1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"container/heap"
"encoding/binary"
"fmt"
"io"
"math"
"runtime"
"strings"
"time"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/bufferv2"
"gvisor.dev/gvisor/pkg/sleep"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/ports"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/waiter"
)
// EndpointState represents the state of a TCP endpoint.
type EndpointState tcpip.EndpointState
// Endpoint states. Note that are represented in a netstack-specific manner and
// may not be meaningful externally. Specifically, they need to be translated to
// Linux's representation for these states if presented to userspace.
const (
_ EndpointState = iota
// TCP protocol states in sync with the definitions in
// https://github.com/torvalds/linux/blob/7acac4b3196/include/net/tcp_states.h#L13
StateEstablished
StateSynSent
StateSynRecv
StateFinWait1
StateFinWait2
StateTimeWait
StateClose
StateCloseWait
StateLastAck
StateListen
StateClosing
// Endpoint states internal to netstack.
StateInitial
StateBound
StateConnecting // Connect() called, but the initial SYN hasn't been sent.
StateError
)
const (
// rcvAdvWndScale is used to split the available socket buffer into
// application buffer and the window to be advertised to the peer. This is
// currently hard coded to split the available space equally.
rcvAdvWndScale = 1
// SegOverheadFactor is used to multiply the value provided by the
// user on a SetSockOpt for setting the socket send/receive buffer sizes.
SegOverheadFactor = 2
)
// connected returns true when s is one of the states representing an
// endpoint connected to a peer.
func (s EndpointState) connected() bool {
switch s {
case StateEstablished, StateFinWait1, StateFinWait2, StateTimeWait, StateCloseWait, StateLastAck, StateClosing:
return true
default:
return false
}
}
// connecting returns true when s is one of the states representing a
// connection in progress, but not yet fully established.
func (s EndpointState) connecting() bool {
switch s {
case StateConnecting, StateSynSent, StateSynRecv:
return true
default:
return false
}
}
// internal returns true when the state is netstack internal.
func (s EndpointState) internal() bool {
switch s {
case StateInitial, StateBound, StateConnecting, StateError:
return true
default:
return false
}
}
// handshake returns true when s is one of the states representing an endpoint
// in the middle of a TCP handshake.
func (s EndpointState) handshake() bool {
switch s {
case StateSynSent, StateSynRecv:
return true
default:
return false
}
}
// closed returns true when s is one of the states an endpoint transitions to
// when closed or when it encounters an error. This is distinct from a newly
// initialized endpoint that was never connected.
func (s EndpointState) closed() bool {
switch s {
case StateClose, StateError:
return true
default:
return false
}
}
// String implements fmt.Stringer.String.
func (s EndpointState) String() string {
switch s {
case StateInitial:
return "INITIAL"
case StateBound:
return "BOUND"
case StateConnecting:
return "CONNECTING"
case StateError:
return "ERROR"
case StateEstablished:
return "ESTABLISHED"
case StateSynSent:
return "SYN-SENT"
case StateSynRecv:
return "SYN-RCVD"
case StateFinWait1:
return "FIN-WAIT1"
case StateFinWait2:
return "FIN-WAIT2"
case StateTimeWait:
return "TIME-WAIT"
case StateClose:
return "CLOSED"
case StateCloseWait:
return "CLOSE-WAIT"
case StateLastAck:
return "LAST-ACK"
case StateListen:
return "LISTEN"
case StateClosing:
return "CLOSING"
default:
panic("unreachable")
}
}
// SACKInfo holds TCP SACK related information for a given endpoint.
//
// +stateify savable
type SACKInfo struct {
// Blocks is the maximum number of SACK blocks we track
// per endpoint.
Blocks [MaxSACKBlocks]header.SACKBlock
// NumBlocks is the number of valid SACK blocks stored in the
// blocks array above.
NumBlocks int
}
// ReceiveErrors collect segment receive errors within transport layer.
//
// +stateify savable
type ReceiveErrors struct {
tcpip.ReceiveErrors
// SegmentQueueDropped is the number of segments dropped due to
// a full segment queue.
SegmentQueueDropped tcpip.StatCounter
// ChecksumErrors is the number of segments dropped due to bad checksums.
ChecksumErrors tcpip.StatCounter
// ListenOverflowSynDrop is the number of times the listen queue overflowed
// and a SYN was dropped.
ListenOverflowSynDrop tcpip.StatCounter
// ListenOverflowAckDrop is the number of times the final ACK
// in the handshake was dropped due to overflow.
ListenOverflowAckDrop tcpip.StatCounter
// ZeroRcvWindowState is the number of times we advertised
// a zero receive window when rcvQueue is full.
ZeroRcvWindowState tcpip.StatCounter
// WantZeroWindow is the number of times we wanted to advertise a
// zero receive window but couldn't because it would have caused
// the receive window's right edge to shrink.
WantZeroRcvWindow tcpip.StatCounter
}
// SendErrors collect segment send errors within the transport layer.
//
// +stateify savable
type SendErrors struct {
tcpip.SendErrors
// SegmentSendToNetworkFailed is the number of TCP segments failed to be sent
// to the network endpoint.
SegmentSendToNetworkFailed tcpip.StatCounter
// SynSendToNetworkFailed is the number of TCP SYNs failed to be sent
// to the network endpoint.
SynSendToNetworkFailed tcpip.StatCounter
// Retransmits is the number of TCP segments retransmitted.
Retransmits tcpip.StatCounter
// FastRetransmit is the number of segments retransmitted in fast
// recovery.
FastRetransmit tcpip.StatCounter
// Timeouts is the number of times the RTO expired.
Timeouts tcpip.StatCounter
}
// Stats holds statistics about the endpoint.
//
// +stateify savable
type Stats struct {
// SegmentsReceived is the number of TCP segments received that
// the transport layer successfully parsed.
SegmentsReceived tcpip.StatCounter
// SegmentsSent is the number of TCP segments sent.
SegmentsSent tcpip.StatCounter
// FailedConnectionAttempts is the number of times we saw Connect and
// Accept errors.
FailedConnectionAttempts tcpip.StatCounter
// ReceiveErrors collects segment receive errors within the
// transport layer.
ReceiveErrors ReceiveErrors
// ReadErrors collects segment read errors from an endpoint read call.
ReadErrors tcpip.ReadErrors
// SendErrors collects segment send errors within the transport layer.
SendErrors SendErrors
// WriteErrors collects segment write errors from an endpoint write call.
WriteErrors tcpip.WriteErrors
}
// IsEndpointStats is an empty method to implement the tcpip.EndpointStats
// marker interface.
func (*Stats) IsEndpointStats() {}
// sndQueueInfo implements a send queue.
//
// +stateify savable
type sndQueueInfo struct {
sndQueueMu sync.Mutex `state:"nosave"`
stack.TCPSndBufState
// sndWaker is used to signal the protocol goroutine when there may be
// segments that need to be sent.
sndWaker sleep.Waker `state:"manual"`
}
// CloneState clones sq into other. It is not thread safe
func (sq *sndQueueInfo) CloneState(other *stack.TCPSndBufState) {
other.SndBufSize = sq.SndBufSize
other.SndBufUsed = sq.SndBufUsed
other.SndClosed = sq.SndClosed
other.PacketTooBigCount = sq.PacketTooBigCount
other.SndMTU = sq.SndMTU
other.AutoTuneSndBufDisabled = atomicbitops.FromUint32(sq.AutoTuneSndBufDisabled.RacyLoad())
}
// endpoint represents a TCP endpoint. This struct serves as the interface
// between users of the endpoint and the protocol implementation; it is legal to
// have concurrent goroutines make calls into the endpoint, they are properly
// synchronized. The protocol implementation, however, runs in a single
// goroutine.
//
// Each endpoint has a few mutexes:
//
// e.mu -> Primary mutex for an endpoint must be held for all operations except
// in e.Readiness where acquiring it will result in a deadlock in epoll
// implementation.
//
// The following three mutexes can be acquired independent of e.mu but if
// acquired with e.mu then e.mu must be acquired first.
//
// e.acceptMu -> Protects e.acceptQueue.
// e.rcvQueueMu -> Protects e.rcvQueue's associated fields but not e.rcvQueue
// itself.
// e.sndQueueMu -> Protects the e.sndQueue and associated fields.
// e.lastErrorMu -> Protects the lastError field.
//
// LOCKING/UNLOCKING of the endpoint. The locking of an endpoint is different
// based on the context in which the lock is acquired. In the syscall context
// e.LockUser/e.UnlockUser should be used and when doing background processing
// e.mu.Lock/e.mu.Unlock should be used. The distinction is described below
// in brief.
//
// The reason for this locking behaviour is to avoid wakeups to handle packets.
// In cases where the endpoint is already locked the background processor can
// queue the packet up and go its merry way and the lock owner will eventually
// process the backlog when releasing the lock. Similarly when acquiring the
// lock from say a syscall goroutine we can implement a bit of spinning if we
// know that the lock is not held by another syscall goroutine. Background
// processors should never hold the lock for long and we can avoid an expensive
// sleep/wakeup by spinning for a shortwhile.
//
// For more details please see the detailed documentation on
// e.LockUser/e.UnlockUser methods.
//
// +stateify savable
type endpoint struct {
stack.TCPEndpointStateInner
stack.TransportEndpointInfo
tcpip.DefaultSocketOptionsHandler
// endpointEntry is used to queue endpoints for processing to the
// a given tcp processor goroutine.
//
// Precondition: epQueue.mu must be held to read/write this field..
endpointEntry `state:"nosave"`
// pendingProcessingMu protects pendingProcessing.
pendingProcessingMu sync.Mutex `state:"nosave"`
// pendingProcessing is true if this endpoint is queued for processing
// to a TCP processor.
// +checklocks:pendingProcessingMu
pendingProcessing bool `state:"nosave"`
// The following fields are initialized at creation time and do not
// change throughout the lifetime of the endpoint.
stack *stack.Stack `state:"manual"`
protocol *protocol `state:"manual"`
waiterQueue *waiter.Queue `state:"wait"`
uniqueID uint64
// hardError is meaningful only when state is stateError. It stores the
// error to be returned when read/write syscalls are called and the
// endpoint is in this state. hardError is protected by endpoint mu.
hardError tcpip.Error
// lastError represents the last error that the endpoint reported;
// access to it is protected by the following mutex.
lastErrorMu sync.Mutex `state:"nosave"`
lastError tcpip.Error
rcvQueueMu sync.Mutex `state:"nosave"`
// +checklocks:rcvQueueMu
stack.TCPRcvBufState
// rcvMemUsed tracks the total amount of memory in use by received segments
// held in rcvQueue, pendingRcvdSegments and the segment queue. This is used to
// compute the window and the actual available buffer space. This is distinct
// from rcvBufUsed above which is the actual number of payload bytes held in
// the buffer not including any segment overheads.
rcvMemUsed atomicbitops.Int32
// mu protects all endpoint fields unless documented otherwise. mu must
// be acquired before interacting with the endpoint fields.
//
// During handshake, mu is locked by the protocol listen goroutine and
// released by the handshake completion goroutine.
mu sync.CrossGoroutineMutex `state:"nosave"`
ownedByUser atomicbitops.Uint32
// rcvQueue is the queue for ready-for-delivery segments.
//
// +checklocks:mu
rcvQueue segmentList `state:"wait"`
// state must be read/set using the EndpointState()/setEndpointState()
// methods.
state atomicbitops.Uint32 `state:".(EndpointState)"`
// origEndpointState is only used during a restore phase to save the
// endpoint state at restore time as the socket is moved to it's correct
// state.
origEndpointState uint32 `state:"nosave"`
isPortReserved bool `state:"manual"`
isRegistered bool `state:"manual"`
boundNICID tcpip.NICID
route *stack.Route `state:"manual"`
ipv4TTL uint8
ipv6HopLimit int16
isConnectNotified bool
// h stores a reference to the current handshake state if the endpoint is in
// the SYN-SENT or SYN-RECV states, in which case endpoint == endpoint.h.ep.
// nil otherwise.
// +checklocks:mu
h *handshake
// portFlags stores the current values of port related flags.
portFlags ports.Flags
// Values used to reserve a port or register a transport endpoint
// (which ever happens first).
boundBindToDevice tcpip.NICID
boundPortFlags ports.Flags
boundDest tcpip.FullAddress
// effectiveNetProtos contains the network protocols actually in use. In
// most cases it will only contain "netProto", but in cases like IPv6
// endpoints with v6only set to false, this could include multiple
// protocols (e.g., IPv6 and IPv4) or a single different protocol (e.g.,
// IPv4 when IPv6 endpoint is bound or connected to an IPv4 mapped
// address).
effectiveNetProtos []tcpip.NetworkProtocolNumber
// recentTSTime is the unix time when we last updated
// TCPEndpointStateInner.RecentTS.
recentTSTime tcpip.MonotonicTime
// shutdownFlags represent the current shutdown state of the endpoint.
shutdownFlags tcpip.ShutdownFlags
// tcpRecovery is the loss recovery algorithm used by TCP.
tcpRecovery tcpip.TCPRecovery
// sack holds TCP SACK related information for this endpoint.
sack SACKInfo
// delay enables Nagle's algorithm.
//
// delay is a boolean (0 is false) and must be accessed atomically.
delay uint32
// scoreboard holds TCP SACK Scoreboard information for this endpoint.
scoreboard *SACKScoreboard
// segmentQueue is used to hand received segments to the protocol
// goroutine. Segments are queued as long as the queue is not full,
// and dropped when it is.
segmentQueue segmentQueue `state:"wait"`
// userMSS if non-zero is the MSS value explicitly set by the user
// for this endpoint using the TCP_MAXSEG setsockopt.
userMSS uint16
// maxSynRetries is the maximum number of SYN retransmits that TCP should
// send before aborting the attempt to connect. It cannot exceed 255.
//
// NOTE: This is currently a no-op and does not change the SYN
// retransmissions.
maxSynRetries uint8
// windowClamp is used to bound the size of the advertised window to
// this value.
windowClamp uint32
// sndQueueInfo contains the implementation of the endpoint's send queue.
sndQueueInfo sndQueueInfo
// cc stores the name of the Congestion Control algorithm to use for
// this endpoint.
cc tcpip.CongestionControlOption
// keepalive manages TCP keepalive state. When the connection is idle
// (no data sent or received) for keepaliveIdle, we start sending
// keepalives every keepalive.interval. If we send keepalive.count
// without hearing a response, the connection is closed.
keepalive keepalive
// userTimeout if non-zero specifies a user specified timeout for
// a connection w/ pending data to send. A connection that has pending
// unacked data will be forcibily aborted if the timeout is reached
// without any data being acked.
userTimeout time.Duration
// deferAccept if non-zero specifies a user specified time during
// which the final ACK of a handshake will be dropped provided the
// ACK is a bare ACK and carries no data. If the timeout is crossed then
// the bare ACK is accepted and the connection is delivered to the
// listener.
deferAccept time.Duration
// acceptMu protects accepQueue
acceptMu sync.Mutex `state:"nosave"`
// acceptQueue is used by a listening endpoint to send newly accepted
// connections to the endpoint so that they can be read by Accept()
// calls.
//
// +checklocks:acceptMu
acceptQueue acceptQueue
// The following are only used from the protocol goroutine, and
// therefore don't need locks to protect them.
rcv *receiver `state:"wait"`
snd *sender `state:"wait"`
// The goroutine drain completion notification channel.
drainDone chan struct{} `state:"nosave"`
// The goroutine undrain notification channel. This is currently used as
// a way to block the worker goroutines. Today nothing closes/writes
// this channel and this causes any goroutines waiting on this to just
// block. This is used during save/restore to prevent worker goroutines
// from mutating state as it's being saved.
undrain chan struct{} `state:"nosave"`
// probe if not nil is invoked on every received segment. It is passed
// a copy of the current state of the endpoint.
probe stack.TCPProbeFunc `state:"nosave"`
// The following are only used to assist the restore run to re-connect.
connectingAddress tcpip.Address
// amss is the advertised MSS to the peer by this endpoint.
amss uint16
// sendTOS represents IPv4 TOS or IPv6 TrafficClass,
// applied while sending packets. Defaults to 0 as on Linux.
sendTOS uint8
gso stack.GSO
stats Stats
// tcpLingerTimeout is the maximum amount of a time a socket
// a socket stays in TIME_WAIT state before being marked
// closed.
tcpLingerTimeout time.Duration
// closed indicates that the user has called closed on the
// endpoint and at this point the endpoint is only around
// to complete the TCP shutdown.
closed bool
// txHash is the transport layer hash to be set on outbound packets
// emitted by this endpoint.
txHash uint32
// owner is used to get uid and gid of the packet.
owner tcpip.PacketOwner
// ops is used to get socket level options.
ops tcpip.SocketOptions
// lastOutOfWindowAckTime is the time at which the an ACK was sent in response
// to an out of window segment being received by this endpoint.
lastOutOfWindowAckTime tcpip.MonotonicTime
// finWait2Timer is used to reap orphaned sockets in FIN-WAIT-2 where the peer
// is yet to send a FIN but on our end the socket is fully closed i.e. endpoint.Close()
// has been called on the socket. This timer is not started for sockets that
// are waiting for a peer FIN but are not closed.
finWait2Timer tcpip.Timer `state:"nosave"`
// timeWaitTimer is used to reap a socket once a socket has been in TIME-WAIT state
// for tcp.DefaultTCPTimeWaitTimeout seconds.
timeWaitTimer tcpip.Timer `state:"nosave"`
// listenCtx is used by listening endpoints to store state used while listening for
// connections. Nil otherwise.
listenCtx *listenContext `state:"nosave"`
}
// UniqueID implements stack.TransportEndpoint.UniqueID.
func (e *endpoint) UniqueID() uint64 {
return e.uniqueID
}
// calculateAdvertisedMSS calculates the MSS to advertise.
//
// If userMSS is non-zero and is not greater than the maximum possible MSS for
// r, it will be used; otherwise, the maximum possible MSS will be used.
func calculateAdvertisedMSS(userMSS uint16, r *stack.Route) uint16 {
// The maximum possible MSS is dependent on the route.
// TODO(b/143359391): Respect TCP Min and Max size.
maxMSS := uint16(r.MTU() - header.TCPMinimumSize)
if userMSS != 0 && userMSS < maxMSS {
return userMSS
}
return maxMSS
}
// isOwnedByUser() returns true if the endpoint lock is currently
// held by a user(syscall) goroutine.
func (e *endpoint) isOwnedByUser() bool {
return e.ownedByUser.Load() == 1
}
// LockUser tries to lock e.mu and if it fails it will check if the lock is held
// by another syscall goroutine. If yes, then it will goto sleep waiting for the
// lock to be released, if not then it will spin till it acquires the lock or
// another syscall goroutine acquires it in which case it will goto sleep as
// described above.
//
// The assumption behind spinning here being that background packet processing
// should not be holding the lock for long and spinning reduces latency as we
// avoid an expensive sleep/wakeup of the syscall goroutine).
// +checklocksacquire:e.mu
func (e *endpoint) LockUser() {
const iterations = 5
for i := 0; i < iterations; i++ {
// Try first if the sock is locked then check if it's owned
// by another user goroutine if not then we spin, otherwise
// we just go to sleep on the Lock() and wait.
if !e.TryLock() {
// If socket is owned by the user then just go to sleep
// as the lock could be held for a reasonably long time.
if e.ownedByUser.Load() == 1 {
e.mu.Lock()
e.ownedByUser.Store(1)
return
}
// Spin but don't yield the processor since the lower half
// should yield the lock soon.
continue
}
e.ownedByUser.Store(1)
return
}
for i := 0; i < iterations; i++ {
// Try first if the sock is locked then check if it's owned
// by another user goroutine if not then we spin, otherwise
// we just go to sleep on the Lock() and wait.
if !e.TryLock() {
// If socket is owned by the user then just go to sleep
// as the lock could be held for a reasonably long time.
if e.ownedByUser.Load() == 1 {
e.mu.Lock()
e.ownedByUser.Store(1)
return
}
// Spin but yield the processor since the lower half
// should yield the lock soon.
runtime.Gosched()
continue
}
e.ownedByUser.Store(1)
return
}
// Finally just give up and wait for the Lock.
e.mu.Lock()
e.ownedByUser.Store(1)
}
// UnlockUser will check if there are any segments already queued for processing
// and wake up a processor goroutine to process them before unlocking e.mu.
// This is required because we when packets arrive and endpoint lock is already
// held then such packets are queued up to be processed.
//
// Precondition: e.LockUser() must have been called before calling e.UnlockUser()
// +checklocksrelease:e.mu
func (e *endpoint) UnlockUser() {
// Lock segment queue before checking so that we avoid a race where
// segments can be queued between the time we check if queue is empty
// and actually unlock the endpoint mutex.
e.segmentQueue.mu.Lock()
if e.segmentQueue.emptyLocked() {
if e.ownedByUser.Swap(0) != 1 {
panic("e.UnlockUser() called without calling e.LockUser()")
}
e.mu.Unlock()
e.segmentQueue.mu.Unlock()
return
}
e.segmentQueue.mu.Unlock()
// Since we are waking the processor goroutine here just unlock
// and let it process the queued segments.
if e.ownedByUser.Swap(0) != 1 {
panic("e.UnlockUser() called without calling e.LockUser()")
}
processor := e.protocol.dispatcher.selectProcessor(e.ID)
e.mu.Unlock()
// Wake up the processor for this endpoint to process any queued
// segments after releasing the lock to avoid the case where if the
// processor goroutine starts running before we release the lock here
// then it will fail to process as TryLock() will fail.
processor.queueEndpoint(e)
return
}
// StopWork halts packet processing. Only to be used in tests.
// +checklocksacquire:e.mu
func (e *endpoint) StopWork() {
e.mu.Lock()
}
// ResumeWork resumes packet processing. Only to be used in tests.
// +checklocksrelease:e.mu
func (e *endpoint) ResumeWork() {
e.mu.Unlock()
}
// AssertLockHeld forces the checklocks analyzer to consider e.mu held. This is
// used in places where we know that e.mu is held, but checklocks does not,
// which can happen when creating new locked objects. You must pass the known
// locked endpoint to this function and it must be the same as the caller
// endpoint.
// TODO(b/226403629): Remove this function once checklocks understands local
// variable locks.
// +checklocks:locked.mu
// +checklocksacquire:e.mu
func (e *endpoint) AssertLockHeld(locked *endpoint) {
if e != locked {
panic("AssertLockHeld failed: locked endpoint != asserting endpoint")
}
}
// TryLock is a helper that calls TryLock on the endpoint's mutex and
// adds the necessary checklocks annotations.
// TODO(b/226403629): Remove this once checklocks understands TryLock.
// +checklocksacquire:e.mu
func (e *endpoint) TryLock() bool {
if e.mu.TryLock() {
return true // +checklocksforce
}
return false // +checklocksignore
}
// setEndpointState updates the state of the endpoint to state atomically. This
// method is unexported as the only place we should update the state is in this
// package but we allow the state to be read freely without holding e.mu.
//
// +checklocks:e.mu
func (e *endpoint) setEndpointState(state EndpointState) {
oldstate := EndpointState(e.state.Swap(uint32(state)))
switch state {
case StateEstablished:
e.stack.Stats().TCP.CurrentEstablished.Increment()
e.stack.Stats().TCP.CurrentConnected.Increment()
case StateError:
fallthrough
case StateClose:
if oldstate == StateCloseWait || oldstate == StateEstablished {
e.stack.Stats().TCP.EstablishedResets.Increment()
}
if oldstate.connected() {
e.stack.Stats().TCP.CurrentConnected.Decrement()
}
fallthrough
default:
if oldstate == StateEstablished {
e.stack.Stats().TCP.CurrentEstablished.Decrement()
}
}
}
// EndpointState returns the current state of the endpoint.
func (e *endpoint) EndpointState() EndpointState {
return EndpointState(e.state.Load())
}
// setRecentTimestamp sets the recentTS field to the provided value.
func (e *endpoint) setRecentTimestamp(recentTS uint32) {
e.RecentTS = recentTS
e.recentTSTime = e.stack.Clock().NowMonotonic()
}
// recentTimestamp returns the value of the recentTS field.
func (e *endpoint) recentTimestamp() uint32 {
return e.RecentTS
}
// TODO(gvisor.dev/issue/6974): Remove once tcp endpoints are composed with a
// network.Endpoint, which also defines this function.
func calculateTTL(route *stack.Route, ipv4TTL uint8, ipv6HopLimit int16) uint8 {
switch netProto := route.NetProto(); netProto {
case header.IPv4ProtocolNumber:
if ipv4TTL == tcpip.UseDefaultIPv4TTL {
return route.DefaultTTL()
}
return ipv4TTL
case header.IPv6ProtocolNumber:
if ipv6HopLimit == tcpip.UseDefaultIPv6HopLimit {
return route.DefaultTTL()
}
return uint8(ipv6HopLimit)
default:
panic(fmt.Sprintf("invalid protocol number = %d", netProto))
}
}
// keepalive is a synchronization wrapper used to appease stateify. See the
// comment in endpoint, where it is used.
//
// +stateify savable
type keepalive struct {
sync.Mutex `state:"nosave"`
idle time.Duration
interval time.Duration
count int
unacked int
// should never be a zero timer if the endpoint is not closed.
timer timer `state:"nosave"`
waker sleep.Waker `state:"nosave"`
}
func newEndpoint(s *stack.Stack, protocol *protocol, netProto tcpip.NetworkProtocolNumber, waiterQueue *waiter.Queue) *endpoint {
e := &endpoint{
stack: s,
protocol: protocol,
TransportEndpointInfo: stack.TransportEndpointInfo{
NetProto: netProto,
TransProto: header.TCPProtocolNumber,
},
sndQueueInfo: sndQueueInfo{
TCPSndBufState: stack.TCPSndBufState{
SndMTU: math.MaxInt32,
},
},
waiterQueue: waiterQueue,
state: atomicbitops.FromUint32(uint32(StateInitial)),
keepalive: keepalive{
idle: DefaultKeepaliveIdle,
interval: DefaultKeepaliveInterval,
count: DefaultKeepaliveCount,
},
uniqueID: s.UniqueID(),
ipv4TTL: tcpip.UseDefaultIPv4TTL,
ipv6HopLimit: tcpip.UseDefaultIPv6HopLimit,
txHash: s.Rand().Uint32(),
windowClamp: DefaultReceiveBufferSize,
maxSynRetries: DefaultSynRetries,
}
e.ops.InitHandler(e, e.stack, GetTCPSendBufferLimits, GetTCPReceiveBufferLimits)
e.ops.SetMulticastLoop(true)
e.ops.SetQuickAck(true)
e.ops.SetSendBufferSize(DefaultSendBufferSize, false /* notify */)
e.ops.SetReceiveBufferSize(DefaultReceiveBufferSize, false /* notify */)
var ss tcpip.TCPSendBufferSizeRangeOption
if err := s.TransportProtocolOption(ProtocolNumber, &ss); err == nil {
e.ops.SetSendBufferSize(int64(ss.Default), false /* notify */)
}
var rs tcpip.TCPReceiveBufferSizeRangeOption
if err := s.TransportProtocolOption(ProtocolNumber, &rs); err == nil {
e.ops.SetReceiveBufferSize(int64(rs.Default), false /* notify */)
}
var cs tcpip.CongestionControlOption
if err := s.TransportProtocolOption(ProtocolNumber, &cs); err == nil {
e.cc = cs
}
var mrb tcpip.TCPModerateReceiveBufferOption
if err := s.TransportProtocolOption(ProtocolNumber, &mrb); err == nil {
e.RcvAutoParams.Disabled = !bool(mrb)
}
var de tcpip.TCPDelayEnabled
if err := s.TransportProtocolOption(ProtocolNumber, &de); err == nil && de {
e.ops.SetDelayOption(true)
}
var tcpLT tcpip.TCPLingerTimeoutOption
if err := s.TransportProtocolOption(ProtocolNumber, &tcpLT); err == nil {
e.tcpLingerTimeout = time.Duration(tcpLT)
}
var synRetries tcpip.TCPSynRetriesOption
if err := s.TransportProtocolOption(ProtocolNumber, &synRetries); err == nil {
e.maxSynRetries = uint8(synRetries)
}
if p := s.GetTCPProbe(); p != nil {
e.probe = p
}
e.segmentQueue.ep = e
// TODO(https://gvisor.dev/issues/7493): Defer creating the timer until TCP connection becomes
// established.
e.keepalive.timer.init(e.stack.Clock(), maybeFailTimerHandler(e, e.keepaliveTimerExpired))
return e
}
// Readiness returns the current readiness of the endpoint. For example, if
// waiter.EventIn is set, the endpoint is immediately readable.
func (e *endpoint) Readiness(mask waiter.EventMask) waiter.EventMask {
result := waiter.EventMask(0)
switch e.EndpointState() {
case StateInitial, StateBound:
// This prevents blocking of new sockets which are not
// connected when SO_LINGER is set.
result |= waiter.EventHUp
case StateConnecting, StateSynSent, StateSynRecv:
// Ready for nothing.
case StateClose, StateError, StateTimeWait:
// Ready for anything.
result = mask
case StateListen:
// Check if there's anything in the accepted queue.
if (mask & waiter.ReadableEvents) != 0 {
e.acceptMu.Lock()
if e.acceptQueue.endpoints.Len() != 0 {
result |= waiter.ReadableEvents
}
e.acceptMu.Unlock()
}
}
if e.EndpointState().connected() {
// Determine if the endpoint is writable if requested.
if (mask & waiter.WritableEvents) != 0 {
e.sndQueueInfo.sndQueueMu.Lock()
sndBufSize := e.getSendBufferSize()
if e.sndQueueInfo.SndClosed || e.sndQueueInfo.SndBufUsed < sndBufSize {
result |= waiter.WritableEvents
}
e.sndQueueInfo.sndQueueMu.Unlock()
}
// Determine if the endpoint is readable if requested.
if (mask & waiter.ReadableEvents) != 0 {
e.rcvQueueMu.Lock()
if e.RcvBufUsed > 0 || e.RcvClosed {
result |= waiter.ReadableEvents
}
e.rcvQueueMu.Unlock()
}
}
return result
}
// Purging pending rcv segments is only necessary on RST.
func (e *endpoint) purgePendingRcvQueue() {
if e.rcv != nil {
for e.rcv.pendingRcvdSegments.Len() > 0 {
s := heap.Pop(&e.rcv.pendingRcvdSegments).(*segment)
s.DecRef()
}
}
}
// +checklocks:e.mu
func (e *endpoint) purgeReadQueue() {
if e.rcv != nil {
e.rcvQueueMu.Lock()
defer e.rcvQueueMu.Unlock()
for {
s := e.rcvQueue.Front()
if s == nil {
break
}
e.rcvQueue.Remove(s)
s.DecRef()
}
e.RcvBufUsed = 0
}
}
// +checklocks:e.mu
func (e *endpoint) purgeWriteQueue() {
if e.snd != nil {
e.sndQueueInfo.sndQueueMu.Lock()
defer e.sndQueueInfo.sndQueueMu.Unlock()
e.snd.updateWriteNext(nil)
for {
s := e.snd.writeList.Front()
if s == nil {
break
}
e.snd.writeList.Remove(s)
s.DecRef()
}
e.sndQueueInfo.SndBufUsed = 0
e.sndQueueInfo.SndClosed = true
}
}
// Abort implements stack.TransportEndpoint.Abort.
func (e *endpoint) Abort() {
defer e.drainClosingSegmentQueue()
e.LockUser()
defer e.UnlockUser()
defer e.purgeReadQueue()
// Reset all connected endpoints.
switch state := e.EndpointState(); {
case state.connected():
e.resetConnectionLocked(&tcpip.ErrAborted{})
return
}
e.closeLocked()
}
// Close puts the endpoint in a closed state and frees all resources associated
// with it. It must be called only once and with no other concurrent calls to
// the endpoint.
func (e *endpoint) Close() {
e.LockUser()
if e.closed {
e.UnlockUser()
return
}
// We always want to purge the read queue, but do so after the checks in
// shutdownLocked.
e.closeLocked()
e.purgeReadQueue()
if e.EndpointState() == StateClose || e.EndpointState() == StateError {
// It should be safe to purge the read queue now as the endpoint
// is now closed or in an error state and further reads are not
// permitted.
e.UnlockUser()
e.drainClosingSegmentQueue()
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
return
}
e.UnlockUser()
}
// +checklocks:e.mu
func (e *endpoint) closeLocked() {
linger := e.SocketOptions().GetLinger()
if linger.Enabled && linger.Timeout == 0 {
s := e.EndpointState()
isResetState := s == StateEstablished || s == StateCloseWait || s == StateFinWait1 || s == StateFinWait2 || s == StateSynRecv
if isResetState {
// Close the endpoint without doing full shutdown and
// send a RST.
e.resetConnectionLocked(&tcpip.ErrConnectionAborted{})
return
}
}
// Issue a shutdown so that the peer knows we won't send any more data
// if we're connected, or stop accepting if we're listening.
e.shutdownLocked(tcpip.ShutdownWrite | tcpip.ShutdownRead)
e.closeNoShutdownLocked()
}
// closeNoShutdown closes the endpoint without doing a full shutdown.
// +checklocks:e.mu
func (e *endpoint) closeNoShutdownLocked() {
// For listening sockets, we always release ports inline so that they
// are immediately available for reuse after Close() is called. If also
// registered, we unregister as well otherwise the next user would fail
// in Listen() when trying to register.
if e.EndpointState() == StateListen && e.isPortReserved {
if e.isRegistered {
e.stack.StartTransportEndpointCleanup(e.effectiveNetProtos, ProtocolNumber, e.TransportEndpointInfo.ID, e, e.boundPortFlags, e.boundBindToDevice)
e.isRegistered = false
}
portRes := ports.Reservation{
Networks: e.effectiveNetProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: e.TransportEndpointInfo.ID.LocalPort,
Flags: e.boundPortFlags,
BindToDevice: e.boundBindToDevice,
Dest: e.boundDest,
}
e.stack.ReleasePort(portRes)
e.isPortReserved = false
e.boundBindToDevice = 0
e.boundPortFlags = ports.Flags{}
e.boundDest = tcpip.FullAddress{}
}
// Mark endpoint as closed.
e.closed = true
tcpip.AddDanglingEndpoint(e)
eventMask := waiter.ReadableEvents | waiter.WritableEvents
switch e.EndpointState() {
case StateInitial, StateBound, StateListen:
e.setEndpointState(StateClose)
fallthrough
case StateClose, StateError:
eventMask |= waiter.EventHUp
e.cleanupLocked()
case StateConnecting, StateSynSent, StateSynRecv:
// Abort the handshake and set the error.
// Notify that the endpoint is closed.
eventMask |= waiter.EventHUp
e.handshakeFailed(&tcpip.ErrAborted{})
// Notify that the endpoint is closed.
eventMask |= waiter.EventHUp
case StateFinWait2:
// The socket has been closed and we are in FIN-WAIT-2 so start
// the FIN-WAIT-2 timer.
if e.finWait2Timer == nil {
e.finWait2Timer = e.stack.Clock().AfterFunc(e.tcpLingerTimeout, e.finWait2TimerExpired)
}
}
e.waiterQueue.Notify(eventMask)
}
// closePendingAcceptableConnections closes all connections that have completed
// handshake but not yet been delivered to the application.
func (e *endpoint) closePendingAcceptableConnectionsLocked() {
e.acceptMu.Lock()
pendingEndpoints := e.acceptQueue.pendingEndpoints
e.acceptQueue.pendingEndpoints = nil
completedEndpoints := make([]*endpoint, 0, e.acceptQueue.endpoints.Len())
for n := e.acceptQueue.endpoints.Front(); n != nil; n = n.Next() {
completedEndpoints = append(completedEndpoints, n.Value.(*endpoint))
}
e.acceptQueue.endpoints.Init()
e.acceptQueue.capacity = 0
e.acceptMu.Unlock()
// Close any endpoints in SYN-RCVD state.
for n := range pendingEndpoints {
n.Abort()
}
// Reset all connections that are waiting to be accepted.
for _, n := range completedEndpoints {
n.Abort()
}
}
// cleanupLocked frees all resources associated with the endpoint.
// +checklocks:e.mu
func (e *endpoint) cleanupLocked() {
if e.snd != nil {
e.snd.resendTimer.cleanup()
e.snd.probeTimer.cleanup()
e.snd.reorderTimer.cleanup()
}
if e.finWait2Timer != nil {
e.finWait2Timer.Stop()
}
if e.timeWaitTimer != nil {
e.timeWaitTimer.Stop()
}
// Close all endpoints that might have been accepted by TCP but not by
// the client.
e.closePendingAcceptableConnectionsLocked()
e.keepalive.timer.cleanup()
if e.isRegistered {
e.stack.StartTransportEndpointCleanup(e.effectiveNetProtos, ProtocolNumber, e.TransportEndpointInfo.ID, e, e.boundPortFlags, e.boundBindToDevice)
e.isRegistered = false
}
if e.isPortReserved {
portRes := ports.Reservation{
Networks: e.effectiveNetProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: e.TransportEndpointInfo.ID.LocalPort,
Flags: e.boundPortFlags,
BindToDevice: e.boundBindToDevice,
Dest: e.boundDest,
}
e.stack.ReleasePort(portRes)
e.isPortReserved = false
}
e.boundBindToDevice = 0
e.boundPortFlags = ports.Flags{}
e.boundDest = tcpip.FullAddress{}
if e.route != nil {
e.route.Release()
e.route = nil
}
e.purgeWriteQueue()
// Only purge the read queue here if the socket is fully closed by the
// user.
if e.closed {
e.purgeReadQueue()
}
e.stack.CompleteTransportEndpointCleanup(e)
tcpip.DeleteDanglingEndpoint(e)
}
// wndFromSpace returns the window that we can advertise based on the available
// receive buffer space.
func wndFromSpace(space int) int {
return space >> rcvAdvWndScale
}
// initialReceiveWindow returns the initial receive window to advertise in the
// SYN/SYN-ACK.
func (e *endpoint) initialReceiveWindow() int {
rcvWnd := wndFromSpace(e.receiveBufferAvailable())
if rcvWnd > math.MaxUint16 {
rcvWnd = math.MaxUint16
}
// Use the user supplied MSS, if available.
routeWnd := InitialCwnd * int(calculateAdvertisedMSS(e.userMSS, e.route)) * 2
if rcvWnd > routeWnd {
rcvWnd = routeWnd
}
rcvWndScale := e.rcvWndScaleForHandshake()
// Round-down the rcvWnd to a multiple of wndScale. This ensures that the
// window offered in SYN won't be reduced due to the loss of precision if
// window scaling is enabled after the handshake.
rcvWnd = (rcvWnd >> uint8(rcvWndScale)) << uint8(rcvWndScale)
// Ensure we can always accept at least 1 byte if the scale specified
// was too high for the provided rcvWnd.
if rcvWnd == 0 {
rcvWnd = 1
}
return rcvWnd
}
// ModerateRecvBuf adjusts the receive buffer and the advertised window
// based on the number of bytes copied to userspace.
func (e *endpoint) ModerateRecvBuf(copied int) {
e.LockUser()
defer e.UnlockUser()
sendNonZeroWindowUpdate := false
e.rcvQueueMu.Lock()
if e.RcvAutoParams.Disabled {
e.rcvQueueMu.Unlock()
return
}
now := e.stack.Clock().NowMonotonic()
if rtt := e.RcvAutoParams.RTT; rtt == 0 || now.Sub(e.RcvAutoParams.MeasureTime) < rtt {
e.RcvAutoParams.CopiedBytes += copied
e.rcvQueueMu.Unlock()
return
}
prevRTTCopied := e.RcvAutoParams.CopiedBytes + copied
prevCopied := e.RcvAutoParams.PrevCopiedBytes
rcvWnd := 0
if prevRTTCopied > prevCopied {
// The minimal receive window based on what was copied by the app
// in the immediate preceding RTT and some extra buffer for 16
// segments to account for variations.
// We multiply by 2 to account for packet losses.
rcvWnd = prevRTTCopied*2 + 16*int(e.amss)
// Scale for slow start based on bytes copied in this RTT vs previous.
grow := (rcvWnd * (prevRTTCopied - prevCopied)) / prevCopied
// Multiply growth factor by 2 again to account for sender being
// in slow-start where the sender grows it's congestion window
// by 100% per RTT.
rcvWnd += grow * 2
// Make sure auto tuned buffer size can always receive upto 2x
// the initial window of 10 segments.
if minRcvWnd := int(e.amss) * InitialCwnd * 2; rcvWnd < minRcvWnd {
rcvWnd = minRcvWnd
}
// Cap the auto tuned buffer size by the maximum permissible
// receive buffer size.
if max := e.maxReceiveBufferSize(); rcvWnd > max {
rcvWnd = max
}
// We do not adjust downwards as that can cause the receiver to
// reject valid data that might already be in flight as the
// acceptable window will shrink.
rcvBufSize := int(e.ops.GetReceiveBufferSize())
if rcvWnd > rcvBufSize {
availBefore := wndFromSpace(e.receiveBufferAvailableLocked(rcvBufSize))
e.ops.SetReceiveBufferSize(int64(rcvWnd), false /* notify */)
availAfter := wndFromSpace(e.receiveBufferAvailableLocked(rcvWnd))
if crossed, above := e.windowCrossedACKThresholdLocked(availAfter-availBefore, rcvBufSize); crossed && above {
sendNonZeroWindowUpdate = true
}
}
// We only update PrevCopiedBytes when we grow the buffer because in cases
// where PrevCopiedBytes > prevRTTCopied the existing buffer is already big
// enough to handle the current rate and we don't need to do any
// adjustments.
e.RcvAutoParams.PrevCopiedBytes = prevRTTCopied
}
e.RcvAutoParams.MeasureTime = now
e.RcvAutoParams.CopiedBytes = 0
e.rcvQueueMu.Unlock()
// Send the update after unlocking rcvQueueMu as sending a segment acquires
// the lock to calculate the window to be sent.
if e.EndpointState().connected() && sendNonZeroWindowUpdate {
e.rcv.nonZeroWindow() // +checklocksforce:e.rcv.ep.mu
}
}
// SetOwner implements tcpip.Endpoint.SetOwner.
func (e *endpoint) SetOwner(owner tcpip.PacketOwner) {
e.owner = owner
}
// +checklocks:e.mu
func (e *endpoint) hardErrorLocked() tcpip.Error {
err := e.hardError
e.hardError = nil
return err
}
// +checklocks:e.mu
func (e *endpoint) lastErrorLocked() tcpip.Error {
e.lastErrorMu.Lock()
defer e.lastErrorMu.Unlock()
err := e.lastError
e.lastError = nil
return err
}
// LastError implements tcpip.Endpoint.LastError.
func (e *endpoint) LastError() tcpip.Error {
e.LockUser()
defer e.UnlockUser()
if err := e.hardErrorLocked(); err != nil {
return err
}
return e.lastErrorLocked()
}
// LastErrorLocked reads and clears lastError.
// Only to be used in tests.
// +checklocks:e.mu
func (e *endpoint) LastErrorLocked() tcpip.Error {
return e.lastErrorLocked()
}
// UpdateLastError implements tcpip.SocketOptionsHandler.UpdateLastError.
func (e *endpoint) UpdateLastError(err tcpip.Error) {
e.LockUser()
e.lastErrorMu.Lock()
e.lastError = err
e.lastErrorMu.Unlock()
e.UnlockUser()
}
// Read implements tcpip.Endpoint.Read.
func (e *endpoint) Read(dst io.Writer, opts tcpip.ReadOptions) (tcpip.ReadResult, tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
if err := e.checkReadLocked(); err != nil {
if _, ok := err.(*tcpip.ErrClosedForReceive); ok {
e.stats.ReadErrors.ReadClosed.Increment()
}
return tcpip.ReadResult{}, err
}
var err error
done := 0
// N.B. Here we get the first segment to be processed. It is safe to not
// hold rcvQueueMu when processing, since we hold e.mu to ensure we only
// remove segments from the list through Read() and that new segments
// cannot be appended.
s := e.rcvQueue.Front()
for s != nil {
var n int
n, err = s.ReadTo(dst, opts.Peek)
// Book keeping first then error handling.
done += n
if opts.Peek {
s = s.Next()
} else {
sendNonZeroWindowUpdate := false
memDelta := 0
for {
seg := e.rcvQueue.Front()
if seg == nil || seg.payloadSize() != 0 {
break
}
e.rcvQueue.Remove(seg)
// Memory is only considered released when the whole segment has been
// read.
memDelta += seg.segMemSize()
seg.DecRef()
}
e.rcvQueueMu.Lock()
e.RcvBufUsed -= n
s = e.rcvQueue.Front()
if memDelta > 0 {
// If the window was small before this read and if the read freed up
// enough buffer space, to either fit an aMSS or half a receive buffer
// (whichever smaller), then notify the protocol goroutine to send a
// window update.
if crossed, above := e.windowCrossedACKThresholdLocked(memDelta, int(e.ops.GetReceiveBufferSize())); crossed && above {
sendNonZeroWindowUpdate = true
}
}
e.rcvQueueMu.Unlock()
if e.EndpointState().connected() && sendNonZeroWindowUpdate {
e.rcv.nonZeroWindow() // +checklocksforce:e.rcv.ep.mu
}
}
if err != nil {
break
}
}
// If something is read, we must report it. Report error when nothing is read.
if done == 0 && err != nil {
return tcpip.ReadResult{}, &tcpip.ErrBadBuffer{}
}
return tcpip.ReadResult{
Count: done,
Total: done,
}, nil
}
// checkRead checks that endpoint is in a readable state.
//
// +checklocks:e.mu
func (e *endpoint) checkReadLocked() tcpip.Error {
e.rcvQueueMu.Lock()
defer e.rcvQueueMu.Unlock()
// When in SYN-SENT state, let the caller block on the receive.
// An application can initiate a non-blocking connect and then block
// on a receive. It can expect to read any data after the handshake
// is complete. RFC793, section 3.9, p58.
if e.EndpointState() == StateSynSent {
return &tcpip.ErrWouldBlock{}
}
// The endpoint can be read if it's connected, or if it's already closed
// but has some pending unread data. Also note that a RST being received
// would cause the state to become StateError so we should allow the
// reads to proceed before returning a ECONNRESET.
bufUsed := e.RcvBufUsed
if s := e.EndpointState(); !s.connected() && s != StateClose && bufUsed == 0 {
if s == StateError {
if err := e.hardErrorLocked(); err != nil {
return err
}
return &tcpip.ErrClosedForReceive{}
}
e.stats.ReadErrors.NotConnected.Increment()
return &tcpip.ErrNotConnected{}
}
if e.RcvBufUsed == 0 {
if e.RcvClosed || !e.EndpointState().connected() {
return &tcpip.ErrClosedForReceive{}
}
return &tcpip.ErrWouldBlock{}
}
return nil
}
// isEndpointWritableLocked checks if a given endpoint is writable
// and also returns the number of bytes that can be written at this
// moment. If the endpoint is not writable then it returns an error
// indicating the reason why it's not writable.
// +checklocks:e.mu
// +checklocks:e.sndQueueInfo.sndQueueMu
func (e *endpoint) isEndpointWritableLocked() (int, tcpip.Error) {
// The endpoint cannot be written to if it's not connected.
switch s := e.EndpointState(); {
case s == StateError:
if err := e.hardErrorLocked(); err != nil {
return 0, err
}
return 0, &tcpip.ErrClosedForSend{}
case !s.connecting() && !s.connected():
return 0, &tcpip.ErrClosedForSend{}
case s.connecting():
// As per RFC793, page 56, a send request arriving when in connecting
// state, can be queued to be completed after the state becomes
// connected. Return an error code for the caller of endpoint Write to
// try again, until the connection handshake is complete.
return 0, &tcpip.ErrWouldBlock{}
}
// Check if the connection has already been closed for sends.
if e.sndQueueInfo.SndClosed {
return 0, &tcpip.ErrClosedForSend{}
}
sndBufSize := e.getSendBufferSize()
avail := sndBufSize - e.sndQueueInfo.SndBufUsed
if avail <= 0 {
return 0, &tcpip.ErrWouldBlock{}
}
return avail, nil
}
// readFromPayloader reads a slice from the Payloader.
// +checklocks:e.mu
// +checklocks:e.sndQueueInfo.sndQueueMu
func (e *endpoint) readFromPayloader(p tcpip.Payloader, opts tcpip.WriteOptions, avail int) (bufferv2.Buffer, tcpip.Error) {
// We can release locks while copying data.
//
// This is not possible if atomic is set, because we can't allow the
// available buffer space to be consumed by some other caller while we
// are copying data in.
if !opts.Atomic {
e.sndQueueInfo.sndQueueMu.Unlock()
defer e.sndQueueInfo.sndQueueMu.Lock()
e.UnlockUser()
defer e.LockUser()
}
// Fetch data.
var payload bufferv2.Buffer
if l := p.Len(); l < avail {
avail = l
}
if avail == 0 {
return payload, nil
}
if _, err := payload.WriteFromReader(p, int64(avail)); err != nil {
payload.Release()
return bufferv2.Buffer{}, &tcpip.ErrBadBuffer{}
}
return payload, nil
}
// queueSegment reads data from the payloader and returns a segment to be sent.
// +checklocks:e.mu
func (e *endpoint) queueSegment(p tcpip.Payloader, opts tcpip.WriteOptions) (*segment, int, tcpip.Error) {
e.sndQueueInfo.sndQueueMu.Lock()
defer e.sndQueueInfo.sndQueueMu.Unlock()
avail, err := e.isEndpointWritableLocked()
if err != nil {
e.stats.WriteErrors.WriteClosed.Increment()
return nil, 0, err
}
buf, err := e.readFromPayloader(p, opts, avail)
if err != nil {
return nil, 0, err
}
// Do not queue zero length segments.
if buf.Size() == 0 {
return nil, 0, nil
}
if !opts.Atomic {
// Since we released locks in between it's possible that the
// endpoint transitioned to a CLOSED/ERROR states so make
// sure endpoint is still writable before trying to write.
avail, err := e.isEndpointWritableLocked()
if err != nil {
e.stats.WriteErrors.WriteClosed.Increment()
buf.Release()
return nil, 0, err
}
// A simultaneous call to write on the socket can reduce avail. Discard
// excess data copied if this is the case.
if int64(avail) < buf.Size() {
buf.Truncate(int64(avail))
}
}
// Add data to the send queue.
size := int(buf.Size())
s := newOutgoingSegment(e.TransportEndpointInfo.ID, e.stack.Clock(), buf)
e.sndQueueInfo.SndBufUsed += size
s.IncRef()
e.snd.writeList.PushBack(s)
return s, size, nil
}
// Write writes data to the endpoint's peer.
func (e *endpoint) Write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, tcpip.Error) {
// Linux completely ignores any address passed to sendto(2) for TCP sockets
// (without the MSG_FASTOPEN flag). Corking is unimplemented, so opts.More
// and opts.EndOfRecord are also ignored.
e.LockUser()
defer e.UnlockUser()
// Return if either we didn't queue anything or if an error occurred while
// attempting to queue data.
nextSeg, n, err := e.queueSegment(p, opts)
if nextSeg != nil {
defer nextSeg.DecRef()
}
if n == 0 || err != nil {
return 0, err
}
e.sendData(nextSeg)
return int64(n), nil
}
// selectWindowLocked returns the new window without checking for shrinking or scaling
// applied.
// +checklocks:e.mu
// +checklocks:e.rcvQueueMu
func (e *endpoint) selectWindowLocked(rcvBufSize int) (wnd seqnum.Size) {
wndFromAvailable := wndFromSpace(e.receiveBufferAvailableLocked(rcvBufSize))
maxWindow := wndFromSpace(rcvBufSize)
wndFromUsedBytes := maxWindow - e.RcvBufUsed
// We take the lesser of the wndFromAvailable and wndFromUsedBytes because in
// cases where we receive a lot of small segments the segment overhead is a
// lot higher and we can run out socket buffer space before we can fill the
// previous window we advertised. In cases where we receive MSS sized or close
// MSS sized segments we will probably run out of window space before we
// exhaust receive buffer.
newWnd := wndFromAvailable
if newWnd > wndFromUsedBytes {
newWnd = wndFromUsedBytes
}
if newWnd < 0 {
newWnd = 0
}
return seqnum.Size(newWnd)
}
// selectWindow invokes selectWindowLocked after acquiring e.rcvQueueMu.
// +checklocks:e.mu
func (e *endpoint) selectWindow() (wnd seqnum.Size) {
e.rcvQueueMu.Lock()
wnd = e.selectWindowLocked(int(e.ops.GetReceiveBufferSize()))
e.rcvQueueMu.Unlock()
return wnd
}
// windowCrossedACKThresholdLocked checks if the receive window to be announced
// would be under aMSS or under the window derived from half receive buffer,
// whichever smaller. This is useful as a receive side silly window syndrome
// prevention mechanism. If window grows to reasonable value, we should send ACK
// to the sender to inform the rx space is now large. We also want ensure a
// series of small read()'s won't trigger a flood of spurious tiny ACK's.
//
// For large receive buffers, the threshold is aMSS - once reader reads more
// than aMSS we'll send ACK. For tiny receive buffers, the threshold is half of
// receive buffer size. This is chosen arbitrarily.
// crossed will be true if the window size crossed the ACK threshold.
// above will be true if the new window is >= ACK threshold and false
// otherwise.
//
// +checklocks:e.mu
// +checklocks:e.rcvQueueMu
func (e *endpoint) windowCrossedACKThresholdLocked(deltaBefore int, rcvBufSize int) (crossed bool, above bool) {
newAvail := int(e.selectWindowLocked(rcvBufSize))
oldAvail := newAvail - deltaBefore
if oldAvail < 0 {
oldAvail = 0
}
threshold := int(e.amss)
// rcvBufFraction is the inverse of the fraction of receive buffer size that
// is used to decide if the available buffer space is now above it.
const rcvBufFraction = 2
if wndThreshold := wndFromSpace(rcvBufSize / rcvBufFraction); threshold > wndThreshold {
threshold = wndThreshold
}
switch {
case oldAvail < threshold && newAvail >= threshold:
return true, true
case oldAvail >= threshold && newAvail < threshold:
return true, false
}
return false, false
}
// OnReuseAddressSet implements tcpip.SocketOptionsHandler.OnReuseAddressSet.
func (e *endpoint) OnReuseAddressSet(v bool) {
e.LockUser()
e.portFlags.TupleOnly = v
e.UnlockUser()
}
// OnReusePortSet implements tcpip.SocketOptionsHandler.OnReusePortSet.
func (e *endpoint) OnReusePortSet(v bool) {
e.LockUser()
e.portFlags.LoadBalanced = v
e.UnlockUser()
}
// OnKeepAliveSet implements tcpip.SocketOptionsHandler.OnKeepAliveSet.
func (e *endpoint) OnKeepAliveSet(bool) {
e.LockUser()
e.resetKeepaliveTimer(true /* receivedData */)
e.UnlockUser()
}
// OnDelayOptionSet implements tcpip.SocketOptionsHandler.OnDelayOptionSet.
func (e *endpoint) OnDelayOptionSet(v bool) {
if !v {
e.LockUser()
defer e.UnlockUser()
// Handle delayed data.
if e.EndpointState().connected() {
e.sendData(nil /* next */)
}
}
}
// OnCorkOptionSet implements tcpip.SocketOptionsHandler.OnCorkOptionSet.
func (e *endpoint) OnCorkOptionSet(v bool) {
if !v {
e.LockUser()
defer e.UnlockUser()
// Handle the corked data.
if e.EndpointState().connected() {
e.sendData(nil /* next */)
}
}
}
func (e *endpoint) getSendBufferSize() int {
return int(e.ops.GetSendBufferSize())
}
// OnSetReceiveBufferSize implements tcpip.SocketOptionsHandler.OnSetReceiveBufferSize.
func (e *endpoint) OnSetReceiveBufferSize(rcvBufSz, oldSz int64) (newSz int64, postSet func()) {
e.LockUser()
sendNonZeroWindowUpdate := false
e.rcvQueueMu.Lock()
// Make sure the receive buffer size allows us to send a
// non-zero window size.
scale := uint8(0)
if e.rcv != nil {
scale = e.rcv.RcvWndScale
}
if rcvBufSz>>scale == 0 {
rcvBufSz = 1 << scale
}
availBefore := wndFromSpace(e.receiveBufferAvailableLocked(int(oldSz)))
availAfter := wndFromSpace(e.receiveBufferAvailableLocked(int(rcvBufSz)))
e.RcvAutoParams.Disabled = true
// Immediately send an ACK to uncork the sender silly window
// syndrome prevetion, when our available space grows above aMSS
// or half receive buffer, whichever smaller.
if crossed, above := e.windowCrossedACKThresholdLocked(availAfter-availBefore, int(rcvBufSz)); crossed && above {
sendNonZeroWindowUpdate = true
}
e.rcvQueueMu.Unlock()
postSet = func() {
e.LockUser()
defer e.UnlockUser()
if e.EndpointState().connected() && sendNonZeroWindowUpdate {
e.rcv.nonZeroWindow() // +checklocksforce:e.rcv.ep.mu
}
}
e.UnlockUser()
return rcvBufSz, postSet
}
// OnSetSendBufferSize implements tcpip.SocketOptionsHandler.OnSetSendBufferSize.
func (e *endpoint) OnSetSendBufferSize(sz int64) int64 {
e.sndQueueInfo.TCPSndBufState.AutoTuneSndBufDisabled.Store(1)
return sz
}
// WakeupWriters implements tcpip.SocketOptionsHandler.WakeupWriters.
func (e *endpoint) WakeupWriters() {
e.LockUser()
defer e.UnlockUser()
sendBufferSize := e.getSendBufferSize()
e.sndQueueInfo.sndQueueMu.Lock()
notify := (sendBufferSize - e.sndQueueInfo.SndBufUsed) >= e.sndQueueInfo.SndBufUsed>>1
e.sndQueueInfo.sndQueueMu.Unlock()
if notify {
e.waiterQueue.Notify(waiter.WritableEvents)
}
}
// SetSockOptInt sets a socket option.
func (e *endpoint) SetSockOptInt(opt tcpip.SockOptInt, v int) tcpip.Error {
// Lower 2 bits represents ECN bits. RFC 3168, section 23.1
const inetECNMask = 3
switch opt {
case tcpip.KeepaliveCountOption:
e.LockUser()
e.keepalive.Lock()
e.keepalive.count = v
e.keepalive.Unlock()
e.resetKeepaliveTimer(true /* receivedData */)
e.UnlockUser()
case tcpip.IPv4TOSOption:
e.LockUser()
// TODO(gvisor.dev/issue/995): ECN is not currently supported,
// ignore the bits for now.
e.sendTOS = uint8(v) & ^uint8(inetECNMask)
e.UnlockUser()
case tcpip.IPv6TrafficClassOption:
e.LockUser()
// TODO(gvisor.dev/issue/995): ECN is not currently supported,
// ignore the bits for now.
e.sendTOS = uint8(v) & ^uint8(inetECNMask)
e.UnlockUser()
case tcpip.MaxSegOption:
userMSS := v
if userMSS < header.TCPMinimumMSS || userMSS > header.TCPMaximumMSS {
return &tcpip.ErrInvalidOptionValue{}
}
e.LockUser()
e.userMSS = uint16(userMSS)
e.UnlockUser()
case tcpip.MTUDiscoverOption:
// Return not supported if attempting to set this option to
// anything other than path MTU discovery disabled.
if v != tcpip.PMTUDiscoveryDont {
return &tcpip.ErrNotSupported{}
}
case tcpip.IPv4TTLOption:
e.LockUser()
e.ipv4TTL = uint8(v)
e.UnlockUser()
case tcpip.IPv6HopLimitOption:
e.LockUser()
e.ipv6HopLimit = int16(v)
e.UnlockUser()
case tcpip.TCPSynCountOption:
if v < 1 || v > 255 {
return &tcpip.ErrInvalidOptionValue{}
}
e.LockUser()
e.maxSynRetries = uint8(v)
e.UnlockUser()
case tcpip.TCPWindowClampOption:
if v == 0 {
e.LockUser()
switch e.EndpointState() {
case StateClose, StateInitial:
e.windowClamp = 0
e.UnlockUser()
return nil
default:
e.UnlockUser()
return &tcpip.ErrInvalidOptionValue{}
}
}
var rs tcpip.TCPReceiveBufferSizeRangeOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &rs); err == nil {
if v < rs.Min/2 {
v = rs.Min / 2
}
}
e.LockUser()
e.windowClamp = uint32(v)
e.UnlockUser()
}
return nil
}
func (e *endpoint) HasNIC(id int32) bool {
return id == 0 || e.stack.HasNIC(tcpip.NICID(id))
}
// SetSockOpt sets a socket option.
func (e *endpoint) SetSockOpt(opt tcpip.SettableSocketOption) tcpip.Error {
switch v := opt.(type) {
case *tcpip.KeepaliveIdleOption:
e.LockUser()
e.keepalive.Lock()
e.keepalive.idle = time.Duration(*v)
e.keepalive.Unlock()
e.resetKeepaliveTimer(true /* receivedData */)
e.UnlockUser()
case *tcpip.KeepaliveIntervalOption:
e.LockUser()
e.keepalive.Lock()
e.keepalive.interval = time.Duration(*v)
e.keepalive.Unlock()
e.resetKeepaliveTimer(true /* receivedData */)
e.UnlockUser()
case *tcpip.TCPUserTimeoutOption:
e.LockUser()
e.userTimeout = time.Duration(*v)
e.UnlockUser()
case *tcpip.CongestionControlOption:
// Query the available cc algorithms in the stack and
// validate that the specified algorithm is actually
// supported in the stack.
var avail tcpip.TCPAvailableCongestionControlOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &avail); err != nil {
return err
}
availCC := strings.Split(string(avail), " ")
for _, cc := range availCC {
if *v == tcpip.CongestionControlOption(cc) {
e.LockUser()
state := e.EndpointState()
e.cc = *v
switch state {
case StateEstablished:
if e.EndpointState() == state {
e.snd.cc = e.snd.initCongestionControl(e.cc)
}
}
e.UnlockUser()
return nil
}
}
// Linux returns ENOENT when an invalid congestion
// control algorithm is specified.
return &tcpip.ErrNoSuchFile{}
case *tcpip.TCPLingerTimeoutOption:
e.LockUser()
switch {
case *v < 0:
// Same as effectively disabling TCPLinger timeout.
*v = -1
case *v == 0:
// Same as the stack default.
var stackLingerTimeout tcpip.TCPLingerTimeoutOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &stackLingerTimeout); err != nil {
panic(fmt.Sprintf("e.stack.TransportProtocolOption(%d, %+v) = %v", ProtocolNumber, &stackLingerTimeout, err))
}
*v = stackLingerTimeout
case *v > tcpip.TCPLingerTimeoutOption(MaxTCPLingerTimeout):
// Cap it to Stack's default TCP_LINGER2 timeout.
*v = tcpip.TCPLingerTimeoutOption(MaxTCPLingerTimeout)
default:
}
e.tcpLingerTimeout = time.Duration(*v)
e.UnlockUser()
case *tcpip.TCPDeferAcceptOption:
e.LockUser()
if time.Duration(*v) > MaxRTO {
*v = tcpip.TCPDeferAcceptOption(MaxRTO)
}
e.deferAccept = time.Duration(*v)
e.UnlockUser()
case *tcpip.SocketDetachFilterOption:
return nil
default:
return nil
}
return nil
}
// readyReceiveSize returns the number of bytes ready to be received.
func (e *endpoint) readyReceiveSize() (int, tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
// The endpoint cannot be in listen state.
if e.EndpointState() == StateListen {
return 0, &tcpip.ErrInvalidEndpointState{}
}
e.rcvQueueMu.Lock()
defer e.rcvQueueMu.Unlock()
return e.RcvBufUsed, nil
}
// GetSockOptInt implements tcpip.Endpoint.GetSockOptInt.
func (e *endpoint) GetSockOptInt(opt tcpip.SockOptInt) (int, tcpip.Error) {
switch opt {
case tcpip.KeepaliveCountOption:
e.keepalive.Lock()
v := e.keepalive.count
e.keepalive.Unlock()
return v, nil
case tcpip.IPv4TOSOption:
e.LockUser()
v := int(e.sendTOS)
e.UnlockUser()
return v, nil
case tcpip.IPv6TrafficClassOption:
e.LockUser()
v := int(e.sendTOS)
e.UnlockUser()
return v, nil
case tcpip.MaxSegOption:
// This is just stubbed out. Linux never returns the user_mss
// value as it either returns the defaultMSS or returns the
// actual current MSS. Netstack just returns the defaultMSS
// always for now.
v := header.TCPDefaultMSS
return v, nil
case tcpip.MTUDiscoverOption:
// Always return the path MTU discovery disabled setting since
// it's the only one supported.
return tcpip.PMTUDiscoveryDont, nil
case tcpip.ReceiveQueueSizeOption:
return e.readyReceiveSize()
case tcpip.IPv4TTLOption:
e.LockUser()
v := int(e.ipv4TTL)
e.UnlockUser()
return v, nil
case tcpip.IPv6HopLimitOption:
e.LockUser()
v := int(e.ipv6HopLimit)
e.UnlockUser()
return v, nil
case tcpip.TCPSynCountOption:
e.LockUser()
v := int(e.maxSynRetries)
e.UnlockUser()
return v, nil
case tcpip.TCPWindowClampOption:
e.LockUser()
v := int(e.windowClamp)
e.UnlockUser()
return v, nil
case tcpip.MulticastTTLOption:
return 1, nil
default:
return -1, &tcpip.ErrUnknownProtocolOption{}
}
}
func (e *endpoint) getTCPInfo() tcpip.TCPInfoOption {
info := tcpip.TCPInfoOption{}
e.LockUser()
if state := e.EndpointState(); state.internal() {
info.State = tcpip.EndpointState(StateClose)
} else {
info.State = tcpip.EndpointState(state)
}
snd := e.snd
if snd != nil {
// We do not calculate RTT before sending the data packets. If
// the connection did not send and receive data, then RTT will
// be zero.
snd.rtt.Lock()
info.RTT = snd.rtt.TCPRTTState.SRTT
info.RTTVar = snd.rtt.TCPRTTState.RTTVar
snd.rtt.Unlock()
info.RTO = snd.RTO
info.CcState = snd.state
info.SndSsthresh = uint32(snd.Ssthresh)
info.SndCwnd = uint32(snd.SndCwnd)
info.ReorderSeen = snd.rc.Reord
}
e.UnlockUser()
return info
}
// GetSockOpt implements tcpip.Endpoint.GetSockOpt.
func (e *endpoint) GetSockOpt(opt tcpip.GettableSocketOption) tcpip.Error {
switch o := opt.(type) {
case *tcpip.TCPInfoOption:
*o = e.getTCPInfo()
case *tcpip.KeepaliveIdleOption:
e.keepalive.Lock()
*o = tcpip.KeepaliveIdleOption(e.keepalive.idle)
e.keepalive.Unlock()
case *tcpip.KeepaliveIntervalOption:
e.keepalive.Lock()
*o = tcpip.KeepaliveIntervalOption(e.keepalive.interval)
e.keepalive.Unlock()
case *tcpip.TCPUserTimeoutOption:
e.LockUser()
*o = tcpip.TCPUserTimeoutOption(e.userTimeout)
e.UnlockUser()
case *tcpip.CongestionControlOption:
e.LockUser()
*o = e.cc
e.UnlockUser()
case *tcpip.TCPLingerTimeoutOption:
e.LockUser()
*o = tcpip.TCPLingerTimeoutOption(e.tcpLingerTimeout)
e.UnlockUser()
case *tcpip.TCPDeferAcceptOption:
e.LockUser()
*o = tcpip.TCPDeferAcceptOption(e.deferAccept)
e.UnlockUser()
case *tcpip.OriginalDestinationOption:
e.LockUser()
ipt := e.stack.IPTables()
addr, port, err := ipt.OriginalDst(e.TransportEndpointInfo.ID, e.NetProto, ProtocolNumber)
e.UnlockUser()
if err != nil {
return err
}
*o = tcpip.OriginalDestinationOption{
Addr: addr,
Port: port,
}
default:
return &tcpip.ErrUnknownProtocolOption{}
}
return nil
}
// checkV4MappedLocked determines the effective network protocol and converts
// addr to its canonical form.
// +checklocks:e.mu
func (e *endpoint) checkV4MappedLocked(addr tcpip.FullAddress) (tcpip.FullAddress, tcpip.NetworkProtocolNumber, tcpip.Error) {
unwrapped, netProto, err := e.TransportEndpointInfo.AddrNetProtoLocked(addr, e.ops.GetV6Only())
if err != nil {
return tcpip.FullAddress{}, 0, err
}
return unwrapped, netProto, nil
}
// Disconnect implements tcpip.Endpoint.Disconnect.
func (*endpoint) Disconnect() tcpip.Error {
return &tcpip.ErrNotSupported{}
}
// Connect connects the endpoint to its peer.
func (e *endpoint) Connect(addr tcpip.FullAddress) tcpip.Error {
e.LockUser()
defer e.UnlockUser()
err := e.connect(addr, true)
if err != nil {
if !err.IgnoreStats() {
// Connect failed. Let's wake up any waiters.
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
}
}
return err
}
// registerEndpoint registers the endpoint with the provided address.
//
// +checklocks:e.mu
func (e *endpoint) registerEndpoint(addr tcpip.FullAddress, netProto tcpip.NetworkProtocolNumber, nicID tcpip.NICID) tcpip.Error {
netProtos := []tcpip.NetworkProtocolNumber{netProto}
if e.TransportEndpointInfo.ID.LocalPort != 0 {
// The endpoint is bound to a port, attempt to register it.
err := e.stack.RegisterTransportEndpoint(netProtos, ProtocolNumber, e.TransportEndpointInfo.ID, e, e.boundPortFlags, e.boundBindToDevice)
if err != nil {
return err
}
} else {
// The endpoint doesn't have a local port yet, so try to get
// one. Make sure that it isn't one that will result in the same
// address/port for both local and remote (otherwise this
// endpoint would be trying to connect to itself).
sameAddr := e.TransportEndpointInfo.ID.LocalAddress == e.TransportEndpointInfo.ID.RemoteAddress
// Calculate a port offset based on the destination IP/port and
// src IP to ensure that for a given tuple (srcIP, destIP,
// destPort) the offset used as a starting point is the same to
// ensure that we can cycle through the port space effectively.
portBuf := make([]byte, 2)
binary.LittleEndian.PutUint16(portBuf, e.ID.RemotePort)
h := jenkins.Sum32(e.protocol.portOffsetSecret)
for _, s := range [][]byte{
[]byte(e.ID.LocalAddress),
[]byte(e.ID.RemoteAddress),
portBuf,
} {
// Per io.Writer.Write:
//
// Write must return a non-nil error if it returns n < len(p).
if _, err := h.Write(s); err != nil {
panic(err)
}
}
portOffset := h.Sum32()
var twReuse tcpip.TCPTimeWaitReuseOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &twReuse); err != nil {
panic(fmt.Sprintf("e.stack.TransportProtocolOption(%d, %#v) = %s", ProtocolNumber, &twReuse, err))
}
reuse := twReuse == tcpip.TCPTimeWaitReuseGlobal
if twReuse == tcpip.TCPTimeWaitReuseLoopbackOnly {
switch netProto {
case header.IPv4ProtocolNumber:
reuse = header.IsV4LoopbackAddress(e.TransportEndpointInfo.ID.LocalAddress) && header.IsV4LoopbackAddress(e.TransportEndpointInfo.ID.RemoteAddress)
case header.IPv6ProtocolNumber:
reuse = e.TransportEndpointInfo.ID.LocalAddress == header.IPv6Loopback && e.TransportEndpointInfo.ID.RemoteAddress == header.IPv6Loopback
}
}
bindToDevice := tcpip.NICID(e.ops.GetBindToDevice())
if _, err := e.stack.PickEphemeralPortStable(portOffset, func(p uint16) (bool, tcpip.Error) {
if sameAddr && p == e.TransportEndpointInfo.ID.RemotePort {
return false, nil
}
portRes := ports.Reservation{
Networks: netProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: p,
Flags: e.portFlags,
BindToDevice: bindToDevice,
Dest: addr,
}
if _, err := e.stack.ReservePort(e.stack.Rand(), portRes, nil /* testPort */); err != nil {
if _, ok := err.(*tcpip.ErrPortInUse); !ok || !reuse {
return false, nil
}
transEPID := e.TransportEndpointInfo.ID
transEPID.LocalPort = p
// Check if an endpoint is registered with demuxer in TIME-WAIT and if
// we can reuse it. If we can't find a transport endpoint then we just
// skip using this port as it's possible that either an endpoint has
// bound the port but not registered with demuxer yet (no listen/connect
// done yet) or the reservation was freed between the check above and
// the FindTransportEndpoint below. But rather than retry the same port
// we just skip it and move on.
transEP := e.stack.FindTransportEndpoint(netProto, ProtocolNumber, transEPID, nicID)
if transEP == nil {
// ReservePort failed but there is no registered endpoint with
// demuxer. Which indicates there is at least some endpoint that has
// bound the port.
return false, nil
}
tcpEP := transEP.(*endpoint)
tcpEP.LockUser()
// If the endpoint is not in TIME-WAIT or if it is in TIME-WAIT but
// less than 1 second has elapsed since its recentTS was updated then
// we cannot reuse the port.
if tcpEP.EndpointState() != StateTimeWait || e.stack.Clock().NowMonotonic().Sub(tcpEP.recentTSTime) < 1*time.Second {
tcpEP.UnlockUser()
return false, nil
}
// Since the endpoint is in TIME-WAIT it should be safe to acquire its
// Lock while holding the lock for this endpoint as endpoints in
// TIME-WAIT do not acquire locks on other endpoints.
tcpEP.transitionToStateCloseLocked()
tcpEP.drainClosingSegmentQueue()
tcpEP.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
tcpEP.UnlockUser()
// Now try and Reserve again if it fails then we skip.
portRes := ports.Reservation{
Networks: netProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: p,
Flags: e.portFlags,
BindToDevice: bindToDevice,
Dest: addr,
}
if _, err := e.stack.ReservePort(e.stack.Rand(), portRes, nil /* testPort */); err != nil {
return false, nil
}
}
id := e.TransportEndpointInfo.ID
id.LocalPort = p
if err := e.stack.RegisterTransportEndpoint(netProtos, ProtocolNumber, id, e, e.portFlags, bindToDevice); err != nil {
portRes := ports.Reservation{
Networks: netProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: p,
Flags: e.portFlags,
BindToDevice: bindToDevice,
Dest: addr,
}
e.stack.ReleasePort(portRes)
if _, ok := err.(*tcpip.ErrPortInUse); ok {
return false, nil
}
return false, err
}
// Port picking successful. Save the details of
// the selected port.
e.TransportEndpointInfo.ID = id
e.isPortReserved = true
e.boundBindToDevice = bindToDevice
e.boundPortFlags = e.portFlags
e.boundDest = addr
return true, nil
}); err != nil {
e.stack.Stats().TCP.FailedPortReservations.Increment()
return err
}
}
return nil
}
// connect connects the endpoint to its peer.
// +checklocks:e.mu
func (e *endpoint) connect(addr tcpip.FullAddress, handshake bool) tcpip.Error {
connectingAddr := addr.Addr
addr, netProto, err := e.checkV4MappedLocked(addr)
if err != nil {
return err
}
if e.EndpointState().connected() {
// The endpoint is already connected. If caller hasn't been
// notified yet, return success.
if !e.isConnectNotified {
e.isConnectNotified = true
return nil
}
// Otherwise return that it's already connected.
return &tcpip.ErrAlreadyConnected{}
}
nicID := addr.NIC
switch e.EndpointState() {
case StateBound:
// If we're already bound to a NIC but the caller is requesting
// that we use a different one now, we cannot proceed.
if e.boundNICID == 0 {
break
}
if nicID != 0 && nicID != e.boundNICID {
return &tcpip.ErrHostUnreachable{}
}
nicID = e.boundNICID
case StateInitial:
// Nothing to do. We'll eventually fill-in the gaps in the ID (if any)
// when we find a route.
case StateConnecting, StateSynSent, StateSynRecv:
// A connection request has already been issued but hasn't completed
// yet.
return &tcpip.ErrAlreadyConnecting{}
case StateError:
if err := e.hardErrorLocked(); err != nil {
return err
}
return &tcpip.ErrConnectionAborted{}
default:
return &tcpip.ErrInvalidEndpointState{}
}
// Find a route to the desired destination.
r, err := e.stack.FindRoute(nicID, e.TransportEndpointInfo.ID.LocalAddress, addr.Addr, netProto, false /* multicastLoop */)
if err != nil {
return err
}
defer r.Release()
e.TransportEndpointInfo.ID.LocalAddress = r.LocalAddress()
e.TransportEndpointInfo.ID.RemoteAddress = r.RemoteAddress()
e.TransportEndpointInfo.ID.RemotePort = addr.Port
oldState := e.EndpointState()
e.setEndpointState(StateConnecting)
if err := e.registerEndpoint(addr, netProto, r.NICID()); err != nil {
e.setEndpointState(oldState)
return err
}
e.isRegistered = true
r.Acquire()
e.route = r
e.boundNICID = nicID
e.effectiveNetProtos = []tcpip.NetworkProtocolNumber{netProto}
e.connectingAddress = connectingAddr
e.initGSO()
// Connect in the restore phase does not perform handshake. Restore its
// connection setting here.
if !handshake {
e.segmentQueue.mu.Lock()
for _, l := range []segmentList{e.segmentQueue.list, e.snd.writeList} {
for s := l.Front(); s != nil; s = s.Next() {
s.id = e.TransportEndpointInfo.ID
e.sndQueueInfo.sndWaker.Assert()
}
}
e.segmentQueue.mu.Unlock()
e.snd.ep.AssertLockHeld(e)
e.snd.updateMaxPayloadSize(int(e.route.MTU()), 0)
e.setEndpointState(StateEstablished)
// Set the new auto tuned send buffer size after entering
// established state.
e.ops.SetSendBufferSize(e.computeTCPSendBufferSize(), false /* notify */)
return &tcpip.ErrConnectStarted{}
}
// Start a new handshake.
h := e.newHandshake()
e.setEndpointState(StateSynSent)
h.start()
e.stack.Stats().TCP.ActiveConnectionOpenings.Increment()
return &tcpip.ErrConnectStarted{}
}
// ConnectEndpoint is not supported.
func (*endpoint) ConnectEndpoint(tcpip.Endpoint) tcpip.Error {
return &tcpip.ErrInvalidEndpointState{}
}
// Shutdown closes the read and/or write end of the endpoint connection to its
// peer.
func (e *endpoint) Shutdown(flags tcpip.ShutdownFlags) tcpip.Error {
e.LockUser()
defer e.UnlockUser()
if e.EndpointState().connecting() {
// When calling shutdown(2) on a connecting socket, the endpoint must
// enter the error state. But this logic cannot belong to the shutdownLocked
// method because that method is called during a close(2) (and closing a
// connecting socket is not an error).
e.handshakeFailed(&tcpip.ErrConnectionReset{})
e.waiterQueue.Notify(waiter.WritableEvents | waiter.EventHUp | waiter.EventErr)
return nil
}
return e.shutdownLocked(flags)
}
// +checklocks:e.mu
func (e *endpoint) shutdownLocked(flags tcpip.ShutdownFlags) tcpip.Error {
e.shutdownFlags |= flags
switch {
case e.EndpointState().connected():
// Close for read.
if e.shutdownFlags&tcpip.ShutdownRead != 0 {
// Mark read side as closed.
e.rcvQueueMu.Lock()
e.RcvClosed = true
rcvBufUsed := e.RcvBufUsed
e.rcvQueueMu.Unlock()
// If we're fully closed and we have unread data we need to abort
// the connection with a RST.
if e.shutdownFlags&tcpip.ShutdownWrite != 0 && rcvBufUsed > 0 {
e.resetConnectionLocked(&tcpip.ErrConnectionAborted{})
return nil
}
// Wake up any readers that maybe waiting for the stream to become
// readable.
e.waiterQueue.Notify(waiter.ReadableEvents)
}
// Close for write.
if e.shutdownFlags&tcpip.ShutdownWrite != 0 {
e.sndQueueInfo.sndQueueMu.Lock()
if e.sndQueueInfo.SndClosed {
// Already closed.
e.sndQueueInfo.sndQueueMu.Unlock()
if e.EndpointState() == StateTimeWait {
return &tcpip.ErrNotConnected{}
}
return nil
}
// Queue fin segment.
s := newOutgoingSegment(e.TransportEndpointInfo.ID, e.stack.Clock(), bufferv2.Buffer{})
e.snd.writeList.PushBack(s)
// Mark endpoint as closed.
e.sndQueueInfo.SndClosed = true
e.sndQueueInfo.sndQueueMu.Unlock()
// Drain the send queue.
e.sendData(s)
// Mark send side as closed.
e.snd.Closed = true
// Wake up any writers that maybe waiting for the stream to become
// writable.
e.waiterQueue.Notify(waiter.WritableEvents)
}
return nil
case e.EndpointState() == StateListen:
if e.shutdownFlags&tcpip.ShutdownRead != 0 {
// Reset all connections from the accept queue and keep the
// worker running so that it can continue handling incoming
// segments by replying with RST.
//
// By not removing this endpoint from the demuxer mapping, we
// ensure that any other bind to the same port fails, as on Linux.
e.rcvQueueMu.Lock()
e.RcvClosed = true
e.rcvQueueMu.Unlock()
e.closePendingAcceptableConnectionsLocked()
// Notify waiters that the endpoint is shutdown.
e.waiterQueue.Notify(waiter.ReadableEvents | waiter.WritableEvents | waiter.EventHUp | waiter.EventErr)
}
return nil
default:
return &tcpip.ErrNotConnected{}
}
}
// Listen puts the endpoint in "listen" mode, which allows it to accept
// new connections.
func (e *endpoint) Listen(backlog int) tcpip.Error {
err := e.listen(backlog)
if err != nil {
if !err.IgnoreStats() {
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
}
}
return err
}
func (e *endpoint) listen(backlog int) tcpip.Error {
e.LockUser()
defer e.UnlockUser()
if e.EndpointState() == StateListen && !e.closed {
e.acceptMu.Lock()
defer e.acceptMu.Unlock()
// Adjust the size of the backlog iff we can fit
// existing pending connections into the new one.
if e.acceptQueue.endpoints.Len() > backlog {
return &tcpip.ErrInvalidEndpointState{}
}
e.acceptQueue.capacity = backlog
if e.acceptQueue.pendingEndpoints == nil {
e.acceptQueue.pendingEndpoints = make(map[*endpoint]struct{})
}
e.shutdownFlags = 0
e.rcvQueueMu.Lock()
e.RcvClosed = false
e.rcvQueueMu.Unlock()
return nil
}
if e.EndpointState() == StateInitial {
// The listen is called on an unbound socket, the socket is
// automatically bound to a random free port with the local
// address set to INADDR_ANY.
if err := e.bindLocked(tcpip.FullAddress{}); err != nil {
return err
}
}
// Endpoint must be bound before it can transition to listen mode.
if e.EndpointState() != StateBound {
e.stats.ReadErrors.InvalidEndpointState.Increment()
return &tcpip.ErrInvalidEndpointState{}
}
// Setting this state after RegisterTransportEndpoint will result in a
// race where the endpoint is in Bound but reachable via the demuxer. Instead
// we set it to listen so that incoming packets will just be queued to the
// inbound segment queue by the TCP processor.
e.setEndpointState(StateListen)
// Register the endpoint.
if err := e.stack.RegisterTransportEndpoint(e.effectiveNetProtos, ProtocolNumber, e.TransportEndpointInfo.ID, e, e.boundPortFlags, e.boundBindToDevice); err != nil {
e.transitionToStateCloseLocked()
return err
}
e.isRegistered = true
// The queue may be non-zero when we're restoring the endpoint, and it
// may be pre-populated with some previously accepted (but not Accepted)
// endpoints.
e.acceptMu.Lock()
if e.acceptQueue.pendingEndpoints == nil {
e.acceptQueue.pendingEndpoints = make(map[*endpoint]struct{})
}
if e.acceptQueue.capacity == 0 {
e.acceptQueue.capacity = backlog
}
e.acceptMu.Unlock()
// Initialize the listening context.
rcvWnd := seqnum.Size(e.receiveBufferAvailable())
e.listenCtx = newListenContext(e.stack, e.protocol, e, rcvWnd, e.ops.GetV6Only(), e.NetProto)
return nil
}
// Accept returns a new endpoint if a peer has established a connection
// to an endpoint previously set to listen mode.
//
// addr if not-nil will contain the peer address of the returned endpoint.
func (e *endpoint) Accept(peerAddr *tcpip.FullAddress) (tcpip.Endpoint, *waiter.Queue, tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
e.rcvQueueMu.Lock()
rcvClosed := e.RcvClosed
e.rcvQueueMu.Unlock()
// Endpoint must be in listen state before it can accept connections.
if rcvClosed || e.EndpointState() != StateListen {
return nil, nil, &tcpip.ErrInvalidEndpointState{}
}
// Get the new accepted endpoint.
var n *endpoint
e.acceptMu.Lock()
if element := e.acceptQueue.endpoints.Front(); element != nil {
n = e.acceptQueue.endpoints.Remove(element).(*endpoint)
}
e.acceptMu.Unlock()
if n == nil {
return nil, nil, &tcpip.ErrWouldBlock{}
}
if peerAddr != nil {
*peerAddr = n.getRemoteAddress()
}
return n, n.waiterQueue, nil
}
// Bind binds the endpoint to a specific local port and optionally address.
func (e *endpoint) Bind(addr tcpip.FullAddress) (err tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
return e.bindLocked(addr)
}
// +checklocks:e.mu
func (e *endpoint) bindLocked(addr tcpip.FullAddress) (err tcpip.Error) {
// Don't allow binding once endpoint is not in the initial state
// anymore. This is because once the endpoint goes into a connected or
// listen state, it is already bound.
if e.EndpointState() != StateInitial {
return &tcpip.ErrAlreadyBound{}
}
e.BindAddr = addr.Addr
addr, netProto, err := e.checkV4MappedLocked(addr)
if err != nil {
return err
}
netProtos := []tcpip.NetworkProtocolNumber{netProto}
// Expand netProtos to include v4 and v6 under dual-stack if the caller is
// binding to a wildcard (empty) address, and this is an IPv6 endpoint with
// v6only set to false.
if netProto == header.IPv6ProtocolNumber {
stackHasV4 := e.stack.CheckNetworkProtocol(header.IPv4ProtocolNumber)
alsoBindToV4 := !e.ops.GetV6Only() && addr.Addr == "" && stackHasV4
if alsoBindToV4 {
netProtos = append(netProtos, header.IPv4ProtocolNumber)
}
}
var nic tcpip.NICID
// If an address is specified, we must ensure that it's one of our
// local addresses.
if len(addr.Addr) != 0 {
nic = e.stack.CheckLocalAddress(addr.NIC, netProto, addr.Addr)
if nic == 0 {
return &tcpip.ErrBadLocalAddress{}
}
e.TransportEndpointInfo.ID.LocalAddress = addr.Addr
}
bindToDevice := tcpip.NICID(e.ops.GetBindToDevice())
portRes := ports.Reservation{
Networks: netProtos,
Transport: ProtocolNumber,
Addr: addr.Addr,
Port: addr.Port,
Flags: e.portFlags,
BindToDevice: bindToDevice,
Dest: tcpip.FullAddress{},
}
port, err := e.stack.ReservePort(e.stack.Rand(), portRes, func(p uint16) (bool, tcpip.Error) {
id := e.TransportEndpointInfo.ID
id.LocalPort = p
// CheckRegisterTransportEndpoint should only return an error if there is a
// listening endpoint bound with the same id and portFlags and bindToDevice
// options.
//
// NOTE: Only listening and connected endpoint register with
// demuxer. Further connected endpoints always have a remote
// address/port. Hence this will only return an error if there is a matching
// listening endpoint.
if err := e.stack.CheckRegisterTransportEndpoint(netProtos, ProtocolNumber, id, e.portFlags, bindToDevice); err != nil {
return false, nil
}
return true, nil
})
if err != nil {
e.stack.Stats().TCP.FailedPortReservations.Increment()
return err
}
e.boundBindToDevice = bindToDevice
e.boundPortFlags = e.portFlags
// TODO(gvisor.dev/issue/3691): Add test to verify boundNICID is correct.
e.boundNICID = nic
e.isPortReserved = true
e.effectiveNetProtos = netProtos
e.TransportEndpointInfo.ID.LocalPort = port
// Mark endpoint as bound.
e.setEndpointState(StateBound)
return nil
}
// GetLocalAddress returns the address to which the endpoint is bound.
func (e *endpoint) GetLocalAddress() (tcpip.FullAddress, tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
return tcpip.FullAddress{
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: e.TransportEndpointInfo.ID.LocalPort,
NIC: e.boundNICID,
}, nil
}
// GetRemoteAddress returns the address to which the endpoint is connected.
func (e *endpoint) GetRemoteAddress() (tcpip.FullAddress, tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
if !e.EndpointState().connected() {
return tcpip.FullAddress{}, &tcpip.ErrNotConnected{}
}
return e.getRemoteAddress(), nil
}
func (e *endpoint) getRemoteAddress() tcpip.FullAddress {
return tcpip.FullAddress{
Addr: e.TransportEndpointInfo.ID.RemoteAddress,
Port: e.TransportEndpointInfo.ID.RemotePort,
NIC: e.boundNICID,
}
}
func (*endpoint) HandlePacket(stack.TransportEndpointID, stack.PacketBufferPtr) {
// TCP HandlePacket is not required anymore as inbound packets first
// land at the Dispatcher which then can either deliver using the
// worker go routine or directly do the invoke the tcp processing inline
// based on the state of the endpoint.
}
func (e *endpoint) enqueueSegment(s *segment) bool {
// Send packet to worker goroutine.
if !e.segmentQueue.enqueue(s) {
// The queue is full, so we drop the segment.
e.stack.Stats().DroppedPackets.Increment()
e.stats.ReceiveErrors.SegmentQueueDropped.Increment()
return false
}
return true
}
func (e *endpoint) onICMPError(err tcpip.Error, transErr stack.TransportError, pkt stack.PacketBufferPtr) {
// Update last error first.
e.lastErrorMu.Lock()
e.lastError = err
e.lastErrorMu.Unlock()
var recvErr bool
switch pkt.NetworkProtocolNumber {
case header.IPv4ProtocolNumber:
recvErr = e.SocketOptions().GetIPv4RecvError()
case header.IPv6ProtocolNumber:
recvErr = e.SocketOptions().GetIPv6RecvError()
default:
panic(fmt.Sprintf("unhandled network protocol number = %d", pkt.NetworkProtocolNumber))
}
if recvErr {
e.SocketOptions().QueueErr(&tcpip.SockError{
Err: err,
Cause: transErr,
// Linux passes the payload with the TCP header. We don't know if the TCP
// header even exists, it may not for fragmented packets.
Payload: pkt.Data().AsRange().ToView(),
Dst: tcpip.FullAddress{
NIC: pkt.NICID,
Addr: e.TransportEndpointInfo.ID.RemoteAddress,
Port: e.TransportEndpointInfo.ID.RemotePort,
},
Offender: tcpip.FullAddress{
NIC: pkt.NICID,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: e.TransportEndpointInfo.ID.LocalPort,
},
NetProto: pkt.NetworkProtocolNumber,
})
}
if e.EndpointState().connecting() {
e.mu.Lock()
if lEP := e.h.listenEP; lEP != nil {
// Remove from listening endpoints pending list.
lEP.acceptMu.Lock()
delete(lEP.acceptQueue.pendingEndpoints, e)
lEP.acceptMu.Unlock()
lEP.stats.FailedConnectionAttempts.Increment()
}
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.cleanupLocked()
e.hardError = err
e.setEndpointState(StateError)
e.mu.Unlock()
e.drainClosingSegmentQueue()
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
}
}
// HandleError implements stack.TransportEndpoint.
func (e *endpoint) HandleError(transErr stack.TransportError, pkt stack.PacketBufferPtr) {
handlePacketTooBig := func(mtu uint32) {
e.sndQueueInfo.sndQueueMu.Lock()
update := false
if v := int(mtu); v < e.sndQueueInfo.SndMTU {
e.sndQueueInfo.SndMTU = v
update = true
}
newMTU := e.sndQueueInfo.SndMTU
e.sndQueueInfo.sndQueueMu.Unlock()
if update {
e.mu.Lock()
defer e.mu.Unlock()
if e.snd != nil {
e.snd.updateMaxPayloadSize(newMTU, 1 /* count */) // +checklocksforce:e.snd.ep.mu
}
}
}
// TODO(gvisor.dev/issues/5270): Handle all transport errors.
switch transErr.Kind() {
case stack.PacketTooBigTransportError:
handlePacketTooBig(transErr.Info())
case stack.DestinationHostUnreachableTransportError:
e.onICMPError(&tcpip.ErrHostUnreachable{}, transErr, pkt)
case stack.DestinationNetworkUnreachableTransportError:
e.onICMPError(&tcpip.ErrNetworkUnreachable{}, transErr, pkt)
}
}
// updateSndBufferUsage is called by the protocol goroutine when room opens up
// in the send buffer. The number of newly available bytes is v.
func (e *endpoint) updateSndBufferUsage(v int) {
sendBufferSize := e.getSendBufferSize()
e.sndQueueInfo.sndQueueMu.Lock()
notify := e.sndQueueInfo.SndBufUsed >= sendBufferSize>>1
e.sndQueueInfo.SndBufUsed -= v
// Get the new send buffer size with auto tuning, but do not set it
// unless we decide to notify the writers.
newSndBufSz := e.computeTCPSendBufferSize()
// We only notify when there is half the sendBufferSize available after
// a full buffer event occurs. This ensures that we don't wake up
// writers to queue just 1-2 segments and go back to sleep.
notify = notify && e.sndQueueInfo.SndBufUsed < int(newSndBufSz)>>1
e.sndQueueInfo.sndQueueMu.Unlock()
if notify {
// Set the new send buffer size calculated from auto tuning.
e.ops.SetSendBufferSize(newSndBufSz, false /* notify */)
e.waiterQueue.Notify(waiter.WritableEvents)
}
}
// readyToRead is called by the protocol goroutine when a new segment is ready
// to be read, or when the connection is closed for receiving (in which case
// s will be nil).
//
// +checklocks:e.mu
func (e *endpoint) readyToRead(s *segment) {
e.rcvQueueMu.Lock()
if s != nil {
e.RcvBufUsed += s.payloadSize()
s.IncRef()
e.rcvQueue.PushBack(s)
} else {
e.RcvClosed = true
}
e.rcvQueueMu.Unlock()
e.waiterQueue.Notify(waiter.ReadableEvents)
}
// receiveBufferAvailableLocked calculates how many bytes are still available
// in the receive buffer.
// +checklocks:e.rcvQueueMu
func (e *endpoint) receiveBufferAvailableLocked(rcvBufSize int) int {
// We may use more bytes than the buffer size when the receive buffer
// shrinks.
memUsed := e.receiveMemUsed()
if memUsed >= rcvBufSize {
return 0
}
return rcvBufSize - memUsed
}
// receiveBufferAvailable calculates how many bytes are still available in the
// receive buffer based on the actual memory used by all segments held in
// receive buffer/pending and segment queue.
func (e *endpoint) receiveBufferAvailable() int {
e.rcvQueueMu.Lock()
available := e.receiveBufferAvailableLocked(int(e.ops.GetReceiveBufferSize()))
e.rcvQueueMu.Unlock()
return available
}
// receiveBufferUsed returns the amount of in-use receive buffer.
func (e *endpoint) receiveBufferUsed() int {
e.rcvQueueMu.Lock()
used := e.RcvBufUsed
e.rcvQueueMu.Unlock()
return used
}
// receiveMemUsed returns the total memory in use by segments held by this
// endpoint.
func (e *endpoint) receiveMemUsed() int {
return int(e.rcvMemUsed.Load())
}
// updateReceiveMemUsed adds the provided delta to e.rcvMemUsed.
func (e *endpoint) updateReceiveMemUsed(delta int) {
e.rcvMemUsed.Add(int32(delta))
}
// maxReceiveBufferSize returns the stack wide maximum receive buffer size for
// an endpoint.
func (e *endpoint) maxReceiveBufferSize() int {
var rs tcpip.TCPReceiveBufferSizeRangeOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &rs); err != nil {
// As a fallback return the hardcoded max buffer size.
return MaxBufferSize
}
return rs.Max
}
// rcvWndScaleForHandshake computes the receive window scale to offer to the
// peer when window scaling is enabled (true by default). If auto-tuning is
// disabled then the window scaling factor is based on the size of the
// receiveBuffer otherwise we use the max permissible receive buffer size to
// compute the scale.
func (e *endpoint) rcvWndScaleForHandshake() int {
bufSizeForScale := e.ops.GetReceiveBufferSize()
e.rcvQueueMu.Lock()
autoTuningDisabled := e.RcvAutoParams.Disabled
e.rcvQueueMu.Unlock()
if autoTuningDisabled {
return FindWndScale(seqnum.Size(bufSizeForScale))
}
return FindWndScale(seqnum.Size(e.maxReceiveBufferSize()))
}
// updateRecentTimestamp updates the recent timestamp using the algorithm
// described in https://tools.ietf.org/html/rfc7323#section-4.3
func (e *endpoint) updateRecentTimestamp(tsVal uint32, maxSentAck seqnum.Value, segSeq seqnum.Value) {
if e.SendTSOk && seqnum.Value(e.recentTimestamp()).LessThan(seqnum.Value(tsVal)) && segSeq.LessThanEq(maxSentAck) {
e.setRecentTimestamp(tsVal)
}
}
// maybeEnableTimestamp marks the timestamp option enabled for this endpoint if
// the SYN options indicate that timestamp option was negotiated. It also
// initializes the recentTS with the value provided in synOpts.TSval.
func (e *endpoint) maybeEnableTimestamp(synOpts header.TCPSynOptions) {
if synOpts.TS {
e.SendTSOk = true
e.setRecentTimestamp(synOpts.TSVal)
}
}
func (e *endpoint) tsVal(now tcpip.MonotonicTime) uint32 {
return e.TSOffset.TSVal(now)
}
func (e *endpoint) tsValNow() uint32 {
return e.tsVal(e.stack.Clock().NowMonotonic())
}
func (e *endpoint) elapsed(now tcpip.MonotonicTime, tsEcr uint32) time.Duration {
return e.TSOffset.Elapsed(now, tsEcr)
}
// maybeEnableSACKPermitted marks the SACKPermitted option enabled for this endpoint
// if the SYN options indicate that the SACK option was negotiated and the TCP
// stack is configured to enable TCP SACK option.
func (e *endpoint) maybeEnableSACKPermitted(synOpts header.TCPSynOptions) {
var v tcpip.TCPSACKEnabled
if err := e.stack.TransportProtocolOption(ProtocolNumber, &v); err != nil {
// Stack doesn't support SACK. So just return.
return
}
if bool(v) && synOpts.SACKPermitted {
e.SACKPermitted = true
e.stack.TransportProtocolOption(ProtocolNumber, &e.tcpRecovery)
}
}
// maxOptionSize return the maximum size of TCP options.
func (e *endpoint) maxOptionSize() (size int) {
var maxSackBlocks [header.TCPMaxSACKBlocks]header.SACKBlock
options := e.makeOptions(maxSackBlocks[:])
size = len(options)
putOptions(options)
return size
}
// completeStateLocked makes a full copy of the endpoint and returns it. This is
// used before invoking the probe.
//
// +checklocks:e.mu
func (e *endpoint) completeStateLocked(s *stack.TCPEndpointState) {
s.TCPEndpointStateInner = e.TCPEndpointStateInner
s.ID = stack.TCPEndpointID(e.TransportEndpointInfo.ID)
s.SegTime = e.stack.Clock().NowMonotonic()
s.Receiver = e.rcv.TCPReceiverState
s.Sender = e.snd.TCPSenderState
sndBufSize := e.getSendBufferSize()
// Copy the send buffer atomically.
e.sndQueueInfo.sndQueueMu.Lock()
e.sndQueueInfo.CloneState(&s.SndBufState)
s.SndBufState.SndBufSize = sndBufSize
e.sndQueueInfo.sndQueueMu.Unlock()
// Copy the receive buffer atomically.
e.rcvQueueMu.Lock()
s.RcvBufState = e.TCPRcvBufState
e.rcvQueueMu.Unlock()
// Copy the endpoint TCP Option state.
s.SACK.Blocks = make([]header.SACKBlock, e.sack.NumBlocks)
copy(s.SACK.Blocks, e.sack.Blocks[:e.sack.NumBlocks])
s.SACK.ReceivedBlocks, s.SACK.MaxSACKED = e.scoreboard.Copy()
e.snd.rtt.Lock()
s.Sender.RTTState = e.snd.rtt.TCPRTTState
e.snd.rtt.Unlock()
if cubic, ok := e.snd.cc.(*cubicState); ok {
s.Sender.Cubic = cubic.TCPCubicState
s.Sender.Cubic.TimeSinceLastCongestion = e.stack.Clock().NowMonotonic().Sub(s.Sender.Cubic.T)
}
s.Sender.RACKState = e.snd.rc.TCPRACKState
s.Sender.RetransmitTS = e.snd.retransmitTS
s.Sender.SpuriousRecovery = e.snd.spuriousRecovery
}
func (e *endpoint) initHostGSO() {
switch e.route.NetProto() {
case header.IPv4ProtocolNumber:
e.gso.Type = stack.GSOTCPv4
e.gso.L3HdrLen = header.IPv4MinimumSize
case header.IPv6ProtocolNumber:
e.gso.Type = stack.GSOTCPv6
e.gso.L3HdrLen = header.IPv6MinimumSize
default:
panic(fmt.Sprintf("Unknown netProto: %v", e.NetProto))
}
e.gso.NeedsCsum = true
e.gso.CsumOffset = header.TCPChecksumOffset
e.gso.MaxSize = e.route.GSOMaxSize()
}
func (e *endpoint) initGSO() {
if e.route.HasHostGSOCapability() {
e.initHostGSO()
} else if e.route.HasGvisorGSOCapability() {
e.gso = stack.GSO{
MaxSize: e.route.GSOMaxSize(),
Type: stack.GSOGvisor,
NeedsCsum: false,
}
}
}
// State implements tcpip.Endpoint.State. It exports the endpoint's protocol
// state for diagnostics.
func (e *endpoint) State() uint32 {
return uint32(e.EndpointState())
}
// Info returns a copy of the endpoint info.
func (e *endpoint) Info() tcpip.EndpointInfo {
e.LockUser()
// Make a copy of the endpoint info.
ret := e.TransportEndpointInfo
e.UnlockUser()
return &ret
}
// Stats returns a pointer to the endpoint stats.
func (e *endpoint) Stats() tcpip.EndpointStats {
return &e.stats
}
// Wait implements stack.TransportEndpoint.Wait.
func (e *endpoint) Wait() {
waitEntry, notifyCh := waiter.NewChannelEntry(waiter.EventHUp)
e.waiterQueue.EventRegister(&waitEntry)
defer e.waiterQueue.EventUnregister(&waitEntry)
switch e.EndpointState() {
case StateClose, StateError:
return
}
<-notifyCh
}
// SocketOptions implements tcpip.Endpoint.SocketOptions.
func (e *endpoint) SocketOptions() *tcpip.SocketOptions {
return &e.ops
}
// GetTCPSendBufferLimits is used to get send buffer size limits for TCP.
func GetTCPSendBufferLimits(s tcpip.StackHandler) tcpip.SendBufferSizeOption {
var ss tcpip.TCPSendBufferSizeRangeOption
if err := s.TransportProtocolOption(header.TCPProtocolNumber, &ss); err != nil {
panic(fmt.Sprintf("s.TransportProtocolOption(%d, %#v) = %s", header.TCPProtocolNumber, ss, err))
}
return tcpip.SendBufferSizeOption{
Min: ss.Min,
Default: ss.Default,
Max: ss.Max,
}
}
// allowOutOfWindowAck returns true if an out-of-window ACK can be sent now.
func (e *endpoint) allowOutOfWindowAck() bool {
now := e.stack.Clock().NowMonotonic()
if e.lastOutOfWindowAckTime != (tcpip.MonotonicTime{}) {
var limit stack.TCPInvalidRateLimitOption
if err := e.stack.Option(&limit); err != nil {
panic(fmt.Sprintf("e.stack.Option(%+v) failed with error: %s", limit, err))
}
if now.Sub(e.lastOutOfWindowAckTime) < time.Duration(limit) {
return false
}
}
e.lastOutOfWindowAckTime = now
return true
}
// GetTCPReceiveBufferLimits is used to get send buffer size limits for TCP.
func GetTCPReceiveBufferLimits(s tcpip.StackHandler) tcpip.ReceiveBufferSizeOption {
var ss tcpip.TCPReceiveBufferSizeRangeOption
if err := s.TransportProtocolOption(header.TCPProtocolNumber, &ss); err != nil {
panic(fmt.Sprintf("s.TransportProtocolOption(%d, %#v) = %s", header.TCPProtocolNumber, ss, err))
}
return tcpip.ReceiveBufferSizeOption{
Min: ss.Min,
Default: ss.Default,
Max: ss.Max,
}
}
// computeTCPSendBufferSize implements auto tuning of send buffer size and
// returns the new send buffer size.
func (e *endpoint) computeTCPSendBufferSize() int64 {
curSndBufSz := int64(e.getSendBufferSize())
// Auto tuning is disabled when the user explicitly sets the send
// buffer size with SO_SNDBUF option.
if disabled := e.sndQueueInfo.TCPSndBufState.AutoTuneSndBufDisabled.Load(); disabled == 1 {
return curSndBufSz
}
const packetOverheadFactor = 2
curMSS := e.snd.MaxPayloadSize
numSeg := InitialCwnd
if numSeg < e.snd.SndCwnd {
numSeg = e.snd.SndCwnd
}
// SndCwnd indicates the number of segments that can be sent. This means
// that the sender can send upto #SndCwnd segments and the send buffer
// size should be set to SndCwnd*MSS to accommodate sending of all the
// segments.
newSndBufSz := int64(numSeg * curMSS * packetOverheadFactor)
if newSndBufSz < curSndBufSz {
return curSndBufSz
}
if ss := GetTCPSendBufferLimits(e.stack); int64(ss.Max) < newSndBufSz {
newSndBufSz = int64(ss.Max)
}
return newSndBufSz
}
|