1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package waiter provides the implementation of a wait queue, where waiters can
// be enqueued to be notified when an event of interest happens.
//
// Becoming readable and/or writable are examples of events. Waiters are
// expected to use a pattern similar to this to make a blocking function out of
// a non-blocking one:
//
// func (o *object) blockingRead(...) error {
// err := o.nonBlockingRead(...)
// if err != ErrAgain {
// // Completed with no need to wait!
// return err
// }
//
// e := createOrGetWaiterEntry(...)
// o.EventRegister(&e, waiter.EventIn)
// defer o.EventUnregister(&e)
//
// // We need to try to read again after registration because the
// // object may have become readable between the last attempt to
// // read and read registration.
// err = o.nonBlockingRead(...)
// for err == ErrAgain {
// wait()
// err = o.nonBlockingRead(...)
// }
//
// return err
// }
//
// Another goroutine needs to notify waiters when events happen. For example:
//
// func (o *object) Write(...) ... {
// // Do write work.
// [...]
//
// if oldDataAvailableSize == 0 && dataAvailableSize > 0 {
// // If no data was available and now some data is
// // available, the object became readable, so notify
// // potential waiters about this.
// o.Notify(waiter.EventIn)
// }
// }
package waiter
import (
"gvisor.dev/gvisor/pkg/sync"
)
// EventMask represents io events as used in the poll() syscall.
type EventMask uint64
// Events that waiters can wait on. The meaning is the same as those in the
// poll() syscall.
const (
EventIn EventMask = 0x01 // POLLIN
EventPri EventMask = 0x02 // POLLPRI
EventOut EventMask = 0x04 // POLLOUT
EventErr EventMask = 0x08 // POLLERR
EventHUp EventMask = 0x10 // POLLHUP
EventRdNorm EventMask = 0x0040 // POLLRDNORM
EventWrNorm EventMask = 0x0100 // POLLWRNORM
EventInternal EventMask = 0x1000
allEvents EventMask = 0x1f | EventRdNorm | EventWrNorm
ReadableEvents EventMask = EventIn | EventRdNorm
WritableEvents EventMask = EventOut | EventWrNorm
)
// EventMaskFromLinux returns an EventMask representing the supported events
// from the Linux events e, which is in the format used by poll(2).
func EventMaskFromLinux(e uint32) EventMask {
// Our flag definitions are currently identical to Linux.
return EventMask(e) & allEvents
}
// ToLinux returns e in the format used by Linux poll(2).
func (e EventMask) ToLinux() uint32 {
// Our flag definitions are currently identical to Linux.
return uint32(e)
}
// Waitable contains the methods that need to be implemented by waitable
// objects.
type Waitable interface {
// Readiness returns what the object is currently ready for. If it's
// not ready for a desired purpose, the caller may use EventRegister and
// EventUnregister to get notifications once the object becomes ready.
//
// Implementations should allow for events like EventHUp and EventErr
// to be returned regardless of whether they are in the input EventMask.
Readiness(mask EventMask) EventMask
// EventRegister registers the given waiter entry to receive
// notifications when an event occurs that makes the object ready for
// at least one of the events in mask.
EventRegister(e *Entry) error
// EventUnregister unregisters a waiter entry previously registered with
// EventRegister().
EventUnregister(e *Entry)
}
// EventListener provides a notify callback.
type EventListener interface {
// NotifyEvent is the function to be called when the waiter entry is
// notified. It is responsible for doing whatever is needed to wake up
// the waiter.
//
// The callback is supposed to perform minimal work, and cannot call
// any method on the queue itself because it will be locked while the
// callback is running.
//
// The mask indicates the events that occurred and that the entry is
// interested in.
NotifyEvent(mask EventMask)
}
// Entry represents a waiter that can be add to the a wait queue. It can
// only be in one queue at a time, and is added "intrusively" to the queue with
// no extra memory allocations.
//
// +stateify savable
type Entry struct {
waiterEntry
// eventListener receives the notification.
eventListener EventListener
// mask should be immutable once queued.
mask EventMask
}
// Init initializes the Entry.
//
// This must only be called when unregistered.
func (e *Entry) Init(eventListener EventListener, mask EventMask) {
e.eventListener = eventListener
e.mask = mask
}
// Mask returns the entry mask.
func (e *Entry) Mask() EventMask {
return e.mask
}
// NotifyEvent notifies the event listener.
//
// Mask should be the full set of active events.
func (e *Entry) NotifyEvent(mask EventMask) {
if m := mask & e.mask; m != 0 {
e.eventListener.NotifyEvent(m)
}
}
// ChannelNotifier is a simple channel-based notification.
type ChannelNotifier chan struct{}
// NotifyEvent implements waiter.EventListener.NotifyEvent.
func (c ChannelNotifier) NotifyEvent(EventMask) {
select {
case c <- struct{}{}:
default:
}
}
// NewChannelEntry initializes a new Entry that does a non-blocking write to a
// struct{} channel when the callback is called. It returns the new Entry
// instance and the channel being used.
func NewChannelEntry(mask EventMask) (e Entry, ch chan struct{}) {
ch = make(chan struct{}, 1)
e.Init(ChannelNotifier(ch), mask)
return e, ch
}
type functionNotifier func(EventMask)
// NotifyEvent implements waiter.EventListener.NotifyEvent.
func (f functionNotifier) NotifyEvent(mask EventMask) {
f(mask)
}
// NewFunctionEntry initializes a new Entry that calls the given function.
func NewFunctionEntry(mask EventMask, fn func(EventMask)) (e Entry) {
e.Init(functionNotifier(fn), mask)
return e
}
// Queue represents the wait queue where waiters can be added and
// notifiers can notify them when events happen.
//
// The zero value for waiter.Queue is an empty queue ready for use.
//
// +stateify savable
type Queue struct {
list waiterList
mu sync.RWMutex `state:"nosave"`
}
// EventRegister adds a waiter to the wait queue.
func (q *Queue) EventRegister(e *Entry) {
q.mu.Lock()
q.list.PushBack(e)
q.mu.Unlock()
}
// EventUnregister removes the given waiter entry from the wait queue.
func (q *Queue) EventUnregister(e *Entry) {
q.mu.Lock()
q.list.Remove(e)
q.mu.Unlock()
}
// Notify notifies all waiters in the queue whose masks have at least one bit
// in common with the notification mask.
func (q *Queue) Notify(mask EventMask) {
q.mu.RLock()
for e := q.list.Front(); e != nil; e = e.Next() {
m := mask & e.mask
if m == 0 {
continue
}
e.eventListener.NotifyEvent(m) // Skip intermediate call.
}
q.mu.RUnlock()
}
// Events returns the set of events being waited on. It is the union of the
// masks of all registered entries.
func (q *Queue) Events() EventMask {
q.mu.RLock()
defer q.mu.RUnlock()
ret := EventMask(0)
for e := q.list.Front(); e != nil; e = e.Next() {
ret |= e.mask
}
return ret
}
// IsEmpty returns if the wait queue is empty or not.
func (q *Queue) IsEmpty() bool {
q.mu.RLock()
defer q.mu.RUnlock()
return q.list.Front() == nil
}
// AlwaysReady implements the Waitable interface but is always ready. Embedding
// this struct into another struct makes it implement the boilerplate empty
// functions automatically.
type AlwaysReady struct {
}
// Readiness always returns the input mask because this object is always ready.
func (*AlwaysReady) Readiness(mask EventMask) EventMask {
return mask
}
// EventRegister doesn't do anything because this object doesn't need to issue
// notifications because its readiness never changes.
func (*AlwaysReady) EventRegister(*Entry) error {
return nil
}
// EventUnregister doesn't do anything because this object doesn't need to issue
// notifications because its readiness never changes.
func (*AlwaysReady) EventUnregister(e *Entry) {
}
// NeverReady implements the Waitable interface but is never ready. Otherwise,
// this is exactly the same as AlwaysReady.
type NeverReady struct {
}
// Readiness always returns the input mask because this object is always ready.
func (*NeverReady) Readiness(mask EventMask) EventMask {
return mask
}
// EventRegister doesn't do anything because this object doesn't need to issue
// notifications because its readiness never changes.
func (*NeverReady) EventRegister(e *Entry) error {
return nil
}
// EventUnregister doesn't do anything because this object doesn't need to issue
// notifications because its readiness never changes.
func (*NeverReady) EventUnregister(e *Entry) {
}
|