1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"container/heap"
"math"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
// receiver holds the state necessary to receive TCP segments and turn them
// into a stream of bytes.
//
// +stateify savable
type receiver struct {
stack.TCPReceiverState
ep *endpoint
// rcvWnd is the non-scaled receive window last advertised to the peer.
rcvWnd seqnum.Size
// rcvWUP is the RcvNxt value at the last window update sent.
rcvWUP seqnum.Value
// prevBufused is the snapshot of endpoint rcvBufUsed taken when we
// advertise a receive window.
prevBufUsed int
closed bool
// pendingRcvdSegments is bounded by the receive buffer size of the
// endpoint.
pendingRcvdSegments segmentHeap
// Time when the last ack was received.
lastRcvdAckTime tcpip.MonotonicTime
}
func newReceiver(ep *endpoint, irs seqnum.Value, rcvWnd seqnum.Size, rcvWndScale uint8) *receiver {
return &receiver{
ep: ep,
TCPReceiverState: stack.TCPReceiverState{
RcvNxt: irs + 1,
RcvAcc: irs.Add(rcvWnd + 1),
RcvWndScale: rcvWndScale,
},
rcvWnd: rcvWnd,
rcvWUP: irs + 1,
lastRcvdAckTime: ep.stack.Clock().NowMonotonic(),
}
}
// acceptable checks if the segment sequence number range is acceptable
// according to the table on page 26 of RFC 793.
func (r *receiver) acceptable(segSeq seqnum.Value, segLen seqnum.Size) bool {
// r.rcvWnd could be much larger than the window size we advertised in our
// outgoing packets, we should use what we have advertised for acceptability
// test.
scaledWindowSize := r.rcvWnd >> r.RcvWndScale
if scaledWindowSize > math.MaxUint16 {
// This is what we actually put in the Window field.
scaledWindowSize = math.MaxUint16
}
advertisedWindowSize := scaledWindowSize << r.RcvWndScale
return header.Acceptable(segSeq, segLen, r.RcvNxt, r.RcvNxt.Add(advertisedWindowSize))
}
// currentWindow returns the available space in the window that was advertised
// last to our peer.
func (r *receiver) currentWindow() (curWnd seqnum.Size) {
endOfWnd := r.rcvWUP.Add(r.rcvWnd)
if endOfWnd.LessThan(r.RcvNxt) {
// return 0 if r.RcvNxt is past the end of the previously advertised window.
// This can happen because we accept a large segment completely even if
// accepting it causes it to partially exceed the advertised window.
return 0
}
return r.RcvNxt.Size(endOfWnd)
}
// getSendParams returns the parameters needed by the sender when building
// segments to send.
// +checklocks:r.ep.mu
func (r *receiver) getSendParams() (RcvNxt seqnum.Value, rcvWnd seqnum.Size) {
newWnd := r.ep.selectWindow()
curWnd := r.currentWindow()
unackLen := int(r.ep.snd.MaxSentAck.Size(r.RcvNxt))
bufUsed := r.ep.receiveBufferUsed()
// Grow the right edge of the window only for payloads larger than the
// the segment overhead OR if the application is actively consuming data.
//
// Avoiding growing the right edge otherwise, addresses a situation below:
// An application has been slow in reading data and we have burst of
// incoming segments lengths < segment overhead. Here, our available free
// memory would reduce drastically when compared to the advertised receive
// window.
//
// For example: With incoming 512 bytes segments, segment overhead of
// 552 bytes (at the time of writing this comment), with receive window
// starting from 1MB and with rcvAdvWndScale being 1, buffer would reach 0
// when the curWnd is still 19436 bytes, because for every incoming segment
// newWnd would reduce by (552+512) >> rcvAdvWndScale (current value 1),
// while curWnd would reduce by 512 bytes.
// Such a situation causes us to keep tail dropping the incoming segments
// and never advertise zero receive window to the peer.
//
// Linux does a similar check for minimal sk_buff size (128):
// https://github.com/torvalds/linux/blob/d5beb3140f91b1c8a3d41b14d729aefa4dcc58bc/net/ipv4/tcp_input.c#L783
//
// Also, if the application is reading the data, we keep growing the right
// edge, as we are still advertising a window that we think can be serviced.
toGrow := unackLen >= SegOverheadSize || bufUsed <= r.prevBufUsed
// Update RcvAcc only if new window is > previously advertised window. We
// should never shrink the acceptable sequence space once it has been
// advertised the peer. If we shrink the acceptable sequence space then we
// would end up dropping bytes that might already be in flight.
// ==================================================== sequence space.
// ^ ^ ^ ^
// rcvWUP RcvNxt RcvAcc new RcvAcc
// <=====curWnd ===>
// <========= newWnd > curWnd ========= >
if r.RcvNxt.Add(curWnd).LessThan(r.RcvNxt.Add(newWnd)) && toGrow {
// If the new window moves the right edge, then update RcvAcc.
r.RcvAcc = r.RcvNxt.Add(newWnd)
} else {
if newWnd == 0 {
// newWnd is zero but we can't advertise a zero as it would cause window
// to shrink so just increment a metric to record this event.
r.ep.stats.ReceiveErrors.WantZeroRcvWindow.Increment()
}
newWnd = curWnd
}
// Apply silly-window avoidance when recovering from zero-window situation.
// Keep advertising zero receive window up until the new window reaches a
// threshold.
if r.rcvWnd == 0 && newWnd != 0 {
r.ep.rcvQueueMu.Lock()
if crossed, above := r.ep.windowCrossedACKThresholdLocked(int(newWnd), int(r.ep.ops.GetReceiveBufferSize())); !crossed && !above {
newWnd = 0
}
r.ep.rcvQueueMu.Unlock()
}
// Stash away the non-scaled receive window as we use it for measuring
// receiver's estimated RTT.
r.rcvWnd = newWnd
r.rcvWUP = r.RcvNxt
r.prevBufUsed = bufUsed
scaledWnd := r.rcvWnd >> r.RcvWndScale
if scaledWnd == 0 {
// Increment a metric if we are advertising an actual zero window.
r.ep.stats.ReceiveErrors.ZeroRcvWindowState.Increment()
}
// If we started off with a window larger than what can he held in
// the 16bit window field, we ceil the value to the max value.
if scaledWnd > math.MaxUint16 {
scaledWnd = seqnum.Size(math.MaxUint16)
// Ensure that the stashed receive window always reflects what
// is being advertised.
r.rcvWnd = scaledWnd << r.RcvWndScale
}
return r.RcvNxt, scaledWnd
}
// nonZeroWindow is called when the receive window grows from zero to nonzero;
// in such cases we may need to send an ack to indicate to our peer that it can
// resume sending data.
// +checklocks:r.ep.mu
// +checklocksalias:r.ep.snd.ep.mu=r.ep.mu
func (r *receiver) nonZeroWindow() {
// Immediately send an ack.
r.ep.snd.sendAck()
}
// consumeSegment attempts to consume a segment that was received by r. The
// segment may have just been received or may have been received earlier but
// wasn't ready to be consumed then.
//
// Returns true if the segment was consumed, false if it cannot be consumed
// yet because of a missing segment.
// +checklocks:r.ep.mu
// +checklocksalias:r.ep.snd.ep.mu=r.ep.mu
func (r *receiver) consumeSegment(s *segment, segSeq seqnum.Value, segLen seqnum.Size) bool {
if segLen > 0 {
// If the segment doesn't include the seqnum we're expecting to
// consume now, we're missing a segment. We cannot proceed until
// we receive that segment though.
if !r.RcvNxt.InWindow(segSeq, segLen) {
return false
}
// Trim segment to eliminate already acknowledged data.
if segSeq.LessThan(r.RcvNxt) {
diff := segSeq.Size(r.RcvNxt)
segLen -= diff
segSeq.UpdateForward(diff)
s.sequenceNumber.UpdateForward(diff)
s.TrimFront(diff)
}
// Move segment to ready-to-deliver list. Wakeup any waiters.
r.ep.readyToRead(s)
} else if segSeq != r.RcvNxt {
return false
}
// Update the segment that we're expecting to consume.
r.RcvNxt = segSeq.Add(segLen)
// In cases of a misbehaving sender which could send more than the
// advertised window, we could end up in a situation where we get a
// segment that exceeds the window advertised. Instead of partially
// accepting the segment and discarding bytes beyond the advertised
// window, we accept the whole segment and make sure r.RcvAcc is moved
// forward to match r.RcvNxt to indicate that the window is now closed.
//
// In absence of this check the r.acceptable() check fails and accepts
// segments that should be dropped because rcvWnd is calculated as
// the size of the interval (RcvNxt, RcvAcc] which becomes extremely
// large if RcvAcc is ever less than RcvNxt.
if r.RcvAcc.LessThan(r.RcvNxt) {
r.RcvAcc = r.RcvNxt
}
// Trim SACK Blocks to remove any SACK information that covers
// sequence numbers that have been consumed.
TrimSACKBlockList(&r.ep.sack, r.RcvNxt)
// Handle FIN or FIN-ACK.
if s.flags.Contains(header.TCPFlagFin) {
r.RcvNxt++
// Send ACK immediately.
r.ep.snd.sendAck()
// Tell any readers that no more data will come.
r.closed = true
r.ep.readyToRead(nil)
// We just received a FIN, our next state depends on whether we sent a
// FIN already or not.
switch r.ep.EndpointState() {
case StateEstablished:
r.ep.setEndpointState(StateCloseWait)
case StateFinWait1:
if s.flags.Contains(header.TCPFlagAck) && s.ackNumber == r.ep.snd.SndNxt {
// FIN-ACK, transition to TIME-WAIT.
r.ep.setEndpointState(StateTimeWait)
} else {
// Simultaneous close, expecting a final ACK.
r.ep.setEndpointState(StateClosing)
}
case StateFinWait2:
r.ep.setEndpointState(StateTimeWait)
}
// Flush out any pending segments, except the very first one if
// it happens to be the one we're handling now because the
// caller is using it.
first := 0
if len(r.pendingRcvdSegments) != 0 && r.pendingRcvdSegments[0] == s {
first = 1
}
for i := first; i < len(r.pendingRcvdSegments); i++ {
r.PendingBufUsed -= r.pendingRcvdSegments[i].segMemSize()
r.pendingRcvdSegments[i].DecRef()
// Note that slice truncation does not allow garbage
// collection of truncated items, thus truncated items
// must be set to nil to avoid memory leaks.
r.pendingRcvdSegments[i] = nil
}
r.pendingRcvdSegments = r.pendingRcvdSegments[:first]
return true
}
// Handle ACK (not FIN-ACK, which we handled above) during one of the
// shutdown states.
if s.flags.Contains(header.TCPFlagAck) && s.ackNumber == r.ep.snd.SndNxt {
switch r.ep.EndpointState() {
case StateFinWait1:
r.ep.setEndpointState(StateFinWait2)
if e := r.ep; e.closed {
// The socket has been closed and we are in
// FIN-WAIT-2 so start the FIN-WAIT-2 timer.
e.finWait2Timer = e.stack.Clock().AfterFunc(e.tcpLingerTimeout, e.finWait2TimerExpired)
}
case StateClosing:
r.ep.setEndpointState(StateTimeWait)
case StateLastAck:
r.ep.transitionToStateCloseLocked()
}
}
return true
}
// updateRTT updates the receiver RTT measurement based on the sequence number
// of the received segment.
func (r *receiver) updateRTT() {
// From: https://public.lanl.gov/radiant/pubs/drs/sc2001-poster.pdf
//
// A system that is only transmitting acknowledgements can still
// estimate the round-trip time by observing the time between when a byte
// is first acknowledged and the receipt of data that is at least one
// window beyond the sequence number that was acknowledged.
r.ep.rcvQueueMu.Lock()
if r.ep.RcvAutoParams.RTTMeasureTime == (tcpip.MonotonicTime{}) {
// New measurement.
r.ep.RcvAutoParams.RTTMeasureTime = r.ep.stack.Clock().NowMonotonic()
r.ep.RcvAutoParams.RTTMeasureSeqNumber = r.RcvNxt.Add(r.rcvWnd)
r.ep.rcvQueueMu.Unlock()
return
}
if r.RcvNxt.LessThan(r.ep.RcvAutoParams.RTTMeasureSeqNumber) {
r.ep.rcvQueueMu.Unlock()
return
}
rtt := r.ep.stack.Clock().NowMonotonic().Sub(r.ep.RcvAutoParams.RTTMeasureTime)
// We only store the minimum observed RTT here as this is only used in
// absence of a SRTT available from either timestamps or a sender
// measurement of RTT.
if r.ep.RcvAutoParams.RTT == 0 || rtt < r.ep.RcvAutoParams.RTT {
r.ep.RcvAutoParams.RTT = rtt
}
r.ep.RcvAutoParams.RTTMeasureTime = r.ep.stack.Clock().NowMonotonic()
r.ep.RcvAutoParams.RTTMeasureSeqNumber = r.RcvNxt.Add(r.rcvWnd)
r.ep.rcvQueueMu.Unlock()
}
// +checklocks:r.ep.mu
// +checklocksalias:r.ep.snd.ep.mu=r.ep.mu
func (r *receiver) handleRcvdSegmentClosing(s *segment, state EndpointState, closed bool) (drop bool, err tcpip.Error) {
r.ep.rcvQueueMu.Lock()
rcvClosed := r.ep.RcvClosed || r.closed
r.ep.rcvQueueMu.Unlock()
// If we are in one of the shutdown states then we need to do
// additional checks before we try and process the segment.
switch state {
case StateCloseWait, StateClosing, StateLastAck:
if !s.sequenceNumber.LessThanEq(r.RcvNxt) {
// Just drop the segment as we have
// already received a FIN and this
// segment is after the sequence number
// for the FIN.
return true, nil
}
fallthrough
case StateFinWait1, StateFinWait2:
// If the ACK acks something not yet sent then we send an ACK.
//
// RFC793, page 37: If the connection is in a synchronized state,
// (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
// TIME-WAIT), any unacceptable segment (out of window sequence number
// or unacceptable acknowledgment number) must elicit only an empty
// acknowledgment segment containing the current send-sequence number
// and an acknowledgment indicating the next sequence number expected
// to be received, and the connection remains in the same state.
//
// Just as on Linux, we do not apply this behavior when state is
// ESTABLISHED.
// Linux receive processing for all states except ESTABLISHED and
// TIME_WAIT is here where if the ACK check fails, we attempt to
// reply back with an ACK with correct seq/ack numbers.
// https://github.com/torvalds/linux/blob/v5.8/net/ipv4/tcp_input.c#L6186
// The ESTABLISHED state processing is here where if the ACK check
// fails, we ignore the packet:
// https://github.com/torvalds/linux/blob/v5.8/net/ipv4/tcp_input.c#L5591
if r.ep.snd.SndNxt.LessThan(s.ackNumber) {
r.ep.snd.maybeSendOutOfWindowAck(s)
return true, nil
}
// If we are closed for reads (either due to an
// incoming FIN or the user calling shutdown(..,
// SHUT_RD) then any data past the RcvNxt should
// trigger a RST.
endDataSeq := s.sequenceNumber.Add(seqnum.Size(s.payloadSize()))
if state != StateCloseWait && rcvClosed && r.RcvNxt.LessThan(endDataSeq) {
return true, &tcpip.ErrConnectionAborted{}
}
if state == StateFinWait1 {
break
}
// If it's a retransmission of an old data segment
// or a pure ACK then allow it.
if s.sequenceNumber.Add(s.logicalLen()).LessThanEq(r.RcvNxt) ||
s.logicalLen() == 0 {
break
}
// In FIN-WAIT2 if the socket is fully
// closed(not owned by application on our end
// then the only acceptable segment is a
// FIN. Since FIN can technically also carry
// data we verify that the segment carrying a
// FIN ends at exactly e.RcvNxt+1.
//
// From RFC793 page 25.
//
// For sequence number purposes, the SYN is
// considered to occur before the first actual
// data octet of the segment in which it occurs,
// while the FIN is considered to occur after
// the last actual data octet in a segment in
// which it occurs.
if closed && (!s.flags.Contains(header.TCPFlagFin) || s.sequenceNumber.Add(s.logicalLen()) != r.RcvNxt+1) {
return true, &tcpip.ErrConnectionAborted{}
}
}
// We don't care about receive processing anymore if the receive side
// is closed.
//
// NOTE: We still want to permit a FIN as it's possible only our
// end has closed and the peer is yet to send a FIN. Hence we
// compare only the payload.
segEnd := s.sequenceNumber.Add(seqnum.Size(s.payloadSize()))
if rcvClosed && !segEnd.LessThanEq(r.RcvNxt) {
return true, nil
}
return false, nil
}
// handleRcvdSegment handles TCP segments directed at the connection managed by
// r as they arrive. It is called by the protocol main loop.
// +checklocks:r.ep.mu
// +checklocksalias:r.ep.snd.ep.mu=r.ep.mu
func (r *receiver) handleRcvdSegment(s *segment) (drop bool, err tcpip.Error) {
state := r.ep.EndpointState()
closed := r.ep.closed
segLen := seqnum.Size(s.payloadSize())
segSeq := s.sequenceNumber
// If the sequence number range is outside the acceptable range, just
// send an ACK and stop further processing of the segment.
// This is according to RFC 793, page 68.
if !r.acceptable(segSeq, segLen) {
r.ep.snd.maybeSendOutOfWindowAck(s)
return true, nil
}
if state != StateEstablished {
drop, err := r.handleRcvdSegmentClosing(s, state, closed)
if drop || err != nil {
return drop, err
}
}
// Store the time of the last ack.
r.lastRcvdAckTime = r.ep.stack.Clock().NowMonotonic()
// Defer segment processing if it can't be consumed now.
if !r.consumeSegment(s, segSeq, segLen) {
if segLen > 0 || s.flags.Contains(header.TCPFlagFin) {
// We only store the segment if it's within our buffer size limit.
//
// Only use 75% of the receive buffer queue for out-of-order
// segments. This ensures that we always leave some space for the inorder
// segments to arrive allowing pending segments to be processed and
// delivered to the user.
if rcvBufSize := r.ep.ops.GetReceiveBufferSize(); rcvBufSize > 0 && (r.PendingBufUsed+int(segLen)) < int(rcvBufSize)>>2 {
r.ep.rcvQueueMu.Lock()
r.PendingBufUsed += s.segMemSize()
r.ep.rcvQueueMu.Unlock()
s.IncRef()
heap.Push(&r.pendingRcvdSegments, s)
UpdateSACKBlocks(&r.ep.sack, segSeq, segSeq.Add(segLen), r.RcvNxt)
}
// Immediately send an ack so that the peer knows it may
// have to retransmit.
r.ep.snd.sendAck()
}
return false, nil
}
// Since we consumed a segment update the receiver's RTT estimate
// if required.
if segLen > 0 {
r.updateRTT()
}
// By consuming the current segment, we may have filled a gap in the
// sequence number domain that allows pending segments to be consumed
// now. So try to do it.
for !r.closed && r.pendingRcvdSegments.Len() > 0 {
s := r.pendingRcvdSegments[0]
segLen := seqnum.Size(s.payloadSize())
segSeq := s.sequenceNumber
// Skip segment altogether if it has already been acknowledged.
if !segSeq.Add(segLen-1).LessThan(r.RcvNxt) &&
!r.consumeSegment(s, segSeq, segLen) {
break
}
heap.Pop(&r.pendingRcvdSegments)
r.ep.rcvQueueMu.Lock()
r.PendingBufUsed -= s.segMemSize()
r.ep.rcvQueueMu.Unlock()
s.DecRef()
}
return false, nil
}
// handleTimeWaitSegment handles inbound segments received when the endpoint
// has entered the TIME_WAIT state.
// +checklocks:r.ep.mu
// +checklocksalias:r.ep.snd.ep.mu=r.ep.mu
func (r *receiver) handleTimeWaitSegment(s *segment) (resetTimeWait bool, newSyn bool) {
segSeq := s.sequenceNumber
segLen := seqnum.Size(s.payloadSize())
// Just silently drop any RST packets in TIME_WAIT. We do not support
// TIME_WAIT assasination as a result we confirm w/ fix 1 as described
// in https://tools.ietf.org/html/rfc1337#section-3.
//
// This behavior overrides RFC793 page 70 where we transition to CLOSED
// on receiving RST, which is also default Linux behavior.
// On Linux the RST can be ignored by setting sysctl net.ipv4.tcp_rfc1337.
//
// As we do not yet support PAWS, we are being conservative in ignoring
// RSTs by default.
if s.flags.Contains(header.TCPFlagRst) {
return false, false
}
// If it's a SYN and the sequence number is higher than any seen before
// for this connection then try and redirect it to a listening endpoint
// if available.
//
// RFC 1122:
// "When a connection is [...] on TIME-WAIT state [...]
// [a TCP] MAY accept a new SYN from the remote TCP to
// reopen the connection directly, if it:
// (1) assigns its initial sequence number for the new
// connection to be larger than the largest sequence
// number it used on the previous connection incarnation,
// and
// (2) returns to TIME-WAIT state if the SYN turns out
// to be an old duplicate".
if s.flags.Contains(header.TCPFlagSyn) && r.RcvNxt.LessThan(segSeq) {
return false, true
}
// Drop the segment if it does not contain an ACK.
if !s.flags.Contains(header.TCPFlagAck) {
return false, false
}
// Update Timestamp if required. See RFC7323, section-4.3.
if r.ep.SendTSOk && s.parsedOptions.TS {
r.ep.updateRecentTimestamp(s.parsedOptions.TSVal, r.ep.snd.MaxSentAck, segSeq)
}
if segSeq.Add(1) == r.RcvNxt && s.flags.Contains(header.TCPFlagFin) {
// If it's a FIN-ACK then resetTimeWait and send an ACK, as it
// indicates our final ACK could have been lost.
r.ep.snd.sendAck()
return true, false
}
// If the sequence number range is outside the acceptable range or
// carries data then just send an ACK. This is according to RFC 793,
// page 37.
//
// NOTE: In TIME_WAIT the only acceptable sequence number is RcvNxt.
if segSeq != r.RcvNxt || segLen != 0 {
r.ep.snd.sendAck()
}
return false, false
}
|