1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"fmt"
"math"
"sort"
"time"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
const (
// MinRTO is the minimum allowed value for the retransmit timeout.
MinRTO = 200 * time.Millisecond
// MaxRTO is the maximum allowed value for the retransmit timeout.
MaxRTO = 120 * time.Second
// InitialCwnd is the initial congestion window.
InitialCwnd = 10
// nDupAckThreshold is the number of duplicate ACK's required
// before fast-retransmit is entered.
nDupAckThreshold = 3
// MaxRetries is the maximum number of probe retries sender does
// before timing out the connection.
// Linux default TCP_RETR2, net.ipv4.tcp_retries2.
MaxRetries = 15
)
// congestionControl is an interface that must be implemented by any supported
// congestion control algorithm.
type congestionControl interface {
// HandleLossDetected is invoked when the loss is detected by RACK or
// sender.dupAckCount >= nDupAckThreshold just before entering fast
// retransmit.
HandleLossDetected()
// HandleRTOExpired is invoked when the retransmit timer expires.
HandleRTOExpired()
// Update is invoked when processing inbound acks. It's passed the
// number of packet's that were acked by the most recent cumulative
// acknowledgement.
Update(packetsAcked int)
// PostRecovery is invoked when the sender is exiting a fast retransmit/
// recovery phase. This provides congestion control algorithms a way
// to adjust their state when exiting recovery.
PostRecovery()
}
// lossRecovery is an interface that must be implemented by any supported
// loss recovery algorithm.
type lossRecovery interface {
// DoRecovery is invoked when loss is detected and segments need
// to be retransmitted. The cumulative or selective ACK is passed along
// with the flag which identifies whether the connection entered fast
// retransmit with this ACK and to retransmit the first unacknowledged
// segment.
DoRecovery(rcvdSeg *segment, fastRetransmit bool)
}
// sender holds the state necessary to send TCP segments.
//
// +stateify savable
type sender struct {
stack.TCPSenderState
ep *endpoint
// lr is the loss recovery algorithm used by the sender.
lr lossRecovery
// firstRetransmittedSegXmitTime is the original transmit time of
// the first segment that was retransmitted due to RTO expiration.
firstRetransmittedSegXmitTime tcpip.MonotonicTime
// zeroWindowProbing is set if the sender is currently probing
// for zero receive window.
zeroWindowProbing bool `state:"nosave"`
// unackZeroWindowProbes is the number of unacknowledged zero
// window probes.
unackZeroWindowProbes uint32 `state:"nosave"`
writeNext *segment
writeList segmentList
resendTimer timer `state:"nosave"`
// rtt.TCPRTTState.SRTT and rtt.TCPRTTState.RTTVar are the "smoothed
// round-trip time", and "round-trip time variation", as defined in
// section 2 of RFC 6298.
rtt rtt
// minRTO is the minimum permitted value for sender.rto.
minRTO time.Duration
// maxRTO is the maximum permitted value for sender.rto.
maxRTO time.Duration
// maxRetries is the maximum permitted retransmissions.
maxRetries uint32
// gso is set if generic segmentation offload is enabled.
gso bool
// state is the current state of congestion control for this endpoint.
state tcpip.CongestionControlState
// cc is the congestion control algorithm in use for this sender.
cc congestionControl
// rc has the fields needed for implementing RACK loss detection
// algorithm.
rc rackControl
// reorderTimer is the timer used to retransmit the segments after RACK
// detects them as lost.
reorderTimer timer `state:"nosave"`
// probeTimer is used to schedule PTO for RACK TLP algorithm.
probeTimer timer `state:"nosave"`
// spuriousRecovery indicates whether the sender entered recovery
// spuriously as described in RFC3522 Section 3.2.
spuriousRecovery bool
// retransmitTS is the timestamp at which the sender sends retransmitted
// segment after entering an RTO for the first time as described in
// RFC3522 Section 3.2.
retransmitTS uint32
}
// rtt is a synchronization wrapper used to appease stateify. See the comment
// in sender, where it is used.
//
// +stateify savable
type rtt struct {
sync.Mutex `state:"nosave"`
stack.TCPRTTState
}
// +checklocks:ep.mu
func newSender(ep *endpoint, iss, irs seqnum.Value, sndWnd seqnum.Size, mss uint16, sndWndScale int) *sender {
// The sender MUST reduce the TCP data length to account for any IP or
// TCP options that it is including in the packets that it sends.
// See: https://tools.ietf.org/html/rfc6691#section-2
maxPayloadSize := int(mss) - ep.maxOptionSize()
s := &sender{
ep: ep,
TCPSenderState: stack.TCPSenderState{
SndWnd: sndWnd,
SndUna: iss + 1,
SndNxt: iss + 1,
RTTMeasureSeqNum: iss + 1,
LastSendTime: ep.stack.Clock().NowMonotonic(),
MaxPayloadSize: maxPayloadSize,
MaxSentAck: irs + 1,
FastRecovery: stack.TCPFastRecoveryState{
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 1.
Last: iss,
HighRxt: iss,
RescueRxt: iss,
},
RTO: 1 * time.Second,
},
gso: ep.gso.Type != stack.GSONone,
}
if s.gso {
s.ep.gso.MSS = uint16(maxPayloadSize)
}
s.cc = s.initCongestionControl(ep.cc)
s.lr = s.initLossRecovery()
s.rc.init(s, iss)
// A negative sndWndScale means that no scaling is in use, otherwise we
// store the scaling value.
if sndWndScale > 0 {
s.SndWndScale = uint8(sndWndScale)
}
s.resendTimer.init(s.ep.stack.Clock(), maybeFailTimerHandler(s.ep, s.retransmitTimerExpired))
s.reorderTimer.init(s.ep.stack.Clock(), timerHandler(s.ep, s.rc.reorderTimerExpired))
s.probeTimer.init(s.ep.stack.Clock(), timerHandler(s.ep, s.probeTimerExpired))
s.ep.AssertLockHeld(ep)
s.updateMaxPayloadSize(int(ep.route.MTU()), 0)
// Initialize SACK Scoreboard after updating max payload size as we use
// the maxPayloadSize as the smss when determining if a segment is lost
// etc.
s.ep.scoreboard = NewSACKScoreboard(uint16(s.MaxPayloadSize), iss)
// Get Stack wide config.
var minRTO tcpip.TCPMinRTOOption
if err := ep.stack.TransportProtocolOption(ProtocolNumber, &minRTO); err != nil {
panic(fmt.Sprintf("unable to get minRTO from stack: %s", err))
}
s.minRTO = time.Duration(minRTO)
var maxRTO tcpip.TCPMaxRTOOption
if err := ep.stack.TransportProtocolOption(ProtocolNumber, &maxRTO); err != nil {
panic(fmt.Sprintf("unable to get maxRTO from stack: %s", err))
}
s.maxRTO = time.Duration(maxRTO)
var maxRetries tcpip.TCPMaxRetriesOption
if err := ep.stack.TransportProtocolOption(ProtocolNumber, &maxRetries); err != nil {
panic(fmt.Sprintf("unable to get maxRetries from stack: %s", err))
}
s.maxRetries = uint32(maxRetries)
return s
}
// initCongestionControl initializes the specified congestion control module and
// returns a handle to it. It also initializes the sndCwnd and sndSsThresh to
// their initial values.
func (s *sender) initCongestionControl(congestionControlName tcpip.CongestionControlOption) congestionControl {
s.SndCwnd = InitialCwnd
// Set sndSsthresh to the maximum int value, which depends on the
// platform.
s.Ssthresh = int(^uint(0) >> 1)
switch congestionControlName {
case ccCubic:
return newCubicCC(s)
case ccReno:
fallthrough
default:
return newRenoCC(s)
}
}
// initLossRecovery initiates the loss recovery algorithm for the sender.
func (s *sender) initLossRecovery() lossRecovery {
if s.ep.SACKPermitted {
return newSACKRecovery(s)
}
return newRenoRecovery(s)
}
// updateMaxPayloadSize updates the maximum payload size based on the given
// MTU. If this is in response to "packet too big" control packets (indicated
// by the count argument), it also reduces the number of outstanding packets and
// attempts to retransmit the first packet above the MTU size.
// +checklocks:s.ep.mu
func (s *sender) updateMaxPayloadSize(mtu, count int) {
m := mtu - header.TCPMinimumSize
m -= s.ep.maxOptionSize()
// We don't adjust up for now.
if m >= s.MaxPayloadSize {
return
}
// Make sure we can transmit at least one byte.
if m <= 0 {
m = 1
}
oldMSS := s.MaxPayloadSize
s.MaxPayloadSize = m
if s.gso {
s.ep.gso.MSS = uint16(m)
}
if count == 0 {
// updateMaxPayloadSize is also called when the sender is created.
// and there is no data to send in such cases. Return immediately.
return
}
// Update the scoreboard's smss to reflect the new lowered
// maxPayloadSize.
s.ep.scoreboard.smss = uint16(m)
s.Outstanding -= count
if s.Outstanding < 0 {
s.Outstanding = 0
}
// Rewind writeNext to the first segment exceeding the MTU. Do nothing
// if it is already before such a packet.
nextSeg := s.writeNext
for seg := s.writeList.Front(); seg != nil; seg = seg.Next() {
if seg == s.writeNext {
// We got to writeNext before we could find a segment
// exceeding the MTU.
break
}
if nextSeg == s.writeNext && seg.payloadSize() > m {
// We found a segment exceeding the MTU. Rewind
// writeNext and try to retransmit it.
nextSeg = seg
}
if s.ep.SACKPermitted && s.ep.scoreboard.IsSACKED(seg.sackBlock()) {
// Update sackedOut for new maximum payload size.
s.SackedOut -= s.pCount(seg, oldMSS)
s.SackedOut += s.pCount(seg, s.MaxPayloadSize)
}
}
// Since we likely reduced the number of outstanding packets, we may be
// ready to send some more.
s.updateWriteNext(nextSeg)
s.sendData()
}
// sendAck sends an ACK segment.
// +checklocks:s.ep.mu
func (s *sender) sendAck() {
s.sendEmptySegment(header.TCPFlagAck, s.SndNxt)
}
// updateRTO updates the retransmit timeout when a new roud-trip time is
// available. This is done in accordance with section 2 of RFC 6298.
func (s *sender) updateRTO(rtt time.Duration) {
s.rtt.Lock()
if !s.rtt.TCPRTTState.SRTTInited {
s.rtt.TCPRTTState.RTTVar = rtt / 2
s.rtt.TCPRTTState.SRTT = rtt
s.rtt.TCPRTTState.SRTTInited = true
} else {
diff := s.rtt.TCPRTTState.SRTT - rtt
if diff < 0 {
diff = -diff
}
// Use RFC6298 standard algorithm to update TCPRTTState.RTTVar and TCPRTTState.SRTT when
// no timestamps are available.
if !s.ep.SendTSOk {
s.rtt.TCPRTTState.RTTVar = (3*s.rtt.TCPRTTState.RTTVar + diff) / 4
s.rtt.TCPRTTState.SRTT = (7*s.rtt.TCPRTTState.SRTT + rtt) / 8
} else {
// When we are taking RTT measurements of every ACK then
// we need to use a modified method as specified in
// https://tools.ietf.org/html/rfc7323#appendix-G
if s.Outstanding == 0 {
s.rtt.Unlock()
return
}
// Netstack measures congestion window/inflight all in
// terms of packets and not bytes. This is similar to
// how linux also does cwnd and inflight. In practice
// this approximation works as expected.
expectedSamples := math.Ceil(float64(s.Outstanding) / 2)
// alpha & beta values are the original values as recommended in
// https://tools.ietf.org/html/rfc6298#section-2.3.
const alpha = 0.125
const beta = 0.25
alphaPrime := alpha / expectedSamples
betaPrime := beta / expectedSamples
rttVar := (1-betaPrime)*s.rtt.TCPRTTState.RTTVar.Seconds() + betaPrime*diff.Seconds()
srtt := (1-alphaPrime)*s.rtt.TCPRTTState.SRTT.Seconds() + alphaPrime*rtt.Seconds()
s.rtt.TCPRTTState.RTTVar = time.Duration(rttVar * float64(time.Second))
s.rtt.TCPRTTState.SRTT = time.Duration(srtt * float64(time.Second))
}
}
s.RTO = s.rtt.TCPRTTState.SRTT + 4*s.rtt.TCPRTTState.RTTVar
s.rtt.Unlock()
if s.RTO < s.minRTO {
s.RTO = s.minRTO
}
if s.RTO > s.maxRTO {
s.RTO = s.maxRTO
}
}
// resendSegment resends the first unacknowledged segment.
// +checklocks:s.ep.mu
func (s *sender) resendSegment() {
// Don't use any segments we already sent to measure RTT as they may
// have been affected by packets being lost.
s.RTTMeasureSeqNum = s.SndNxt
// Resend the segment.
if seg := s.writeList.Front(); seg != nil {
if seg.payloadSize() > s.MaxPayloadSize {
s.splitSeg(seg, s.MaxPayloadSize)
}
// See: RFC 6675 section 5 Step 4.3
//
// To prevent retransmission, set both the HighRXT and RescueRXT
// to the highest sequence number in the retransmitted segment.
s.FastRecovery.HighRxt = seg.sequenceNumber.Add(seqnum.Size(seg.payloadSize())) - 1
s.FastRecovery.RescueRxt = seg.sequenceNumber.Add(seqnum.Size(seg.payloadSize())) - 1
s.sendSegment(seg)
s.ep.stack.Stats().TCP.FastRetransmit.Increment()
s.ep.stats.SendErrors.FastRetransmit.Increment()
// Run SetPipe() as per RFC 6675 section 5 Step 4.4
s.SetPipe()
}
}
// retransmitTimerExpired is called when the retransmit timer expires, and
// unacknowledged segments are assumed lost, and thus need to be resent.
// Returns true if the connection is still usable, or false if the connection
// is deemed lost.
// +checklocks:s.ep.mu
func (s *sender) retransmitTimerExpired() tcpip.Error {
// Check if the timer actually expired or if it's a spurious wake due
// to a previously orphaned runtime timer.
if s.resendTimer.isZero() || !s.resendTimer.checkExpiration() {
return nil
}
// Initialize the variables used to detect spurious recovery after
// entering RTO.
//
// See: https://www.rfc-editor.org/rfc/rfc3522.html#section-3.2 Step 1.
s.spuriousRecovery = false
s.retransmitTS = 0
// TODO(b/147297758): Band-aid fix, retransmitTimer can fire in some edge cases
// when writeList is empty. Remove this once we have a proper fix for this
// issue.
if s.writeList.Front() == nil {
return nil
}
s.ep.stack.Stats().TCP.Timeouts.Increment()
s.ep.stats.SendErrors.Timeouts.Increment()
// Set TLPRxtOut to false according to
// https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.6.1.
s.rc.tlpRxtOut = false
// Give up if we've waited more than a minute since the last resend or
// if a user time out is set and we have exceeded the user specified
// timeout since the first retransmission.
uto := s.ep.userTimeout
if s.firstRetransmittedSegXmitTime == (tcpip.MonotonicTime{}) {
// We store the original xmitTime of the segment that we are
// about to retransmit as the retransmission time. This is
// required as by the time the retransmitTimer has expired the
// segment has already been sent and unacked for the RTO at the
// time the segment was sent.
s.firstRetransmittedSegXmitTime = s.writeList.Front().xmitTime
}
elapsed := s.ep.stack.Clock().NowMonotonic().Sub(s.firstRetransmittedSegXmitTime)
remaining := s.maxRTO
if uto != 0 {
// Cap to the user specified timeout if one is specified.
remaining = uto - elapsed
}
// Always honor the user-timeout irrespective of whether the zero
// window probes were acknowledged.
// net/ipv4/tcp_timer.c::tcp_probe_timer()
if remaining <= 0 || s.unackZeroWindowProbes >= s.maxRetries {
s.ep.stack.Stats().TCP.EstablishedTimedout.Increment()
return &tcpip.ErrTimeout{}
}
// Set new timeout. The timer will be restarted by the call to sendData
// below.
s.RTO *= 2
// Cap the RTO as per RFC 1122 4.2.3.1, RFC 6298 5.5
if s.RTO > s.maxRTO {
s.RTO = s.maxRTO
}
// Cap RTO to remaining time.
if s.RTO > remaining {
s.RTO = remaining
}
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 4.
//
// Retransmit timeouts:
// After a retransmit timeout, record the highest sequence number
// transmitted in the variable recover, and exit the fast recovery
// procedure if applicable.
s.FastRecovery.Last = s.SndNxt - 1
if s.FastRecovery.Active {
// We were attempting fast recovery but were not successful.
// Leave the state. We don't need to update ssthresh because it
// has already been updated when entered fast-recovery.
s.leaveRecovery()
}
// Record retransmitTS if the sender is not in recovery as per:
// https://datatracker.ietf.org/doc/html/rfc3522#section-3.2 Step 2
s.recordRetransmitTS()
s.state = tcpip.RTORecovery
s.cc.HandleRTOExpired()
// Mark the next segment to be sent as the first unacknowledged one and
// start sending again. Set the number of outstanding packets to 0 so
// that we'll be able to retransmit.
//
// We'll keep on transmitting (or retransmitting) as we get acks for
// the data we transmit.
s.Outstanding = 0
// Expunge all SACK information as per https://tools.ietf.org/html/rfc6675#section-5.1
//
// In order to avoid memory deadlocks, the TCP receiver is allowed to
// discard data that has already been selectively acknowledged. As a
// result, [RFC2018] suggests that a TCP sender SHOULD expunge the SACK
// information gathered from a receiver upon a retransmission timeout
// (RTO) "since the timeout might indicate that the data receiver has
// reneged." Additionally, a TCP sender MUST "ignore prior SACK
// information in determining which data to retransmit."
//
// NOTE: We take the stricter interpretation and just expunge all
// information as we lack more rigorous checks to validate if the SACK
// information is usable after an RTO.
s.ep.scoreboard.Reset()
s.updateWriteNext(s.writeList.Front())
// RFC 1122 4.2.2.17: Start sending zero window probes when we still see a
// zero receive window after retransmission interval and we have data to
// send.
if s.zeroWindowProbing {
s.sendZeroWindowProbe()
// RFC 1122 4.2.2.17: A TCP MAY keep its offered receive window closed
// indefinitely. As long as the receiving TCP continues to send
// acknowledgments in response to the probe segments, the sending TCP
// MUST allow the connection to stay open.
return nil
}
seg := s.writeNext
// RFC 1122 4.2.3.5: Close the connection when the number of
// retransmissions for this segment is beyond a limit.
if seg != nil && seg.xmitCount > s.maxRetries {
s.ep.stack.Stats().TCP.EstablishedTimedout.Increment()
return &tcpip.ErrTimeout{}
}
s.sendData()
return nil
}
// pCount returns the number of packets in the segment. Due to GSO, a segment
// can be composed of multiple packets.
func (s *sender) pCount(seg *segment, maxPayloadSize int) int {
size := seg.payloadSize()
if size == 0 {
return 1
}
return (size-1)/maxPayloadSize + 1
}
// splitSeg splits a given segment at the size specified and inserts the
// remainder as a new segment after the current one in the write list.
func (s *sender) splitSeg(seg *segment, size int) {
if seg.payloadSize() <= size {
return
}
// Split this segment up.
nSeg := seg.clone()
nSeg.pkt.Data().TrimFront(size)
nSeg.sequenceNumber.UpdateForward(seqnum.Size(size))
s.writeList.InsertAfter(seg, nSeg)
// The segment being split does not carry PUSH flag because it is
// followed by the newly split segment.
// RFC1122 section 4.2.2.2: MUST set the PSH bit in the last buffered
// segment (i.e., when there is no more queued data to be sent).
// Linux removes PSH flag only when the segment is being split over MSS
// and retains it when we are splitting the segment over lack of sender
// window space.
// ref: net/ipv4/tcp_output.c::tcp_write_xmit(), tcp_mss_split_point()
// ref: net/ipv4/tcp_output.c::tcp_write_wakeup(), tcp_snd_wnd_test()
if seg.payloadSize() > s.MaxPayloadSize {
seg.flags ^= header.TCPFlagPsh
}
seg.pkt.Data().CapLength(size)
}
// NextSeg implements the RFC6675 NextSeg() operation.
//
// NextSeg starts scanning the writeList starting from nextSegHint and returns
// the hint to be passed on the next call to NextSeg. This is required to avoid
// iterating the write list repeatedly when NextSeg is invoked in a loop during
// recovery. The returned hint will be nil if there are no more segments that
// can match rules defined by NextSeg operation in RFC6675.
//
// rescueRtx will be true only if nextSeg is a rescue retransmission as
// described by Step 4) of the NextSeg algorithm.
func (s *sender) NextSeg(nextSegHint *segment) (nextSeg, hint *segment, rescueRtx bool) {
var s3 *segment
var s4 *segment
// Step 1.
for seg := nextSegHint; seg != nil; seg = seg.Next() {
// Stop iteration if we hit a segment that has never been
// transmitted (i.e. either it has no assigned sequence number
// or if it does have one, it's >= the next sequence number
// to be sent [i.e. >= s.sndNxt]).
if !s.isAssignedSequenceNumber(seg) || s.SndNxt.LessThanEq(seg.sequenceNumber) {
hint = nil
break
}
segSeq := seg.sequenceNumber
if smss := s.ep.scoreboard.SMSS(); seg.payloadSize() > int(smss) {
s.splitSeg(seg, int(smss))
}
// See RFC 6675 Section 4
//
// 1. If there exists a smallest unSACKED sequence number
// 'S2' that meets the following 3 criteria for determinig
// loss, the sequence range of one segment of up to SMSS
// octects starting with S2 MUST be returned.
if !s.ep.scoreboard.IsSACKED(header.SACKBlock{Start: segSeq, End: segSeq.Add(1)}) {
// NextSeg():
//
// (1.a) S2 is greater than HighRxt
// (1.b) S2 is less than highest octect covered by
// any received SACK.
if s.FastRecovery.HighRxt.LessThan(segSeq) && segSeq.LessThan(s.ep.scoreboard.maxSACKED) {
// NextSeg():
// (1.c) IsLost(S2) returns true.
if s.ep.scoreboard.IsLost(segSeq) {
return seg, seg.Next(), false
}
// NextSeg():
//
// (3): If the conditions for rules (1) and (2)
// fail, but there exists an unSACKed sequence
// number S3 that meets the criteria for
// detecting loss given in steps 1.a and 1.b
// above (specifically excluding (1.c)) then one
// segment of upto SMSS octets starting with S3
// SHOULD be returned.
if s3 == nil {
s3 = seg
hint = seg.Next()
}
}
// NextSeg():
//
// (4) If the conditions for (1), (2) and (3) fail,
// but there exists outstanding unSACKED data, we
// provide the opportunity for a single "rescue"
// retransmission per entry into loss recovery. If
// HighACK is greater than RescueRxt (or RescueRxt
// is undefined), then one segment of upto SMSS
// octects that MUST include the highest outstanding
// unSACKed sequence number SHOULD be returned, and
// RescueRxt set to RecoveryPoint. HighRxt MUST NOT
// be updated.
if s.FastRecovery.RescueRxt.LessThan(s.SndUna - 1) {
if s4 != nil {
if s4.sequenceNumber.LessThan(segSeq) {
s4 = seg
}
} else {
s4 = seg
}
}
}
}
// If we got here then no segment matched step (1).
// Step (2): "If no sequence number 'S2' per rule (1)
// exists but there exists available unsent data and the
// receiver's advertised window allows, the sequence
// range of one segment of up to SMSS octets of
// previously unsent data starting with sequence number
// HighData+1 MUST be returned."
for seg := s.writeNext; seg != nil; seg = seg.Next() {
if s.isAssignedSequenceNumber(seg) && seg.sequenceNumber.LessThan(s.SndNxt) {
continue
}
// We do not split the segment here to <= smss as it has
// potentially not been assigned a sequence number yet.
return seg, nil, false
}
if s3 != nil {
return s3, hint, false
}
return s4, nil, true
}
// maybeSendSegment tries to send the specified segment and either coalesces
// other segments into this one or splits the specified segment based on the
// lower of the specified limit value or the receivers window size specified by
// end.
// +checklocks:s.ep.mu
func (s *sender) maybeSendSegment(seg *segment, limit int, end seqnum.Value) (sent bool) {
// We abuse the flags field to determine if we have already
// assigned a sequence number to this segment.
if !s.isAssignedSequenceNumber(seg) {
// Merge segments if allowed.
if seg.payloadSize() != 0 {
available := int(s.SndNxt.Size(end))
if available > limit {
available = limit
}
// nextTooBig indicates that the next segment was too
// large to entirely fit in the current segment. It
// would be possible to split the next segment and merge
// the portion that fits, but unexpectedly splitting
// segments can have user visible side-effects which can
// break applications. For example, RFC 7766 section 8
// says that the length and data of a DNS response
// should be sent in the same TCP segment to avoid
// triggering bugs in poorly written DNS
// implementations.
var nextTooBig bool
for nSeg := seg.Next(); nSeg != nil && nSeg.payloadSize() != 0; nSeg = seg.Next() {
if seg.payloadSize()+nSeg.payloadSize() > available {
nextTooBig = true
break
}
seg.merge(nSeg)
s.writeList.Remove(nSeg)
nSeg.DecRef()
}
if !nextTooBig && seg.payloadSize() < available {
// Segment is not full.
if s.Outstanding > 0 && s.ep.ops.GetDelayOption() {
// Nagle's algorithm. From Wikipedia:
// Nagle's algorithm works by
// combining a number of small
// outgoing messages and sending them
// all at once. Specifically, as long
// as there is a sent packet for which
// the sender has received no
// acknowledgment, the sender should
// keep buffering its output until it
// has a full packet's worth of
// output, thus allowing output to be
// sent all at once.
return false
}
// With TCP_CORK, hold back until minimum of the available
// send space and MSS.
// TODO(gvisor.dev/issue/2833): Drain the held segments after a
// timeout.
if seg.payloadSize() < s.MaxPayloadSize && s.ep.ops.GetCorkOption() {
return false
}
}
}
// Assign flags. We don't do it above so that we can merge
// additional data if Nagle holds the segment.
seg.sequenceNumber = s.SndNxt
seg.flags = header.TCPFlagAck | header.TCPFlagPsh
}
var segEnd seqnum.Value
if seg.payloadSize() == 0 {
if s.writeList.Back() != seg {
panic("FIN segments must be the final segment in the write list.")
}
seg.flags = header.TCPFlagAck | header.TCPFlagFin
segEnd = seg.sequenceNumber.Add(1)
// Update the state to reflect that we have now
// queued a FIN.
switch s.ep.EndpointState() {
case StateCloseWait:
s.ep.setEndpointState(StateLastAck)
default:
s.ep.setEndpointState(StateFinWait1)
}
} else {
// We're sending a non-FIN segment.
if seg.flags&header.TCPFlagFin != 0 {
panic("Netstack queues FIN segments without data.")
}
if !seg.sequenceNumber.LessThan(end) {
return false
}
available := int(seg.sequenceNumber.Size(end))
if available == 0 {
return false
}
// If the whole segment or at least 1MSS sized segment cannot
// be accomodated in the receiver advertized window, skip
// splitting and sending of the segment. ref:
// net/ipv4/tcp_output.c::tcp_snd_wnd_test()
//
// Linux checks this for all segment transmits not triggered by
// a probe timer. On this condition, it defers the segment split
// and transmit to a short probe timer.
//
// ref: include/net/tcp.h::tcp_check_probe_timer()
// ref: net/ipv4/tcp_output.c::tcp_write_wakeup()
//
// Instead of defining a new transmit timer, we attempt to split
// the segment right here if there are no pending segments. If
// there are pending segments, segment transmits are deferred to
// the retransmit timer handler.
if s.SndUna != s.SndNxt {
switch {
case available >= seg.payloadSize():
// OK to send, the whole segments fits in the
// receiver's advertised window.
case available >= s.MaxPayloadSize:
// OK to send, at least 1 MSS sized segment fits
// in the receiver's advertised window.
default:
return false
}
}
// The segment size limit is computed as a function of sender
// congestion window and MSS. When sender congestion window is >
// 1, this limit can be larger than MSS. Ensure that the
// currently available send space is not greater than minimum of
// this limit and MSS.
if available > limit {
available = limit
}
// If GSO is not in use then cap available to
// maxPayloadSize. When GSO is in use the gVisor GSO logic or
// the host GSO logic will cap the segment to the correct size.
if s.ep.gso.Type == stack.GSONone && available > s.MaxPayloadSize {
available = s.MaxPayloadSize
}
if seg.payloadSize() > available {
// A negative value causes splitSeg to panic anyways, so just panic
// earlier to get more information about the cause.
s.splitSeg(seg, available)
}
segEnd = seg.sequenceNumber.Add(seqnum.Size(seg.payloadSize()))
}
s.sendSegment(seg)
// Update sndNxt if we actually sent new data (as opposed to
// retransmitting some previously sent data).
if s.SndNxt.LessThan(segEnd) {
s.SndNxt = segEnd
}
return true
}
// +checklocks:s.ep.mu
func (s *sender) sendZeroWindowProbe() {
s.unackZeroWindowProbes++
// Send a zero window probe with sequence number pointing to
// the last acknowledged byte.
s.sendEmptySegment(header.TCPFlagAck, s.SndUna-1)
// Rearm the timer to continue probing.
s.resendTimer.enable(s.RTO)
}
func (s *sender) enableZeroWindowProbing() {
s.zeroWindowProbing = true
// We piggyback the probing on the retransmit timer with the
// current retranmission interval, as we may start probing while
// segment retransmissions.
if s.firstRetransmittedSegXmitTime == (tcpip.MonotonicTime{}) {
s.firstRetransmittedSegXmitTime = s.ep.stack.Clock().NowMonotonic()
}
s.resendTimer.enable(s.RTO)
}
func (s *sender) disableZeroWindowProbing() {
s.zeroWindowProbing = false
s.unackZeroWindowProbes = 0
s.firstRetransmittedSegXmitTime = tcpip.MonotonicTime{}
s.resendTimer.disable()
}
func (s *sender) postXmit(dataSent bool, shouldScheduleProbe bool) {
if dataSent {
// We sent data, so we should stop the keepalive timer to ensure
// that no keepalives are sent while there is pending data.
s.ep.disableKeepaliveTimer()
}
// If the sender has advertized zero receive window and we have
// data to be sent out, start zero window probing to query the
// the remote for it's receive window size.
if s.writeNext != nil && s.SndWnd == 0 {
s.enableZeroWindowProbing()
}
// If we have no more pending data, start the keepalive timer.
if s.SndUna == s.SndNxt {
s.ep.resetKeepaliveTimer(false)
} else {
// Enable timers if we have pending data.
if shouldScheduleProbe && s.shouldSchedulePTO() {
// Schedule PTO after transmitting new data that wasn't itself a TLP probe.
s.schedulePTO()
} else if !s.resendTimer.enabled() {
s.probeTimer.disable()
if s.Outstanding > 0 {
// Enable the resend timer if it's not enabled yet and there is
// outstanding data.
s.resendTimer.enable(s.RTO)
}
}
}
}
// sendData sends new data segments. It is called when data becomes available or
// when the send window opens up.
// +checklocks:s.ep.mu
func (s *sender) sendData() {
limit := s.MaxPayloadSize
if s.gso {
limit = int(s.ep.gso.MaxSize - header.TCPHeaderMaximumSize)
}
end := s.SndUna.Add(s.SndWnd)
// Reduce the congestion window to min(IW, cwnd) per RFC 5681, page 10.
// "A TCP SHOULD set cwnd to no more than RW before beginning
// transmission if the TCP has not sent data in the interval exceeding
// the retrasmission timeout."
if !s.FastRecovery.Active && s.state != tcpip.RTORecovery && s.ep.stack.Clock().NowMonotonic().Sub(s.LastSendTime) > s.RTO {
if s.SndCwnd > InitialCwnd {
s.SndCwnd = InitialCwnd
}
}
var dataSent bool
for seg := s.writeNext; seg != nil && s.Outstanding < s.SndCwnd; seg = seg.Next() {
cwndLimit := (s.SndCwnd - s.Outstanding) * s.MaxPayloadSize
if cwndLimit < limit {
limit = cwndLimit
}
if s.isAssignedSequenceNumber(seg) && s.ep.SACKPermitted && s.ep.scoreboard.IsSACKED(seg.sackBlock()) {
// Move writeNext along so that we don't try and scan data that
// has already been SACKED.
s.updateWriteNext(seg.Next())
continue
}
if sent := s.maybeSendSegment(seg, limit, end); !sent {
break
}
dataSent = true
s.Outstanding += s.pCount(seg, s.MaxPayloadSize)
s.updateWriteNext(seg.Next())
}
s.postXmit(dataSent, true /* shouldScheduleProbe */)
}
func (s *sender) enterRecovery() {
// Initialize the variables used to detect spurious recovery after
// entering recovery.
//
// See: https://www.rfc-editor.org/rfc/rfc3522.html#section-3.2 Step 1.
s.spuriousRecovery = false
s.retransmitTS = 0
s.FastRecovery.Active = true
// Save state to reflect we're now in fast recovery.
//
// See : https://tools.ietf.org/html/rfc5681#section-3.2 Step 3.
// We inflate the cwnd by 3 to account for the 3 packets which triggered
// the 3 duplicate ACKs and are now not in flight.
s.SndCwnd = s.Ssthresh + 3
s.SackedOut = 0
s.DupAckCount = 0
s.FastRecovery.First = s.SndUna
s.FastRecovery.Last = s.SndNxt - 1
s.FastRecovery.MaxCwnd = s.SndCwnd + s.Outstanding
s.FastRecovery.HighRxt = s.SndUna
s.FastRecovery.RescueRxt = s.SndUna
// Record retransmitTS if the sender is not in recovery as per:
// https://datatracker.ietf.org/doc/html/rfc3522#section-3.2 Step 2
s.recordRetransmitTS()
if s.ep.SACKPermitted {
s.state = tcpip.SACKRecovery
s.ep.stack.Stats().TCP.SACKRecovery.Increment()
// Set TLPRxtOut to false according to
// https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.6.1.
if s.rc.tlpRxtOut {
// The tail loss probe triggered recovery.
s.ep.stack.Stats().TCP.TLPRecovery.Increment()
}
s.rc.tlpRxtOut = false
return
}
s.state = tcpip.FastRecovery
s.ep.stack.Stats().TCP.FastRecovery.Increment()
}
func (s *sender) leaveRecovery() {
s.FastRecovery.Active = false
s.FastRecovery.MaxCwnd = 0
s.DupAckCount = 0
// Deflate cwnd. It had been artificially inflated when new dups arrived.
s.SndCwnd = s.Ssthresh
s.cc.PostRecovery()
}
// isAssignedSequenceNumber relies on the fact that we only set flags once a
// sequencenumber is assigned and that is only done right before we send the
// segment. As a result any segment that has a non-zero flag has a valid
// sequence number assigned to it.
func (s *sender) isAssignedSequenceNumber(seg *segment) bool {
return seg.flags != 0
}
// SetPipe implements the SetPipe() function described in RFC6675. Netstack
// maintains the congestion window in number of packets and not bytes, so
// SetPipe() here measures number of outstanding packets rather than actual
// outstanding bytes in the network.
func (s *sender) SetPipe() {
// If SACK isn't permitted or it is permitted but recovery is not active
// then ignore pipe calculations.
if !s.ep.SACKPermitted || !s.FastRecovery.Active {
return
}
pipe := 0
smss := seqnum.Size(s.ep.scoreboard.SMSS())
for s1 := s.writeList.Front(); s1 != nil && s1.payloadSize() != 0 && s.isAssignedSequenceNumber(s1); s1 = s1.Next() {
// With GSO each segment can be much larger than SMSS. So check the segment
// in SMSS sized ranges.
segEnd := s1.sequenceNumber.Add(seqnum.Size(s1.payloadSize()))
for startSeq := s1.sequenceNumber; startSeq.LessThan(segEnd); startSeq = startSeq.Add(smss) {
endSeq := startSeq.Add(smss)
if segEnd.LessThan(endSeq) {
endSeq = segEnd
}
sb := header.SACKBlock{Start: startSeq, End: endSeq}
// SetPipe():
//
// After initializing pipe to zero, the following steps are
// taken for each octet 'S1' in the sequence space between
// HighACK and HighData that has not been SACKed:
if !s1.sequenceNumber.LessThan(s.SndNxt) {
break
}
if s.ep.scoreboard.IsSACKED(sb) {
continue
}
// SetPipe():
//
// (a) If IsLost(S1) returns false, Pipe is incremened by 1.
//
// NOTE: here we mark the whole segment as lost. We do not try
// and test every byte in our write buffer as we maintain our
// pipe in terms of oustanding packets and not bytes.
if !s.ep.scoreboard.IsRangeLost(sb) {
pipe++
}
// SetPipe():
// (b) If S1 <= HighRxt, Pipe is incremented by 1.
if s1.sequenceNumber.LessThanEq(s.FastRecovery.HighRxt) {
pipe++
}
}
}
s.Outstanding = pipe
}
// shouldEnterRecovery returns true if the sender should enter fast recovery
// based on dupAck count and sack scoreboard.
// See RFC 6675 section 5.
func (s *sender) shouldEnterRecovery() bool {
return s.DupAckCount >= nDupAckThreshold ||
(s.ep.SACKPermitted && s.ep.tcpRecovery&tcpip.TCPRACKLossDetection == 0 && s.ep.scoreboard.IsLost(s.SndUna))
}
// detectLoss is called when an ack is received and returns whether a loss is
// detected. It manages the state related to duplicate acks and determines if
// a retransmit is needed according to the rules in RFC 6582 (NewReno).
func (s *sender) detectLoss(seg *segment) (fastRetransmit bool) {
// We're not in fast recovery yet.
// If RACK is enabled and there is no reordering we should honor the
// three duplicate ACK rule to enter recovery.
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-4
if s.ep.SACKPermitted && s.ep.tcpRecovery&tcpip.TCPRACKLossDetection != 0 {
if s.rc.Reord {
return false
}
}
if !s.isDupAck(seg) {
s.DupAckCount = 0
return false
}
s.DupAckCount++
// Do not enter fast recovery until we reach nDupAckThreshold or the
// first unacknowledged byte is considered lost as per SACK scoreboard.
if !s.shouldEnterRecovery() {
// RFC 6675 Step 3.
s.FastRecovery.HighRxt = s.SndUna - 1
// Do run SetPipe() to calculate the outstanding segments.
s.SetPipe()
s.state = tcpip.Disorder
return false
}
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 2
//
// We only do the check here, the incrementing of last to the highest
// sequence number transmitted till now is done when enterRecovery
// is invoked.
//
// Note that we only enter recovery when at least one more byte of data
// beyond s.fr.last (the highest byte that was outstanding when fast
// retransmit was last entered) is acked.
if !s.FastRecovery.Last.LessThan(seg.ackNumber - 1) {
s.DupAckCount = 0
return false
}
s.cc.HandleLossDetected()
s.enterRecovery()
return true
}
// isDupAck determines if seg is a duplicate ack as defined in
// https://tools.ietf.org/html/rfc5681#section-2.
func (s *sender) isDupAck(seg *segment) bool {
// A TCP that utilizes selective acknowledgments (SACKs) [RFC2018, RFC2883]
// can leverage the SACK information to determine when an incoming ACK is a
// "duplicate" (e.g., if the ACK contains previously unknown SACK
// information).
if s.ep.SACKPermitted && !seg.hasNewSACKInfo {
return false
}
// (a) The receiver of the ACK has outstanding data.
return s.SndUna != s.SndNxt &&
// (b) The incoming acknowledgment carries no data.
seg.logicalLen() == 0 &&
// (c) The SYN and FIN bits are both off.
!seg.flags.Intersects(header.TCPFlagFin|header.TCPFlagSyn) &&
// (d) the ACK number is equal to the greatest acknowledgment received on
// the given connection (TCP.UNA from RFC793).
seg.ackNumber == s.SndUna &&
// (e) the advertised window in the incoming acknowledgment equals the
// advertised window in the last incoming acknowledgment.
s.SndWnd == seg.window
}
// Iterate the writeList and update RACK for each segment which is newly acked
// either cumulatively or selectively. Loop through the segments which are
// sacked, and update the RACK related variables and check for reordering.
// Returns true when the DSACK block has been detected in the received ACK.
//
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2
// steps 2 and 3.
func (s *sender) walkSACK(rcvdSeg *segment) bool {
s.rc.setDSACKSeen(false)
// Look for DSACK block.
hasDSACK := false
idx := 0
n := len(rcvdSeg.parsedOptions.SACKBlocks)
if checkDSACK(rcvdSeg) {
dsackBlock := rcvdSeg.parsedOptions.SACKBlocks[0]
numDSACK := uint64(dsackBlock.End-dsackBlock.Start) / uint64(s.MaxPayloadSize)
// numDSACK can be zero when DSACK is sent for subsegments.
if numDSACK < 1 {
numDSACK = 1
}
s.ep.stack.Stats().TCP.SegmentsAckedWithDSACK.IncrementBy(numDSACK)
s.rc.setDSACKSeen(true)
idx = 1
n--
hasDSACK = true
}
if n == 0 {
return hasDSACK
}
// Sort the SACK blocks. The first block is the most recent unacked
// block. The following blocks can be in arbitrary order.
sackBlocks := make([]header.SACKBlock, n)
copy(sackBlocks, rcvdSeg.parsedOptions.SACKBlocks[idx:])
sort.Slice(sackBlocks, func(i, j int) bool {
return sackBlocks[j].Start.LessThan(sackBlocks[i].Start)
})
seg := s.writeList.Front()
for _, sb := range sackBlocks {
for seg != nil && seg.sequenceNumber.LessThan(sb.End) && seg.xmitCount != 0 {
if sb.Start.LessThanEq(seg.sequenceNumber) && !seg.acked {
s.rc.update(seg, rcvdSeg)
s.rc.detectReorder(seg)
seg.acked = true
s.SackedOut += s.pCount(seg, s.MaxPayloadSize)
}
seg = seg.Next()
}
}
return hasDSACK
}
// checkDSACK checks if a DSACK is reported.
func checkDSACK(rcvdSeg *segment) bool {
n := len(rcvdSeg.parsedOptions.SACKBlocks)
if n == 0 {
return false
}
sb := rcvdSeg.parsedOptions.SACKBlocks[0]
// Check if SACK block is invalid.
if sb.End.LessThan(sb.Start) {
return false
}
// See: https://tools.ietf.org/html/rfc2883#section-5 DSACK is sent in
// at most one SACK block. DSACK is detected in the below two cases:
// * If the SACK sequence space is less than this cumulative ACK, it is
// an indication that the segment identified by the SACK block has
// been received more than once by the receiver.
// * If the sequence space in the first SACK block is greater than the
// cumulative ACK, then the sender next compares the sequence space
// in the first SACK block with the sequence space in the second SACK
// block, if there is one. This comparison can determine if the first
// SACK block is reporting duplicate data that lies above the
// cumulative ACK.
if sb.Start.LessThan(rcvdSeg.ackNumber) {
return true
}
if n > 1 {
sb1 := rcvdSeg.parsedOptions.SACKBlocks[1]
if sb1.End.LessThan(sb1.Start) {
return false
}
// If the first SACK block is fully covered by second SACK
// block, then the first block is a DSACK block.
if sb.End.LessThanEq(sb1.End) && sb1.Start.LessThanEq(sb.Start) {
return true
}
}
return false
}
func (s *sender) recordRetransmitTS() {
// See: https://datatracker.ietf.org/doc/html/rfc3522#section-3.2
//
// The Eifel detection algorithm is used, only upon initiation of loss
// recovery, i.e., when either the timeout-based retransmit or the fast
// retransmit is sent. The Eifel detection algorithm MUST NOT be
// reinitiated after loss recovery has already started. In particular,
// it must not be reinitiated upon subsequent timeouts for the same
// segment, and not upon retransmitting segments other than the oldest
// outstanding segment, e.g., during selective loss recovery.
if s.inRecovery() {
return
}
// See: https://datatracker.ietf.org/doc/html/rfc3522#section-3.2 Step 2
//
// Set a "RetransmitTS" variable to the value of the Timestamp Value
// field of the Timestamps option included in the retransmit sent when
// loss recovery is initiated. A TCP sender must ensure that
// RetransmitTS does not get overwritten as loss recovery progresses,
// e.g., in case of a second timeout and subsequent second retransmit of
// the same octet.
s.retransmitTS = s.ep.tsValNow()
}
func (s *sender) detectSpuriousRecovery(hasDSACK bool, tsEchoReply uint32) {
// Return if the sender has already detected spurious recovery.
if s.spuriousRecovery {
return
}
// See: https://datatracker.ietf.org/doc/html/rfc3522#section-3.2 Step 4
//
// If the value of the Timestamp Echo Reply field of the acceptable ACK's
// Timestamps option is smaller than the value of RetransmitTS, then
// proceed to next step, else return.
if tsEchoReply >= s.retransmitTS {
return
}
// See: https://datatracker.ietf.org/doc/html/rfc3522#section-3.2 Step 5
//
// If the acceptable ACK carries a DSACK option [RFC2883], then return.
if hasDSACK {
return
}
// See: https://datatracker.ietf.org/doc/html/rfc3522#section-3.2 Step 5
//
// If during the lifetime of the TCP connection the TCP sender has
// previously received an ACK with a DSACK option, or the acceptable ACK
// does not acknowledge all outstanding data, then proceed to next step,
// else return.
numDSACK := s.ep.stack.Stats().TCP.SegmentsAckedWithDSACK.Value()
if numDSACK == 0 && s.SndUna == s.SndNxt {
return
}
// See: https://datatracker.ietf.org/doc/html/rfc3522#section-3.2 Step 6
//
// If the loss recovery has been initiated with a timeout-based
// retransmit, then set
// SpuriousRecovery <- SPUR_TO (equal 1),
// else set
// SpuriousRecovery <- dupacks+1
// Set the spurious recovery variable to true as we do not differentiate
// between fast, SACK or RTO recovery.
s.spuriousRecovery = true
s.ep.stack.Stats().TCP.SpuriousRecovery.Increment()
// RFC 3522 will detect all kinds of spurious recoveries (fast, SACK and
// timeout). Increment the metric for RTO only as we want to track the
// number of timeout recoveries.
if s.state == tcpip.RTORecovery {
s.ep.stack.Stats().TCP.SpuriousRTORecovery.Increment()
}
}
// Check if the sender is in RTORecovery, FastRecovery or SACKRecovery state.
func (s *sender) inRecovery() bool {
if s.state == tcpip.RTORecovery || s.state == tcpip.FastRecovery || s.state == tcpip.SACKRecovery {
return true
}
return false
}
// handleRcvdSegment is called when a segment is received; it is responsible for
// updating the send-related state.
// +checklocks:s.ep.mu
// +checklocksalias:s.rc.snd.ep.mu=s.ep.mu
func (s *sender) handleRcvdSegment(rcvdSeg *segment) {
// Check if we can extract an RTT measurement from this ack.
if !rcvdSeg.parsedOptions.TS && s.RTTMeasureSeqNum.LessThan(rcvdSeg.ackNumber) {
s.updateRTO(s.ep.stack.Clock().NowMonotonic().Sub(s.RTTMeasureTime))
s.RTTMeasureSeqNum = s.SndNxt
}
// Update Timestamp if required. See RFC7323, section-4.3.
if s.ep.SendTSOk && rcvdSeg.parsedOptions.TS {
s.ep.updateRecentTimestamp(rcvdSeg.parsedOptions.TSVal, s.MaxSentAck, rcvdSeg.sequenceNumber)
}
// Insert SACKBlock information into our scoreboard.
hasDSACK := false
if s.ep.SACKPermitted {
for _, sb := range rcvdSeg.parsedOptions.SACKBlocks {
// Only insert the SACK block if the following holds
// true:
// * SACK block acks data after the ack number in the
// current segment.
// * SACK block represents a sequence
// between sndUna and sndNxt (i.e. data that is
// currently unacked and in-flight).
// * SACK block that has not been SACKed already.
//
// NOTE: This check specifically excludes DSACK blocks
// which have start/end before sndUna and are used to
// indicate spurious retransmissions.
if rcvdSeg.ackNumber.LessThan(sb.Start) && s.SndUna.LessThan(sb.Start) && sb.End.LessThanEq(s.SndNxt) && !s.ep.scoreboard.IsSACKED(sb) {
s.ep.scoreboard.Insert(sb)
rcvdSeg.hasNewSACKInfo = true
}
}
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08
// section-7.2
// * Step 2: Update RACK stats.
// If the ACK is not ignored as invalid, update the RACK.rtt
// to be the RTT sample calculated using this ACK, and
// continue. If this ACK or SACK was for the most recently
// sent packet, then record the RACK.xmit_ts timestamp and
// RACK.end_seq sequence implied by this ACK.
// * Step 3: Detect packet reordering.
// If the ACK selectively or cumulatively acknowledges an
// unacknowledged and also never retransmitted sequence below
// RACK.fack, then the corresponding packet has been
// reordered and RACK.reord is set to TRUE.
if s.ep.tcpRecovery&tcpip.TCPRACKLossDetection != 0 {
hasDSACK = s.walkSACK(rcvdSeg)
}
s.SetPipe()
}
ack := rcvdSeg.ackNumber
fastRetransmit := false
// Do not leave fast recovery, if the ACK is out of range.
if s.FastRecovery.Active {
// Leave fast recovery if it acknowledges all the data covered by
// this fast recovery session.
if (ack-1).InRange(s.SndUna, s.SndNxt) && s.FastRecovery.Last.LessThan(ack) {
s.leaveRecovery()
}
} else {
// Detect loss by counting the duplicates and enter recovery.
fastRetransmit = s.detectLoss(rcvdSeg)
}
// See if TLP based recovery was successful.
if s.ep.tcpRecovery&tcpip.TCPRACKLossDetection != 0 {
s.detectTLPRecovery(ack, rcvdSeg)
}
// Stash away the current window size.
s.SndWnd = rcvdSeg.window
// Disable zero window probing if remote advertizes a non-zero receive
// window. This can be with an ACK to the zero window probe (where the
// acknumber refers to the already acknowledged byte) OR to any previously
// unacknowledged segment.
if s.zeroWindowProbing && rcvdSeg.window > 0 &&
(ack == s.SndUna || (ack-1).InRange(s.SndUna, s.SndNxt)) {
s.disableZeroWindowProbing()
}
// On receiving the ACK for the zero window probe, account for it and
// skip trying to send any segment as we are still probing for
// receive window to become non-zero.
if s.zeroWindowProbing && s.unackZeroWindowProbes > 0 && ack == s.SndUna {
s.unackZeroWindowProbes--
return
}
// Ignore ack if it doesn't acknowledge any new data.
if (ack - 1).InRange(s.SndUna, s.SndNxt) {
s.DupAckCount = 0
// See : https://tools.ietf.org/html/rfc1323#section-3.3.
// Specifically we should only update the RTO using TSEcr if the
// following condition holds:
//
// A TSecr value received in a segment is used to update the
// averaged RTT measurement only if the segment acknowledges
// some new data, i.e., only if it advances the left edge of
// the send window.
if s.ep.SendTSOk && rcvdSeg.parsedOptions.TSEcr != 0 {
s.updateRTO(s.ep.elapsed(s.ep.stack.Clock().NowMonotonic(), rcvdSeg.parsedOptions.TSEcr))
}
if s.shouldSchedulePTO() {
// Schedule PTO upon receiving an ACK that cumulatively acknowledges data.
// See https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.5.1.
s.schedulePTO()
} else {
// When an ack is received we must rearm the timer.
// RFC 6298 5.3
s.probeTimer.disable()
s.resendTimer.enable(s.RTO)
}
// Remove all acknowledged data from the write list.
acked := s.SndUna.Size(ack)
s.SndUna = ack
ackLeft := acked
originalOutstanding := s.Outstanding
for ackLeft > 0 {
// We use logicalLen here because we can have FIN
// segments (which are always at the end of list) that
// have no data, but do consume a sequence number.
seg := s.writeList.Front()
datalen := seg.logicalLen()
if datalen > ackLeft {
prevCount := s.pCount(seg, s.MaxPayloadSize)
seg.TrimFront(ackLeft)
seg.sequenceNumber.UpdateForward(ackLeft)
s.Outstanding -= prevCount - s.pCount(seg, s.MaxPayloadSize)
break
}
if s.writeNext == seg {
s.updateWriteNext(seg.Next())
}
// Update the RACK fields if SACK is enabled.
if s.ep.SACKPermitted && !seg.acked && s.ep.tcpRecovery&tcpip.TCPRACKLossDetection != 0 {
s.rc.update(seg, rcvdSeg)
s.rc.detectReorder(seg)
}
s.writeList.Remove(seg)
// If SACK is enabled then only reduce outstanding if
// the segment was not previously SACKED as these have
// already been accounted for in SetPipe().
if !s.ep.SACKPermitted || !s.ep.scoreboard.IsSACKED(seg.sackBlock()) {
s.Outstanding -= s.pCount(seg, s.MaxPayloadSize)
} else {
s.SackedOut -= s.pCount(seg, s.MaxPayloadSize)
}
seg.DecRef()
ackLeft -= datalen
}
// Clear SACK information for all acked data.
s.ep.scoreboard.Delete(s.SndUna)
// Detect if the sender entered recovery spuriously.
if s.inRecovery() {
s.detectSpuriousRecovery(hasDSACK, rcvdSeg.parsedOptions.TSEcr)
}
// If we are not in fast recovery then update the congestion
// window based on the number of acknowledged packets.
if !s.FastRecovery.Active {
s.cc.Update(originalOutstanding - s.Outstanding)
if s.FastRecovery.Last.LessThan(s.SndUna) {
s.state = tcpip.Open
// Update RACK when we are exiting fast or RTO
// recovery as described in the RFC
// draft-ietf-tcpm-rack-08 Section-7.2 Step 4.
if s.ep.tcpRecovery&tcpip.TCPRACKLossDetection != 0 {
s.rc.exitRecovery()
}
s.reorderTimer.disable()
}
}
// Update the send buffer usage and notify potential waiters.
s.ep.updateSndBufferUsage(int(acked))
// It is possible for s.outstanding to drop below zero if we get
// a retransmit timeout, reset outstanding to zero but later
// get an ack that cover previously sent data.
if s.Outstanding < 0 {
s.Outstanding = 0
}
s.SetPipe()
// If all outstanding data was acknowledged the disable the timer.
// RFC 6298 Rule 5.3
if s.SndUna == s.SndNxt {
s.Outstanding = 0
// Reset firstRetransmittedSegXmitTime to the zero value.
s.firstRetransmittedSegXmitTime = tcpip.MonotonicTime{}
s.resendTimer.disable()
s.probeTimer.disable()
}
}
if s.ep.SACKPermitted && s.ep.tcpRecovery&tcpip.TCPRACKLossDetection != 0 {
// Update RACK reorder window.
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2
// * Upon receiving an ACK:
// * Step 4: Update RACK reordering window
s.rc.updateRACKReorderWindow()
// After the reorder window is calculated, detect any loss by checking
// if the time elapsed after the segments are sent is greater than the
// reorder window.
if numLost := s.rc.detectLoss(rcvdSeg.rcvdTime); numLost > 0 && !s.FastRecovery.Active {
// If any segment is marked as lost by
// RACK, enter recovery and retransmit
// the lost segments.
s.cc.HandleLossDetected()
s.enterRecovery()
fastRetransmit = true
}
if s.FastRecovery.Active {
s.rc.DoRecovery(nil, fastRetransmit)
}
}
// Now that we've popped all acknowledged data from the retransmit
// queue, retransmit if needed.
if s.FastRecovery.Active && s.ep.tcpRecovery&tcpip.TCPRACKLossDetection == 0 {
s.lr.DoRecovery(rcvdSeg, fastRetransmit)
// When SACK is enabled data sending is governed by steps in
// RFC 6675 Section 5 recovery steps A-C.
// See: https://tools.ietf.org/html/rfc6675#section-5.
if s.ep.SACKPermitted {
return
}
}
// Send more data now that some of the pending data has been ack'd, or
// that the window opened up, or the congestion window was inflated due
// to a duplicate ack during fast recovery. This will also re-enable
// the retransmit timer if needed.
s.sendData()
}
// sendSegment sends the specified segment.
// +checklocks:s.ep.mu
func (s *sender) sendSegment(seg *segment) tcpip.Error {
if seg.xmitCount > 0 {
s.ep.stack.Stats().TCP.Retransmits.Increment()
s.ep.stats.SendErrors.Retransmits.Increment()
if s.SndCwnd < s.Ssthresh {
s.ep.stack.Stats().TCP.SlowStartRetransmits.Increment()
}
}
seg.xmitTime = s.ep.stack.Clock().NowMonotonic()
seg.xmitCount++
seg.lost = false
err := s.sendSegmentFromPacketBuffer(seg.pkt, seg.flags, seg.sequenceNumber)
// Every time a packet containing data is sent (including a
// retransmission), if SACK is enabled and we are retransmitting data
// then use the conservative timer described in RFC6675 Section 6.0,
// otherwise follow the standard time described in RFC6298 Section 5.1.
if err != nil && seg.payloadSize() != 0 {
if s.FastRecovery.Active && seg.xmitCount > 1 && s.ep.SACKPermitted {
s.resendTimer.enable(s.RTO)
} else {
if !s.resendTimer.enabled() {
s.resendTimer.enable(s.RTO)
}
}
}
return err
}
// sendSegmentFromPacketBuffer sends a new segment containing the given payload,
// flags and sequence number.
// +checklocks:s.ep.mu
// +checklocksalias:s.ep.rcv.ep.mu=s.ep.mu
func (s *sender) sendSegmentFromPacketBuffer(pkt stack.PacketBufferPtr, flags header.TCPFlags, seq seqnum.Value) tcpip.Error {
s.LastSendTime = s.ep.stack.Clock().NowMonotonic()
if seq == s.RTTMeasureSeqNum {
s.RTTMeasureTime = s.LastSendTime
}
rcvNxt, rcvWnd := s.ep.rcv.getSendParams()
// Remember the max sent ack.
s.MaxSentAck = rcvNxt
// We need to clone the packet because sendRaw takes ownership of pkt,
// and pkt could be reprocessed later on (i.e retrasmission).
pkt = pkt.Clone()
defer pkt.DecRef()
return s.ep.sendRaw(pkt, flags, seq, rcvNxt, rcvWnd)
}
// sendEmptySegment sends a new empty segment, flags and sequence number.
// +checklocks:s.ep.mu
// +checklocksalias:s.ep.rcv.ep.mu=s.ep.mu
func (s *sender) sendEmptySegment(flags header.TCPFlags, seq seqnum.Value) tcpip.Error {
s.LastSendTime = s.ep.stack.Clock().NowMonotonic()
if seq == s.RTTMeasureSeqNum {
s.RTTMeasureTime = s.LastSendTime
}
rcvNxt, rcvWnd := s.ep.rcv.getSendParams()
// Remember the max sent ack.
s.MaxSentAck = rcvNxt
return s.ep.sendEmptyRaw(flags, seq, rcvNxt, rcvWnd)
}
// maybeSendOutOfWindowAck sends an ACK if we are not being rate limited
// currently.
// +checklocks:s.ep.mu
func (s *sender) maybeSendOutOfWindowAck(seg *segment) {
// Data packets are unlikely to be part of an ACK loop. So always send
// an ACK for a packet w/ data.
if seg.payloadSize() > 0 || s.ep.allowOutOfWindowAck() {
s.sendAck()
}
}
func (s *sender) updateWriteNext(seg *segment) {
if s.writeNext != nil {
s.writeNext.DecRef()
}
if seg != nil {
seg.IncRef()
}
s.writeNext = seg
}
|