can only be sampled when the incoming segment has timestamp
// options enabled.
sampleRTTWithTSOnly bool
// retransmitTimer is used to retransmit SYN/SYN-ACK with exponential backoff
// till handshake is either completed or timesout.
retransmitTimer *backoffTimer `state:"nosave"`
}
// maybeFailTimerHandler takes a handler function for a timer that may fail and
// returns a function that will invoke the provided handler with the endpoint
// mutex held. In addition the returned function will perform any cleanup that
// maybe required if the timer handler returns an error and in case of no errors
// will notify the processor if there are pending segments that need to be
// processed.
// NOTE: e.mu is held for the duration of the call to f().
func maybeFailTimerHandler(e *endpoint, f func() tcpip.Error) func() {
return func() {
e.mu.Lock()
if err := f(); err != nil {
e.lastErrorMu.Lock()
e.lastError = err
e.lastErrorMu.Unlock()
e.hardError = err
e.cleanupLocked()
e.setEndpointState(StateError)
e.mu.Unlock()
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
return
}
processor := e.protocol.dispatcher.selectProcessor(e.ID)
e.mu.Unlock()
// notify processor if there are pending segments to be
// processed.
if !e.segmentQueue.empty() {
processor.queueEndpoint(e)
}
}
}
// timerHandler takes a handler function for a timer that never results in a
// connection being aborted and returns a function that will invoke the provided
// handler with the endpoint mutex held. In addition the returned function will
// notify the processor if there are pending segments that need to be processed
// once the handler function completes.
//
// NOTE: e.mu is held for the duration of the call to f()
func timerHandler(e *endpoint, f func()) func() {
return func() {
e.mu.Lock()
f()
processor := e.protocol.dispatcher.selectProcessor(e.ID)
e.mu.Unlock()
// notify processor if there are pending segments to be
// processed.
if !e.segmentQueue.empty() {
processor.queueEndpoint(e)
}
}
}
// +checklocks:e.mu
// +checklocksacquire:h.ep.mu
func (e *endpoint) newHandshake() (h *handshake) {
h = &handshake{
ep: e,
active: true,
rcvWnd: seqnum.Size(e.initialReceiveWindow()),
rcvWndScale: e.rcvWndScaleForHandshake(),
}
h.ep.AssertLockHeld(e)
h.resetState()
// Store reference to handshake state in endpoint.
e.h = h
// By the time handshake is created, e.ID is already initialized.
e.TSOffset = e.protocol.tsOffset(e.ID.LocalAddress, e.ID.RemoteAddress)
timer, err := newBackoffTimer(h.ep.stack.Clock(), InitialRTO, MaxRTO, maybeFailTimerHandler(e, h.retransmitHandlerLocked))
if err != nil {
panic(fmt.Sprintf("newBackOffTimer(_, %s, %s, _) failed: %s", InitialRTO, MaxRTO, err))
}
h.retransmitTimer = timer
return h
}
// +checklocks:e.mu
// +checklocksacquire:h.ep.mu
func (e *endpoint) newPassiveHandshake(isn, irs seqnum.Value, opts header.TCPSynOptions, deferAccept time.Duration) (h *handshake) {
h = e.newHandshake()
h.resetToSynRcvd(isn, irs, opts, deferAccept)
return h
}
// FindWndScale determines the window scale to use for the given maximum window
// size.
func FindWndScale(wnd seqnum.Size) int {
if wnd < 0x10000 {
return 0
}
max := seqnum.Size(math.MaxUint16)
s := 0
for wnd > max && s < header.MaxWndScale {
s++
max <<= 1
}
return s
}
// resetState resets the state of the handshake object such that it becomes
// ready for a new 3-way handshake.
func (h *handshake) resetState() {
h.state = handshakeSynSent
h.flags = header.TCPFlagSyn
h.ackNum = 0
h.mss = 0
h.iss = generateSecureISN(h.ep.TransportEndpointInfo.ID, h.ep.stack.Clock(), h.ep.protocol.seqnumSecret)
}
// generateSecureISN generates a secure Initial Sequence number based on the
// recommendation here https://tools.ietf.org/html/rfc6528#page-3.
func generateSecureISN(id stack.TransportEndpointID, clock tcpip.Clock, seed uint32) seqnum.Value {
isnHasher := jenkins.Sum32(seed)
// Per hash.Hash.Writer:
//
// It never returns an error.
_, _ = isnHasher.Write([]byte(id.LocalAddress))
_, _ = isnHasher.Write([]byte(id.RemoteAddress))
portBuf := make([]byte, 2)
binary.LittleEndian.PutUint16(portBuf, id.LocalPort)
_, _ = isnHasher.Write(portBuf)
binary.LittleEndian.PutUint16(portBuf, id.RemotePort)
_, _ = isnHasher.Write(portBuf)
// The time period here is 64ns. This is similar to what linux uses
// generate a sequence number that overlaps less than one
// time per MSL (2 minutes).
//
// A 64ns clock ticks 10^9/64 = 15625000) times in a second.
// To wrap the whole 32 bit space would require
// 2^32/1562500 ~ 274 seconds.
//
// Which sort of guarantees that we won't reuse the ISN for a new
// connection for the same tuple for at least 274s.
isn := isnHasher.Sum32() + uint32(clock.NowMonotonic().Sub(tcpip.MonotonicTime{}).Nanoseconds()>>6)
return seqnum.Value(isn)
}
// effectiveRcvWndScale returns the effective receive window scale to be used.
// If the peer doesn't support window scaling, the effective rcv wnd scale is
// zero; otherwise it's the value calculated based on the initial rcv wnd.
func (h *handshake) effectiveRcvWndScale() uint8 {
if h.sndWndScale < 0 {
return 0
}
return uint8(h.rcvWndScale)
}
// resetToSynRcvd resets the state of the handshake object to the SYN-RCVD
// state.
// +checklocks:h.ep.mu
func (h *handshake) resetToSynRcvd(iss seqnum.Value, irs seqnum.Value, opts header.TCPSynOptions, deferAccept time.Duration) {
h.active = false
h.state = handshakeSynRcvd
h.flags = header.TCPFlagSyn | header.TCPFlagAck
h.iss = iss
h.ackNum = irs + 1
h.mss = opts.MSS
h.sndWndScale = opts.WS
h.deferAccept = deferAccept
h.ep.setEndpointState(StateSynRecv)
}
// checkAck checks if the ACK number, if present, of a segment received during
// a TCP 3-way handshake is valid. If it's not, a RST segment is sent back in
// response.
func (h *handshake) checkAck(s *segment) bool {
if s.flags.Contains(header.TCPFlagAck) && s.ackNumber != h.iss+1 {
// RFC 793, page 72 (https://datatracker.ietf.org/doc/html/rfc793#page-72):
// If the segment acknowledgment is not acceptable, form a reset segment,
// <SEQ=SEG.ACK><CTL=RST>
// and send it.
h.ep.sendEmptyRaw(header.TCPFlagRst, s.ackNumber, 0, 0)
return false
}
return true
}
// synSentState handles a segment received when the TCP 3-way handshake is in
// the SYN-SENT state.
// +checklocks:h.ep.mu
func (h *handshake) synSentState(s *segment) tcpip.Error {
// RFC 793, page 37, states that in the SYN-SENT state, a reset is
// acceptable if the ack field acknowledges the SYN.
if s.flags.Contains(header.TCPFlagRst) {
if s.flags.Contains(header.TCPFlagAck) && s.ackNumber == h.iss+1 {
// RFC 793, page 67, states that "If the RST bit is set [and] If the ACK
// was acceptable then signal the user "error: connection reset", drop
// the segment, enter CLOSED state, delete TCB, and return."
// Although the RFC above calls out ECONNRESET, Linux actually returns
// ECONNREFUSED here so we do as well.
return &tcpip.ErrConnectionRefused{}
}
return nil
}
if !h.checkAck(s) {
return nil
}
// We are in the SYN-SENT state. We only care about segments that have
// the SYN flag.
if !s.flags.Contains(header.TCPFlagSyn) {
return nil
}
// Parse the SYN options.
rcvSynOpts := parseSynSegmentOptions(s)
// Remember if the Timestamp option was negotiated.
h.ep.maybeEnableTimestamp(rcvSynOpts)
// Remember if the SACKPermitted option was negotiated.
h.ep.maybeEnableSACKPermitted(rcvSynOpts)
// Remember the sequence we'll ack from now on.
h.ackNum = s.sequenceNumber + 1
h.flags |= header.TCPFlagAck
h.mss = rcvSynOpts.MSS
h.sndWndScale = rcvSynOpts.WS
// If this is a SYN ACK response, we only need to acknowledge the SYN
// and the handshake is completed.
if s.flags.Contains(header.TCPFlagAck) {
h.state = handshakeCompleted
h.transitionToStateEstablishedLocked(s)
h.ep.sendEmptyRaw(header.TCPFlagAck, h.iss+1, h.ackNum, h.rcvWnd>>h.effectiveRcvWndScale())
return nil
}
// A SYN segment was received, but no ACK in it. We acknowledge the SYN
// but resend our own SYN and wait for it to be acknowledged in the
// SYN-RCVD state.
h.state = handshakeSynRcvd
ttl := calculateTTL(h.ep.route, h.ep.ipv4TTL, h.ep.ipv6HopLimit)
amss := h.ep.amss
h.ep.setEndpointState(StateSynRecv)
synOpts := header.TCPSynOptions{
WS: int(h.effectiveRcvWndScale()),
TS: rcvSynOpts.TS,
TSVal: h.ep.tsValNow(),
TSEcr: h.ep.recentTimestamp(),
// We only send SACKPermitted if the other side indicated it
// permits SACK. This is not explicitly defined in the RFC but
// this is the behaviour implemented by Linux.
SACKPermitted: rcvSynOpts.SACKPermitted,
MSS: amss,
}
if ttl == 0 {
ttl = h.ep.route.DefaultTTL()
}
h.ep.sendSynTCP(h.ep.route, tcpFields{
id: h.ep.TransportEndpointInfo.ID,
ttl: ttl,
tos: h.ep.sendTOS,
flags: h.flags,
seq: h.iss,
ack: h.ackNum,
rcvWnd: h.rcvWnd,
}, synOpts)
return nil
}
// synRcvdState handles a segment received when the TCP 3-way handshake is in
// the SYN-RCVD state.
// +checklocks:h.ep.mu
func (h *handshake) synRcvdState(s *segment) tcpip.Error {
if s.flags.Contains(header.TCPFlagRst) {
// RFC 793, page 37, states that in the SYN-RCVD state, a reset
// is acceptable if the sequence number is in the window.
if s.sequenceNumber.InWindow(h.ackNum, h.rcvWnd) {
return &tcpip.ErrConnectionRefused{}
}
return nil
}
if !h.checkAck(s) {
return nil
}
// RFC 793, Section 3.9, page 69, states that in the SYN-RCVD state, a
// sequence number outside of the window causes an ACK with the proper seq
// number and "After sending the acknowledgment, drop the unacceptable
// segment and return."
if !s.sequenceNumber.InWindow(h.ackNum, h.rcvWnd) {
if h.ep.allowOutOfWindowAck() {
h.ep.sendEmptyRaw(header.TCPFlagAck, h.iss+1, h.ackNum, h.rcvWnd)
}
return nil
}
if s.flags.Contains(header.TCPFlagSyn) && s.sequenceNumber != h.ackNum-1 {
// We received two SYN segments with different sequence
// numbers, so we reset this and restart the whole
// process, except that we don't reset the timer.
ack := s.sequenceNumber.Add(s.logicalLen())
seq := seqnum.Value(0)
if s.flags.Contains(header.TCPFlagAck) {
seq = s.ackNumber
}
h.ep.sendEmptyRaw(header.TCPFlagRst|header.TCPFlagAck, seq, ack, 0)
if !h.active {
return &tcpip.ErrInvalidEndpointState{}
}
h.resetState()
synOpts := header.TCPSynOptions{
WS: h.rcvWndScale,
TS: h.ep.SendTSOk,
TSVal: h.ep.tsValNow(),
TSEcr: h.ep.recentTimestamp(),
SACKPermitted: h.ep.SACKPermitted,
MSS: h.ep.amss,
}
h.ep.sendSynTCP(h.ep.route, tcpFields{
id: h.ep.TransportEndpointInfo.ID,
ttl: calculateTTL(h.ep.route, h.ep.ipv4TTL, h.ep.ipv6HopLimit),
tos: h.ep.sendTOS,
flags: h.flags,
seq: h.iss,
ack: h.ackNum,
rcvWnd: h.rcvWnd,
}, synOpts)
return nil
}
// We have previously received (and acknowledged) the peer's SYN. If the
// peer acknowledges our SYN, the handshake is completed.
if s.flags.Contains(header.TCPFlagAck) {
// If deferAccept is not zero and this is a bare ACK and the
// timeout is not hit then drop the ACK.
if h.deferAccept != 0 && s.payloadSize() == 0 && h.ep.stack.Clock().NowMonotonic().Sub(h.startTime) < h.deferAccept {
h.acked = true
h.ep.stack.Stats().DroppedPackets.Increment()
return nil
}
// If the timestamp option is negotiated and the segment does
// not carry a timestamp option then the segment must be dropped
// as per https://tools.ietf.org/html/rfc7323#section-3.2.
if h.ep.SendTSOk && !s.parsedOptions.TS {
h.ep.stack.Stats().DroppedPackets.Increment()
return nil
}
// Drop the ACK if the accept queue is full.
// https://github.com/torvalds/linux/blob/7acac4b3196/net/ipv4/tcp_ipv4.c#L1523
// We could abort the connection as well with a tunable as in
// https://github.com/torvalds/linux/blob/7acac4b3196/net/ipv4/tcp_minisocks.c#L788
if listenEP := h.listenEP; listenEP != nil && listenEP.acceptQueueIsFull() {
listenEP.stack.Stats().DroppedPackets.Increment()
return nil
}
// Update timestamp if required. See RFC7323, section-4.3.
if h.ep.SendTSOk && s.parsedOptions.TS {
h.ep.updateRecentTimestamp(s.parsedOptions.TSVal, h.ackNum, s.sequenceNumber)
}
h.state = handshakeCompleted
h.transitionToStateEstablishedLocked(s)
// Requeue the segment if the ACK completing the handshake has more info
// to be processed by the newly established endpoint.
if (s.flags.Contains(header.TCPFlagFin) || s.payloadSize() > 0) && h.ep.enqueueSegment(s) {
h.ep.protocol.dispatcher.selectProcessor(h.ep.ID).queueEndpoint(h.ep)
}
return nil
}
return nil
}
// +checklocks:h.ep.mu
func (h *handshake) handleSegment(s *segment) tcpip.Error {
h.sndWnd = s.window
if !s.flags.Contains(header.TCPFlagSyn) && h.sndWndScale > 0 {
h.sndWnd <<= uint8(h.sndWndScale)
}
switch h.state {
case handshakeSynRcvd:
return h.synRcvdState(s)
case handshakeSynSent:
return h.synSentState(s)
}
return nil
}
// processSegments goes through the segment queue and processes up to
// maxSegmentsPerWake (if they're available).
// +checklocks:h.ep.mu
func (h *handshake) processSegments() tcpip.Error {
for i := 0; i < maxSegmentsPerWake; i++ {
s := h.ep.segmentQueue.dequeue()
if s == nil {
return nil
}
err := h.handleSegment(s)
s.DecRef()
if err != nil {
return err
}
// We stop processing packets once the handshake is completed,
// otherwise we may process packets meant to be processed by
// the main protocol goroutine.
if h.state == handshakeCompleted {
break
}
}
return nil
}
// start sends the first SYN/SYN-ACK. It does not block, even if link address
// resolution is required.
func (h *handshake) start() {
h.startTime = h.ep.stack.Clock().NowMonotonic()
h.ep.amss = calculateAdvertisedMSS(h.ep.userMSS, h.ep.route)
var sackEnabled tcpip.TCPSACKEnabled
if err := h.ep.stack.TransportProtocolOption(ProtocolNumber, &sackEnabled); err != nil {
// If stack returned an error when checking for SACKEnabled
// status then just default to switching off SACK negotiation.
sackEnabled = false
}
synOpts := header.TCPSynOptions{
WS: h.rcvWndScale,
TS: true,
TSVal: h.ep.tsValNow(),
TSEcr: h.ep.recentTimestamp(),
SACKPermitted: bool(sackEnabled),
MSS: h.ep.amss,
}
// start() is also called in a listen context so we want to make sure we only
// send the TS/SACK option when we received the TS/SACK in the initial SYN.
if h.state == handshakeSynRcvd {
synOpts.TS = h.ep.SendTSOk
synOpts.SACKPermitted = h.ep.SACKPermitted && bool(sackEnabled)
if h.sndWndScale < 0 {
// Disable window scaling if the peer did not send us
// the window scaling option.
synOpts.WS = -1
}
}
h.sendSYNOpts = synOpts
h.ep.sendSynTCP(h.ep.route, tcpFields{
id: h.ep.TransportEndpointInfo.ID,
ttl: calculateTTL(h.ep.route, h.ep.ipv4TTL, h.ep.ipv6HopLimit),
tos: h.ep.sendTOS,
flags: h.flags,
seq: h.iss,
ack: h.ackNum,
rcvWnd: h.rcvWnd,
}, synOpts)
}
// retransmitHandler handles retransmissions of un-acked SYNs.
// +checklocks:h.ep.mu
func (h *handshake) retransmitHandlerLocked() tcpip.Error {
e := h.ep
// If the endpoint has already transition out of a connecting state due
// to say an error (e.g) peer send RST or an ICMP error. Then just
// return. Any required cleanup should have been done when the RST/error
// was handled.
if !e.EndpointState().connecting() {
return nil
}
if err := h.retransmitTimer.reset(); err != nil {
return err
}
// Resend the SYN/SYN-ACK only if the following conditions hold.
// - It's an active handshake (deferAccept does not apply)
// - It's a passive handshake and we have not yet got the final-ACK.
// - It's a passive handshake and we got an ACK but deferAccept is
// enabled and we are now past the deferAccept duration.
// The last is required to provide a way for the peer to complete
// the connection with another ACK or data (as ACKs are never
// retransmitted on their own).
if h.active || !h.acked || h.deferAccept != 0 && e.stack.Clock().NowMonotonic().Sub(h.startTime) > h.deferAccept {
e.sendSynTCP(e.route, tcpFields{
id: e.TransportEndpointInfo.ID,
ttl: calculateTTL(e.route, e.ipv4TTL, e.ipv6HopLimit),
tos: e.sendTOS,
flags: h.flags,
seq: h.iss,
ack: h.ackNum,
rcvWnd: h.rcvWnd,
}, h.sendSYNOpts)
// If we have ever retransmitted the SYN-ACK or
// SYN segment, we should only measure RTT if
// TS option is present.
h.sampleRTTWithTSOnly = true
}
return nil
}
// transitionToStateEstablisedLocked transitions the endpoint of the handshake
// to an established state given the last segment received from peer. It also
// initializes sender/receiver.
// +checklocks:h.ep.mu
func (h *handshake) transitionToStateEstablishedLocked(s *segment) {
// Stop the SYN retransmissions now that handshake is complete.
if h.retransmitTimer != nil {
h.retransmitTimer.stop()
}
// Transfer handshake state to TCP connection. We disable
// receive window scaling if the peer doesn't support it
// (indicated by a negative send window scale).
h.ep.snd = newSender(h.ep, h.iss, h.ackNum-1, h.sndWnd, h.mss, h.sndWndScale)
now := h.ep.stack.Clock().NowMonotonic()
var rtt time.Duration
if h.ep.SendTSOk && s.parsedOptions.TSEcr != 0 {
rtt = h.ep.elapsed(now, s.parsedOptions.TSEcr)
}
if !h.sampleRTTWithTSOnly && rtt == 0 {
rtt = now.Sub(h.startTime)
}
if rtt > 0 {
h.ep.snd.updateRTO(rtt)
}
h.ep.rcvQueueMu.Lock()
h.ep.rcv = newReceiver(h.ep, h.ackNum-1, h.rcvWnd, h.effectiveRcvWndScale())
// Bootstrap the auto tuning algorithm. Starting at zero will
// result in a really large receive window after the first auto
// tuning adjustment.
h.ep.RcvAutoParams.PrevCopiedBytes = int(h.rcvWnd)
h.ep.rcvQueueMu.Unlock()
h.ep.setEndpointState(StateEstablished)
// Completing the 3-way handshake is an indication that the route is valid
// and the remote is reachable as the only way we can complete a handshake
// is if our SYN reached the remote and their ACK reached us.
h.ep.route.ConfirmReachable()
// Tell waiters that the endpoint is connected and writable.
h.ep.waiterQueue.Notify(waiter.WritableEvents)
}
type backoffTimer struct {
timeout time.Duration
maxTimeout time.Duration
t tcpip.Timer
}
func newBackoffTimer(clock tcpip.Clock, timeout, maxTimeout time.Duration, f func()) (*backoffTimer, tcpip.Error) {
if timeout > maxTimeout {
return nil, &tcpip.ErrTimeout{}
}
bt := &backoffTimer{timeout: timeout, maxTimeout: maxTimeout}
bt.t = clock.AfterFunc(timeout, f)
return bt, nil
}
func (bt *backoffTimer) reset() tcpip.Error {
bt.timeout *= 2
if bt.timeout > bt.maxTimeout {
return &tcpip.ErrTimeout{}
}
bt.t.Reset(bt.timeout)
return nil
}
func (bt *backoffTimer) stop() {
bt.t.Stop()
}
func parseSynSegmentOptions(s *segment) header.TCPSynOptions {
synOpts := header.ParseSynOptions(s.options, s.flags.Contains(header.TCPFlagAck))
if synOpts.TS {
s.parsedOptions.TSVal = synOpts.TSVal
s.parsedOptions.TSEcr = synOpts.TSEcr
}
return synOpts
}
var optionPool = sync.Pool{
New: func() any {
return &[maxOptionSize]byte{}
},
}
func getOptions() []byte {
return (*optionPool.Get().(*[maxOptionSize]byte))[:]
}
func putOptions(options []byte) {
// Reslice to full capacity.
optionPool.Put(optionsToArray(options))
}
func makeSynOptions(opts header.TCPSynOptions) []byte {
// Emulate linux option order. This is as follows:
//
// if md5: NOP NOP MD5SIG 18 md5sig(16)
// if mss: MSS 4 mss(2)
// if ts and sack_advertise:
// SACK 2 TIMESTAMP 2 timestamp(8)
// elif ts: NOP NOP TIMESTAMP 10 timestamp(8)
// elif sack: NOP NOP SACK 2
// if wscale: NOP WINDOW 3 ws(1)
// if sack_blocks: NOP NOP SACK ((2 + (#blocks * 8))
// [for each block] start_seq(4) end_seq(4)
// if fastopen_cookie:
// if exp: EXP (4 + len(cookie)) FASTOPEN_MAGIC(2)
// else: FASTOPEN (2 + len(cookie))
// cookie(variable) [padding to four bytes]
//
options := getOptions()
// Always encode the mss.
offset := header.EncodeMSSOption(uint32(opts.MSS), options)
// Special ordering is required here. If both TS and SACK are enabled,
// then the SACK option precedes TS, with no padding. If they are
// enabled individually, then we see padding before the option.
if opts.TS && opts.SACKPermitted {
offset += header.EncodeSACKPermittedOption(options[offset:])
offset += header.EncodeTSOption(opts.TSVal, opts.TSEcr, options[offset:])
} else if opts.TS {
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeTSOption(opts.TSVal, opts.TSEcr, options[offset:])
} else if opts.SACKPermitted {
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeSACKPermittedOption(options[offset:])
}
// Initialize the WS option.
if opts.WS >= 0 {
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeWSOption(opts.WS, options[offset:])
}
// Padding to the end; note that this never apply unless we add a
// fastopen option, we always expect the offset to remain the same.
if delta := header.AddTCPOptionPadding(options, offset); delta != 0 {
panic("unexpected option encoding")
}
return options[:offset]
}
// tcpFields is a struct to carry different parameters required by the
// send*TCP variant functions below.
type tcpFields struct {
id stack.TransportEndpointID
ttl uint8
tos uint8
flags header.TCPFlags
seq seqnum.Value
ack seqnum.Value
rcvWnd seqnum.Size
opts []byte
txHash uint32
}
func (e *endpoint) sendSynTCP(r *stack.Route, tf tcpFields, opts header.TCPSynOptions) tcpip.Error {
tf.opts = makeSynOptions(opts)
// We ignore SYN send errors and let the callers re-attempt send.
p := stack.NewPacketBuffer(stack.PacketBufferOptions{ReserveHeaderBytes: header.TCPMinimumSize + int(r.MaxHeaderLength()) + len(tf.opts)})
defer p.DecRef()
if err := e.sendTCP(r, tf, p, stack.GSO{}); err != nil {
e.stats.SendErrors.SynSendToNetworkFailed.Increment()
}
putOptions(tf.opts)
return nil
}
// This method takes ownership of pkt.
func (e *endpoint) sendTCP(r *stack.Route, tf tcpFields, pkt stack.PacketBufferPtr, gso stack.GSO) tcpip.Error {
tf.txHash = e.txHash
if err := sendTCP(r, tf, pkt, gso, e.owner); err != nil {
e.stats.SendErrors.SegmentSendToNetworkFailed.Increment()
return err
}
e.stats.SegmentsSent.Increment()
return nil
}
func buildTCPHdr(r *stack.Route, tf tcpFields, pkt stack.PacketBufferPtr, gso stack.GSO) {
optLen := len(tf.opts)
tcp := header.TCP(pkt.TransportHeader().Push(header.TCPMinimumSize + optLen))
pkt.TransportProtocolNumber = header.TCPProtocolNumber
tcp.Encode(&header.TCPFields{
SrcPort: tf.id.LocalPort,
DstPort: tf.id.RemotePort,
SeqNum: uint32(tf.seq),
AckNum: uint32(tf.ack),
DataOffset: uint8(header.TCPMinimumSize + optLen),
Flags: tf.flags,
WindowSize: uint16(tf.rcvWnd),
})
copy(tcp[header.TCPMinimumSize:], tf.opts)
xsum := r.PseudoHeaderChecksum(ProtocolNumber, uint16(pkt.Size()))
// Only calculate the checksum if offloading isn't supported.
if gso.Type != stack.GSONone && gso.NeedsCsum {
// This is called CHECKSUM_PARTIAL in the Linux kernel. We
// calculate a checksum of the pseudo-header and save it in the
// TCP header, then the kernel calculate a checksum of the
// header and data and get the right sum of the TCP packet.
tcp.SetChecksum(xsum)
} else if r.RequiresTXTransportChecksum() {
xsum = checksum.Combine(xsum, pkt.Data().Checksum())
tcp.SetChecksum(^tcp.CalculateChecksum(xsum))
}
}
func sendTCPBatch(r *stack.Route, tf tcpFields, pkt stack.PacketBufferPtr, gso stack.GSO, owner tcpip.PacketOwner) tcpip.Error {
optLen := len(tf.opts)
if tf.rcvWnd > math.MaxUint16 {
tf.rcvWnd = math.MaxUint16
}
mss := int(gso.MSS)
n := (pkt.Data().Size() + mss - 1) / mss
size := pkt.Data().Size()
hdrSize := header.TCPMinimumSize + int(r.MaxHeaderLength()) + optLen
for i := 0; i < n; i++ {
packetSize := mss
if packetSize > size {
packetSize = size
}
size -= packetSize
pkt := pkt
// No need to split the packet in the final iteration. The original
// packet already has the truncated data.
shouldSplitPacket := i != n-1
if shouldSplitPacket {
splitPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{ReserveHeaderBytes: hdrSize})
splitPkt.Data().ReadFromPacketData(pkt.Data(), packetSize)
pkt = splitPkt
}
pkt.Hash = tf.txHash
pkt.Owner = owner
buildTCPHdr(r, tf, pkt, gso)
tf.seq = tf.seq.Add(seqnum.Size(packetSize))
pkt.GSOOptions = gso
if err := r.WritePacket(stack.NetworkHeaderParams{Protocol: ProtocolNumber, TTL: tf.ttl, TOS: tf.tos}, pkt); err != nil {
r.Stats().TCP.SegmentSendErrors.Increment()
if shouldSplitPacket {
pkt.DecRef()
}
return err
}
r.Stats().TCP.SegmentsSent.Increment()
if shouldSplitPacket {
pkt.DecRef()
}
}
return nil
}
// sendTCP sends a TCP segment with the provided options via the provided
// network endpoint and under the provided identity. This method takes
// ownership of pkt.
func sendTCP(r *stack.Route, tf tcpFields, pkt stack.PacketBufferPtr, gso stack.GSO, owner tcpip.PacketOwner) tcpip.Error {
if tf.rcvWnd > math.MaxUint16 {
tf.rcvWnd = math.MaxUint16
}
if r.Loop()&stack.PacketLoop == 0 && gso.Type == stack.GSOGvisor && int(gso.MSS) < pkt.Data().Size() {
return sendTCPBatch(r, tf, pkt, gso, owner)
}
pkt.GSOOptions = gso
pkt.Hash = tf.txHash
pkt.Owner = owner
buildTCPHdr(r, tf, pkt, gso)
if err := r.WritePacket(stack.NetworkHeaderParams{Protocol: ProtocolNumber, TTL: tf.ttl, TOS: tf.tos}, pkt); err != nil {
r.Stats().TCP.SegmentSendErrors.Increment()
return err
}
r.Stats().TCP.SegmentsSent.Increment()
if (tf.flags & header.TCPFlagRst) != 0 {
r.Stats().TCP.ResetsSent.Increment()
}
return nil
}
// makeOptions makes an options slice.
func (e *endpoint) makeOptions(sackBlocks []header.SACKBlock) []byte {
options := getOptions()
offset := 0
// N.B. the ordering here matches the ordering used by Linux internally
// and described in the raw makeOptions function. We don't include
// unnecessary cases here (post connection.)
if e.SendTSOk {
// Embed the timestamp if timestamp has been enabled.
//
// We only use the lower 32 bits of the unix time in
// milliseconds. This is similar to what Linux does where it
// uses the lower 32 bits of the jiffies value in the tsVal
// field of the timestamp option.
//
// Further, RFC7323 section-5.4 recommends millisecond
// resolution as the lowest recommended resolution for the
// timestamp clock.
//
// Ref: https://tools.ietf.org/html/rfc7323#section-5.4.
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeTSOption(e.tsValNow(), e.recentTimestamp(), options[offset:])
}
if e.SACKPermitted && len(sackBlocks) > 0 {
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeNOP(options[offset:])
offset += header.EncodeSACKBlocks(sackBlocks, options[offset:])
}
// We expect the above to produce an aligned offset.
if delta := header.AddTCPOptionPadding(options, offset); delta != 0 {
panic("unexpected option encoding")
}
return options[:offset]
}
// sendEmptyRaw sends a TCP segment with no payload to the endpoint's peer.
func (e *endpoint) sendEmptyRaw(flags header.TCPFlags, seq, ack seqnum.Value, rcvWnd seqnum.Size) tcpip.Error {
pkt := stack.NewPacketBuffer(stack.PacketBufferOptions{})
defer pkt.DecRef()
return e.sendRaw(pkt, flags, seq, ack, rcvWnd)
}
// sendRaw sends a TCP segment to the endpoint's peer. This method takes
// ownership of pkt. pkt must not have any headers set.
func (e *endpoint) sendRaw(pkt stack.PacketBufferPtr, flags header.TCPFlags, seq, ack seqnum.Value, rcvWnd seqnum.Size) tcpip.Error {
var sackBlocks []header.SACKBlock
if e.EndpointState() == StateEstablished && e.rcv.pendingRcvdSegments.Len() > 0 && (flags&header.TCPFlagAck != 0) {
sackBlocks = e.sack.Blocks[:e.sack.NumBlocks]
}
options := e.makeOptions(sackBlocks)
defer putOptions(options)
pkt.ReserveHeaderBytes(header.TCPMinimumSize + int(e.route.MaxHeaderLength()) + len(options))
return e.sendTCP(e.route, tcpFields{
id: e.TransportEndpointInfo.ID,
ttl: calculateTTL(e.route, e.ipv4TTL, e.ipv6HopLimit),
tos: e.sendTOS,
flags: flags,
seq: seq,
ack: ack,
rcvWnd: rcvWnd,
opts: options,
}, pkt, e.gso)
}
// +checklocks:e.mu
// +checklocksalias:e.snd.ep.mu=e.mu
func (e *endpoint) sendData(next *segment) {
// Initialize the next segment to write if it's currently nil.
if e.snd.writeNext == nil {
if next == nil {
return
}
e.snd.updateWriteNext(next)
}
// Push out any new packets.
e.snd.sendData()
}
// resetConnectionLocked puts the endpoint in an error state with the given
// error code and sends a RST if and only if the error is not ErrConnectionReset
// indicating that the connection is being reset due to receiving a RST. This
// method must only be called from the protocol goroutine.
// +checklocks:e.mu
func (e *endpoint) resetConnectionLocked(err tcpip.Error) {
// Only send a reset if the connection is being aborted for a reason
// other than receiving a reset.
e.hardError = err
switch err.(type) {
case *tcpip.ErrConnectionReset, *tcpip.ErrTimeout:
default:
// The exact sequence number to be used for the RST is the same as the
// one used by Linux. We need to handle the case of window being shrunk
// which can cause sndNxt to be outside the acceptable window on the
// receiver.
//
// See: https://www.snellman.net/blog/archive/2016-02-01-tcp-rst/ for more
// information.
sndWndEnd := e.snd.SndUna.Add(e.snd.SndWnd)
resetSeqNum := sndWndEnd
if !sndWndEnd.LessThan(e.snd.SndNxt) || e.snd.SndNxt.Size(sndWndEnd) < (1<<e.snd.SndWndScale) {
resetSeqNum = e.snd.SndNxt
}
e.sendEmptyRaw(header.TCPFlagAck|header.TCPFlagRst, resetSeqNum, e.rcv.RcvNxt, 0)
}
// Don't purge read queues here. If there's buffered data, it's still allowed
// to be read.
e.purgeWriteQueue()
e.purgePendingRcvQueue()
e.cleanupLocked()
e.setEndpointState(StateError)
}
// transitionToStateCloseLocked ensures that the endpoint is
// cleaned up from the transport demuxer, "before" moving to
// StateClose. This will ensure that no packet will be
// delivered to this endpoint from the demuxer when the endpoint
// is transitioned to StateClose.
// +checklocks:e.mu
func (e *endpoint) transitionToStateCloseLocked() {
s := e.EndpointState()
if s == StateClose {
return
}
if s.connected() {
e.stack.Stats().TCP.EstablishedClosed.Increment()
}
e.cleanupLocked()
// Mark the endpoint as fully closed for reads/writes.
e.setEndpointState(StateClose)
}
// tryDeliverSegmentFromClosedEndpoint attempts to deliver the parsed
// segment to any other endpoint other than the current one. This is called
// only when the endpoint is in StateClose and we want to deliver the segment
// to any other listening endpoint. We reply with RST if we cannot find one.
func (e *endpoint) tryDeliverSegmentFromClosedEndpoint(s *segment) {
ep := e.stack.FindTransportEndpoint(e.NetProto, e.TransProto, e.TransportEndpointInfo.ID, s.pkt.NICID)
if ep == nil && e.NetProto == header.IPv6ProtocolNumber && e.TransportEndpointInfo.ID.LocalAddress.To4() != "" {
// Dual-stack socket, try IPv4.
ep = e.stack.FindTransportEndpoint(
header.IPv4ProtocolNumber,
e.TransProto,
e.TransportEndpointInfo.ID,
s.pkt.NICID,
)
}
if ep == nil {
if !s.flags.Contains(header.TCPFlagRst) {
replyWithReset(e.stack, s, stack.DefaultTOS, tcpip.UseDefaultIPv4TTL, tcpip.UseDefaultIPv6HopLimit)
}
return
}
if e == ep {
panic(fmt.Sprintf("current endpoint not removed from demuxer, enqueing segments to itself, endpoint in state %v", e.EndpointState()))
}
if ep := ep.(*endpoint); ep.enqueueSegment(s) {
ep.notifyProcessor()
}
}
// Drain segment queue from the endpoint and try to re-match the segment to a
// different endpoint. This is used when the current endpoint is transitioned to
// StateClose and has been unregistered from the transport demuxer.
func (e *endpoint) drainClosingSegmentQueue() {
for {
s := e.segmentQueue.dequeue()
if s == nil {
break
}
e.tryDeliverSegmentFromClosedEndpoint(s)
s.DecRef()
}
}
// +checklocks:e.mu
func (e *endpoint) handleReset(s *segment) (ok bool, err tcpip.Error) {
if e.rcv.acceptable(s.sequenceNumber, 0) {
// RFC 793, page 37 states that "in all states
// except SYN-SENT, all reset (RST) segments are
// validated by checking their SEQ-fields." So
// we only process it if it's acceptable.
switch e.EndpointState() {
// In case of a RST in CLOSE-WAIT linux moves
// the socket to closed state with an error set
// to indicate EPIPE.
//
// Technically this seems to be at odds w/ RFC.
// As per https://tools.ietf.org/html/rfc793#section-2.7
// page 69 the behavior for a segment arriving
// w/ RST bit set in CLOSE-WAIT is inlined below.
//
// ESTABLISHED
// FIN-WAIT-1
// FIN-WAIT-2
// CLOSE-WAIT
// If the RST bit is set then, any outstanding RECEIVEs and
// SEND should receive "reset" responses. All segment queues
// should be flushed. Users should also receive an unsolicited
// general "connection reset" signal. Enter the CLOSED state,
// delete the TCB, and return.
case StateCloseWait:
e.transitionToStateCloseLocked()
e.hardError = &tcpip.ErrAborted{}
return false, nil
default:
// RFC 793, page 37 states that "in all states
// except SYN-SENT, all reset (RST) segments are
// validated by checking their SEQ-fields." So
// we only process it if it's acceptable.
// Notify protocol goroutine. This is required when
// handleSegment is invoked from the processor goroutine
// rather than the worker goroutine.
return false, &tcpip.ErrConnectionReset{}
}
}
return true, nil
}
// handleSegments processes all inbound segments.
//
// +checklocks:e.mu
// +checklocksalias:e.snd.ep.mu=e.mu
func (e *endpoint) handleSegmentsLocked() tcpip.Error {
sndUna := e.snd.SndUna
for i := 0; i < maxSegmentsPerWake; i++ {
if state := e.EndpointState(); state.closed() || state == StateTimeWait || state == StateError {
return nil
}
s := e.segmentQueue.dequeue()
if s == nil {
break
}
cont, err := e.handleSegmentLocked(s)
s.DecRef()
if err != nil {
return err
}
if !cont {
return nil
}
}
// The remote ACK-ing at least 1 byte is an indication that we have a
// full-duplex connection to the remote as the only way we will receive an
// ACK is if the remote received data that we previously sent.
//
// As of writing, Linux seems to only confirm a route as reachable when
// forward progress is made which is indicated by an ACK that removes data
// from the retransmit queue, i.e. sender makes forward progress.
if sndUna.LessThan(e.snd.SndUna) {
e.route.ConfirmReachable()
}
// Send an ACK for all processed packets if needed.
if e.rcv.RcvNxt != e.snd.MaxSentAck {
e.snd.sendAck()
}
e.resetKeepaliveTimer(true /* receivedData */)
return nil
}
// +checklocks:e.mu
func (e *endpoint) probeSegmentLocked() {
if fn := e.probe; fn != nil {
var state stack.TCPEndpointState
e.completeStateLocked(&state)
fn(&state)
}
}
// handleSegment handles a given segment and notifies the worker goroutine if
// if the connection should be terminated.
//
// +checklocks:e.mu
// +checklocksalias:e.rcv.ep.mu=e.mu
// +checklocksalias:e.snd.ep.mu=e.mu
func (e *endpoint) handleSegmentLocked(s *segment) (cont bool, err tcpip.Error) {
// Invoke the tcp probe if installed. The tcp probe function will update
// the TCPEndpointState after the segment is processed.
defer e.probeSegmentLocked()
if s.flags.Contains(header.TCPFlagRst) {
if ok, err := e.handleReset(s); !ok {
return false, err
}
} else if s.flags.Contains(header.TCPFlagSyn) {
// See: https://tools.ietf.org/html/rfc5961#section-4.1
// 1) If the SYN bit is set, irrespective of the sequence number, TCP
// MUST send an ACK (also referred to as challenge ACK) to the remote
// peer:
//
// <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>
//
// After sending the acknowledgment, TCP MUST drop the unacceptable
// segment and stop processing further.
//
// By sending an ACK, the remote peer is challenged to confirm the loss
// of the previous connection and the request to start a new connection.
// A legitimate peer, after restart, would not have a TCB in the
// synchronized state. Thus, when the ACK arrives, the peer should send
// a RST segment back with the sequence number derived from the ACK
// field that caused the RST.
// This RST will confirm that the remote peer has indeed closed the
// previous connection. Upon receipt of a valid RST, the local TCP
// endpoint MUST terminate its connection. The local TCP endpoint
// should then rely on SYN retransmission from the remote end to
// re-establish the connection.
e.snd.maybeSendOutOfWindowAck(s)
} else if s.flags.Contains(header.TCPFlagAck) {
// Patch the window size in the segment according to the
// send window scale.
s.window <<= e.snd.SndWndScale
// RFC 793, page 41 states that "once in the ESTABLISHED
// state all segments must carry current acknowledgment
// information."
drop, err := e.rcv.handleRcvdSegment(s)
if err != nil {
return false, err
}
if drop {
return true, nil
}
// Now check if the received segment has caused us to transition
// to a CLOSED state, if yes then terminate processing and do
// not invoke the sender.
state := e.EndpointState()
if state == StateClose {
// When we get into StateClose while processing from the queue,
// return immediately and let the protocolMainloop handle it.
//
// We can reach StateClose only while processing a previous segment
// or a notification from the protocolMainLoop (caller goroutine).
// This means that with this return, the segment dequeue below can
// never occur on a closed endpoint.
return false, nil
}
e.snd.handleRcvdSegment(s)
}
return true, nil
}
// keepaliveTimerExpired is called when the keepaliveTimer fires. We send TCP
// keepalive packets periodically when the connection is idle. If we don't hear
// from the other side after a number of tries, we terminate the connection.
// +checklocks:e.mu
// +checklocksalias:e.snd.ep.mu=e.mu
func (e *endpoint) keepaliveTimerExpired() tcpip.Error {
userTimeout := e.userTimeout
e.keepalive.Lock()
if !e.SocketOptions().GetKeepAlive() || e.keepalive.timer.isZero() || !e.keepalive.timer.checkExpiration() {
e.keepalive.Unlock()
return nil
}
// If a userTimeout is set then abort the connection if it is
// exceeded.
if userTimeout != 0 && e.stack.Clock().NowMonotonic().Sub(e.rcv.lastRcvdAckTime) >= userTimeout && e.keepalive.unacked > 0 {
e.keepalive.Unlock()
e.stack.Stats().TCP.EstablishedTimedout.Increment()
return &tcpip.ErrTimeout{}
}
if e.keepalive.unacked >= e.keepalive.count {
e.keepalive.Unlock()
e.stack.Stats().TCP.EstablishedTimedout.Increment()
return &tcpip.ErrTimeout{}
}
// RFC1122 4.2.3.6: TCP keepalive is a dataless ACK with
// seg.seq = snd.nxt-1.
e.keepalive.unacked++
e.keepalive.Unlock()
e.snd.sendEmptySegment(header.TCPFlagAck, e.snd.SndNxt-1)
e.resetKeepaliveTimer(false)
return nil
}
// resetKeepaliveTimer restarts or stops the keepalive timer, depending on
// whether it is enabled for this endpoint.
func (e *endpoint) resetKeepaliveTimer(receivedData bool) {
e.keepalive.Lock()
defer e.keepalive.Unlock()
if e.keepalive.timer.isZero() {
if state := e.EndpointState(); !state.closed() {
panic(fmt.Sprintf("Unexpected state when the keepalive time is cleaned up, got %s, want %s or %s", state, StateClose, StateError))
}
return
}
if receivedData {
e.keepalive.unacked = 0
}
// Start the keepalive timer IFF it's enabled and there is no pending
// data to send.
if !e.SocketOptions().GetKeepAlive() || e.snd == nil || e.snd.SndUna != e.snd.SndNxt {
e.keepalive.timer.disable()
return
}
if e.keepalive.unacked > 0 {
e.keepalive.timer.enable(e.keepalive.interval)
} else {
e.keepalive.timer.enable(e.keepalive.idle)
}
}
// disableKeepaliveTimer stops the keepalive timer.
func (e *endpoint) disableKeepaliveTimer() {
e.keepalive.Lock()
e.keepalive.timer.disable()
e.keepalive.Unlock()
}
// finWait2TimerExpired is called when the FIN-WAIT-2 timeout is hit
// and the peer hasn't sent us a FIN.
func (e *endpoint) finWait2TimerExpired() {
e.mu.Lock()
e.transitionToStateCloseLocked()
e.mu.Unlock()
e.drainClosingSegmentQueue()
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
}
// +checklocks:e.mu
func (e *endpoint) handshakeFailed(err tcpip.Error) {
e.lastErrorMu.Lock()
e.lastError = err
e.lastErrorMu.Unlock()
// handshakeFailed is also called from startHandshake when a listener
// transitions out of Listen state by the time the SYN is processed. In
// such cases the handshake is never initialized and the newly created
// endpoint is closed right away.
if e.h != nil && e.h.retransmitTimer != nil {
e.h.retransmitTimer.stop()
}
e.hardError = err
e.cleanupLocked()
e.setEndpointState(StateError)
}
// handleTimeWaitSegments processes segments received during TIME_WAIT
// state.
// +checklocks:e.mu
// +checklocksalias:e.rcv.ep.mu=e.mu
func (e *endpoint) handleTimeWaitSegments() (extendTimeWait bool, reuseTW func()) {
for i := 0; i < maxSegmentsPerWake; i++ {
s := e.segmentQueue.dequeue()
if s == nil {
break
}
extTW, newSyn := e.rcv.handleTimeWaitSegment(s)
if newSyn {
info := e.TransportEndpointInfo
newID := info.ID
newID.RemoteAddress = ""
newID.RemotePort = 0
netProtos := []tcpip.NetworkProtocolNumber{info.NetProto}
// If the local address is an IPv4 address then also
// look for IPv6 dual stack endpoints that might be
// listening on the local address.
if newID.LocalAddress.To4() != "" {
netProtos = []tcpip.NetworkProtocolNumber{header.IPv4ProtocolNumber, header.IPv6ProtocolNumber}
}
for _, netProto := range netProtos {
if listenEP := e.stack.FindTransportEndpoint(netProto, info.TransProto, newID, s.pkt.NICID); listenEP != nil {
tcpEP := listenEP.(*endpoint)
if EndpointState(tcpEP.State()) == StateListen {
reuseTW = func() {
if !tcpEP.enqueueSegment(s) {
return
}
tcpEP.notifyProcessor()
s.DecRef()
}
// We explicitly do not DecRef the segment as it's still valid and
// being reflected to a listening endpoint.
return false, reuseTW
}
}
}
}
if extTW {
extendTimeWait = true
}
s.DecRef()
}
return extendTimeWait, nil
}
// +checklocks:e.mu
func (e *endpoint) getTimeWaitDuration() time.Duration {
timeWaitDuration := DefaultTCPTimeWaitTimeout
// Get the stack wide configuration.
var tcpTW tcpip.TCPTimeWaitTimeoutOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &tcpTW); err == nil {
timeWaitDuration = time.Duration(tcpTW)
}
return timeWaitDuration
}
// timeWaitTimerExpired is called when an endpoint completes the required time
// (typically 2 * MSL unless configured to something else at a stack level) in
// TIME-WAIT state.
func (e *endpoint) timeWaitTimerExpired() {
e.mu.Lock()
if e.EndpointState() != StateTimeWait {
e.mu.Unlock()
return
}
e.transitionToStateCloseLocked()
e.mu.Unlock()
e.drainClosingSegmentQueue()
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
}
// notifyProcessor queues this endpoint for processing to its TCP processor.
func (e *endpoint) notifyProcessor() {
// We use TryLock here to avoid deadlocks in cases where a listening endpoint that is being
// closed tries to abort half completed connections which in turn try to queue any segments
// queued to that endpoint back to the same listening endpoint (because it may have got
// segments that matched its id but were either a RST or a new SYN which must be handled
// by a listening endpoint). In such cases the Close() on the listening endpoint will handle
// any queued segments after it releases the lock.
if !e.mu.TryLock() {
return
}
processor := e.protocol.dispatcher.selectProcessor(e.ID)
e.mu.Unlock()
processor.queueEndpoint(e)
}
|