1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"fmt"
"io"
"gvisor.dev/gvisor/pkg/bufferv2"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
// queueFlags are used to indicate which queue of an endpoint a particular segment
// belongs to. This is used to track memory accounting correctly.
type queueFlags uint8
const (
// SegOverheadSize is the size of an empty seg in memory including packet
// buffer overhead. It is advised to use SegOverheadSize instead of segSize
// in all cases where accounting for segment memory overhead is important.
SegOverheadSize = segSize + stack.PacketBufferStructSize + header.IPv4MaximumHeaderSize
recvQ queueFlags = 1 << iota
sendQ
)
var segmentPool = sync.Pool{
New: func() any {
return &segment{}
},
}
// segment represents a TCP segment. It holds the payload and parsed TCP segment
// information, and can be added to intrusive lists.
// segment is mostly immutable, the only field allowed to change is data.
//
// +stateify savable
type segment struct {
segmentEntry
segmentRefs
ep *endpoint
qFlags queueFlags
id stack.TransportEndpointID `state:"manual"`
pkt stack.PacketBufferPtr
sequenceNumber seqnum.Value
ackNumber seqnum.Value
flags header.TCPFlags
window seqnum.Size
// csum is only populated for received segments.
csum uint16
// csumValid is true if the csum in the received segment is valid.
csumValid bool
// parsedOptions stores the parsed values from the options in the segment.
parsedOptions header.TCPOptions
options []byte `state:".([]byte)"`
hasNewSACKInfo bool
rcvdTime tcpip.MonotonicTime
// xmitTime is the last transmit time of this segment.
xmitTime tcpip.MonotonicTime
xmitCount uint32
// acked indicates if the segment has already been SACKed.
acked bool
// dataMemSize is the memory used by pkt initially. The value is used for
// memory accounting in the receive buffer instead of pkt.MemSize() because
// packet contents can be modified, so relying on the computed memory size
// to "free" reserved bytes could leak memory in the receiver.
dataMemSize int
// lost indicates if the segment is marked as lost by RACK.
lost bool
}
func newIncomingSegment(id stack.TransportEndpointID, clock tcpip.Clock, pkt stack.PacketBufferPtr) (*segment, error) {
hdr := header.TCP(pkt.TransportHeader().Slice())
netHdr := pkt.Network()
csum, csumValid, ok := header.TCPValid(
hdr,
func() uint16 { return pkt.Data().Checksum() },
uint16(pkt.Data().Size()),
netHdr.SourceAddress(),
netHdr.DestinationAddress(),
pkt.RXChecksumValidated)
if !ok {
return nil, fmt.Errorf("header data offset does not respect size constraints: %d < offset < %d, got offset=%d", header.TCPMinimumSize, len(hdr), hdr.DataOffset())
}
s := newSegment()
s.id = id
s.options = hdr[header.TCPMinimumSize:]
s.parsedOptions = header.ParseTCPOptions(hdr[header.TCPMinimumSize:])
s.sequenceNumber = seqnum.Value(hdr.SequenceNumber())
s.ackNumber = seqnum.Value(hdr.AckNumber())
s.flags = hdr.Flags()
s.window = seqnum.Size(hdr.WindowSize())
s.rcvdTime = clock.NowMonotonic()
s.dataMemSize = pkt.MemSize()
s.pkt = pkt.IncRef()
s.csumValid = csumValid
if !s.pkt.RXChecksumValidated {
s.csum = csum
}
return s, nil
}
func newOutgoingSegment(id stack.TransportEndpointID, clock tcpip.Clock, buf bufferv2.Buffer) *segment {
s := newSegment()
s.id = id
s.rcvdTime = clock.NowMonotonic()
s.pkt = stack.NewPacketBuffer(stack.PacketBufferOptions{Payload: buf})
s.dataMemSize = s.pkt.MemSize()
return s
}
func (s *segment) clone() *segment {
t := newSegment()
t.id = s.id
t.sequenceNumber = s.sequenceNumber
t.ackNumber = s.ackNumber
t.flags = s.flags
t.window = s.window
t.rcvdTime = s.rcvdTime
t.xmitTime = s.xmitTime
t.xmitCount = s.xmitCount
t.ep = s.ep
t.qFlags = s.qFlags
t.dataMemSize = s.dataMemSize
t.pkt = s.pkt.Clone()
return t
}
func newSegment() *segment {
s := segmentPool.Get().(*segment)
*s = segment{}
s.InitRefs()
return s
}
// merge merges data in oth and clears oth.
func (s *segment) merge(oth *segment) {
s.pkt.Data().Merge(oth.pkt.Data())
s.dataMemSize = s.pkt.MemSize()
oth.dataMemSize = oth.pkt.MemSize()
}
// setOwner sets the owning endpoint for this segment. Its required
// to be called to ensure memory accounting for receive/send buffer
// queues is done properly.
func (s *segment) setOwner(ep *endpoint, qFlags queueFlags) {
switch qFlags {
case recvQ:
ep.updateReceiveMemUsed(s.segMemSize())
case sendQ:
// no memory account for sendQ yet.
default:
panic(fmt.Sprintf("unexpected queue flag %b", qFlags))
}
s.ep = ep
s.qFlags = qFlags
}
func (s *segment) DecRef() {
s.segmentRefs.DecRef(func() {
if s.ep != nil {
switch s.qFlags {
case recvQ:
s.ep.updateReceiveMemUsed(-s.segMemSize())
case sendQ:
// no memory accounting for sendQ yet.
default:
panic(fmt.Sprintf("unexpected queue flag %b set for segment", s.qFlags))
}
}
s.pkt.DecRef()
segmentPool.Put(s)
})
}
// logicalLen is the segment length in the sequence number space. It's defined
// as the data length plus one for each of the SYN and FIN bits set.
func (s *segment) logicalLen() seqnum.Size {
l := seqnum.Size(s.payloadSize())
if s.flags.Contains(header.TCPFlagSyn) {
l++
}
if s.flags.Contains(header.TCPFlagFin) {
l++
}
return l
}
// payloadSize is the size of s.data.
func (s *segment) payloadSize() int {
return s.pkt.Data().Size()
}
// segMemSize is the amount of memory used to hold the segment data and
// the associated metadata.
func (s *segment) segMemSize() int {
return segSize + s.dataMemSize
}
// sackBlock returns a header.SACKBlock that represents this segment.
func (s *segment) sackBlock() header.SACKBlock {
return header.SACKBlock{Start: s.sequenceNumber, End: s.sequenceNumber.Add(s.logicalLen())}
}
func (s *segment) TrimFront(ackLeft seqnum.Size) {
s.pkt.Data().TrimFront(int(ackLeft))
}
func (s *segment) ReadTo(dst io.Writer, peek bool) (int, error) {
return s.pkt.Data().ReadTo(dst, peek)
}
|