1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package control
import (
"runtime"
"runtime/pprof"
"runtime/trace"
"time"
"gvisor.dev/gvisor/pkg/fd"
"gvisor.dev/gvisor/pkg/sentry/kernel"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/urpc"
)
const (
// DefaultBlockProfileRate is the default profiling rate for block
// profiles.
//
// The default here is 10%, which will record a stacktrace 10% of the
// time when blocking occurs. Since these events should not be super
// frequent, we expect this to achieve a reasonable balance between
// collecting the data we need and imposing a high performance cost
// (e.g. skewing even the CPU profile).
DefaultBlockProfileRate = 10
// DefaultMutexProfileRate is the default profiling rate for mutex
// profiles. Like the block rate above, we use a default rate of 10%
// for the same reasons.
DefaultMutexProfileRate = 10
)
// Profile includes profile-related RPC stubs. It provides a way to
// control the built-in runtime profiling facilities.
//
// The profile object must be instantied via NewProfile.
type Profile struct {
// kernel is the kernel under profile. It's immutable.
kernel *kernel.Kernel
// cpuMu protects CPU profiling.
cpuMu sync.Mutex
// blockMu protects block profiling.
blockMu sync.Mutex
// mutexMu protects mutex profiling.
mutexMu sync.Mutex
// traceMu protects trace profiling.
traceMu sync.Mutex
// done is closed when profiling is done.
done chan struct{}
}
// NewProfile returns a new Profile object.
func NewProfile(k *kernel.Kernel) *Profile {
return &Profile{
kernel: k,
done: make(chan struct{}),
}
}
// Stop implements urpc.Stopper.Stop.
func (p *Profile) Stop() {
close(p.done)
}
// CPUProfileOpts contains options specifically for CPU profiles.
type CPUProfileOpts struct {
// FilePayload is the destination for the profiling output.
urpc.FilePayload
// Duration is the duration of the profile.
Duration time.Duration `json:"duration"`
}
// CPU is an RPC stub which collects a CPU profile.
func (p *Profile) CPU(o *CPUProfileOpts, _ *struct{}) error {
if len(o.FilePayload.Files) < 1 {
return nil // Allowed.
}
output := o.FilePayload.Files[0]
defer output.Close()
p.cpuMu.Lock()
defer p.cpuMu.Unlock()
// Returns an error if profiling is already started.
if err := pprof.StartCPUProfile(output); err != nil {
return err
}
defer pprof.StopCPUProfile()
// Collect the profile.
select {
case <-time.After(o.Duration):
case <-p.done:
}
return nil
}
// HeapProfileOpts contains options specifically for heap profiles.
type HeapProfileOpts struct {
// FilePayload is the destination for the profiling output.
urpc.FilePayload
// Delay is the sleep time, similar to Duration. This may
// not affect the data collected however, as the heap will
// continue only the memory associated with the last alloc.
Delay time.Duration `json:"delay"`
}
// Heap generates a heap profile.
func (p *Profile) Heap(o *HeapProfileOpts, _ *struct{}) error {
if len(o.FilePayload.Files) < 1 {
return nil // Allowed.
}
output := o.FilePayload.Files[0]
defer output.Close()
// Wait for the given delay.
select {
case <-time.After(o.Delay):
case <-p.done:
}
// Get up-to-date statistics.
runtime.GC()
// Write the given profile.
return pprof.WriteHeapProfile(output)
}
// GoroutineProfileOpts contains options specifically for goroutine profiles.
type GoroutineProfileOpts struct {
// FilePayload is the destination for the profiling output.
urpc.FilePayload
}
// Goroutine dumps out the stack trace for all running goroutines.
func (p *Profile) Goroutine(o *GoroutineProfileOpts, _ *struct{}) error {
if len(o.FilePayload.Files) < 1 {
return nil // Allowed.
}
output := o.FilePayload.Files[0]
defer output.Close()
return pprof.Lookup("goroutine").WriteTo(output, 2)
}
// BlockProfileOpts contains options specifically for block profiles.
type BlockProfileOpts struct {
// FilePayload is the destination for the profiling output.
urpc.FilePayload
// Duration is the duration of the profile.
Duration time.Duration `json:"duration"`
// Rate is the block profile rate.
Rate int `json:"rate"`
}
// Block dumps a blocking profile.
func (p *Profile) Block(o *BlockProfileOpts, _ *struct{}) error {
if len(o.FilePayload.Files) < 1 {
return nil // Allowed.
}
output := o.FilePayload.Files[0]
defer output.Close()
p.blockMu.Lock()
defer p.blockMu.Unlock()
// Always set the rate. We then wait to collect a profile at this rate,
// and disable when we're done.
rate := DefaultBlockProfileRate
if o.Rate != 0 {
rate = o.Rate
}
runtime.SetBlockProfileRate(rate)
defer runtime.SetBlockProfileRate(0)
// Collect the profile.
select {
case <-time.After(o.Duration):
case <-p.done:
}
return pprof.Lookup("block").WriteTo(output, 0)
}
// MutexProfileOpts contains options specifically for mutex profiles.
type MutexProfileOpts struct {
// FilePayload is the destination for the profiling output.
urpc.FilePayload
// Duration is the duration of the profile.
Duration time.Duration `json:"duration"`
// Fraction is the mutex profile fraction.
Fraction int `json:"fraction"`
}
// Mutex dumps a mutex profile.
func (p *Profile) Mutex(o *MutexProfileOpts, _ *struct{}) error {
if len(o.FilePayload.Files) < 1 {
return nil // Allowed.
}
output := o.FilePayload.Files[0]
defer output.Close()
p.mutexMu.Lock()
defer p.mutexMu.Unlock()
// Always set the fraction.
fraction := DefaultMutexProfileRate
if o.Fraction != 0 {
fraction = o.Fraction
}
runtime.SetMutexProfileFraction(fraction)
defer runtime.SetMutexProfileFraction(0)
// Collect the profile.
select {
case <-time.After(o.Duration):
case <-p.done:
}
return pprof.Lookup("mutex").WriteTo(output, 0)
}
// TraceProfileOpts contains options specifically for traces.
type TraceProfileOpts struct {
// FilePayload is the destination for the profiling output.
urpc.FilePayload
// Duration is the duration of the profile.
Duration time.Duration `json:"duration"`
}
// Trace is an RPC stub which starts collection of an execution trace.
func (p *Profile) Trace(o *TraceProfileOpts, _ *struct{}) error {
if len(o.FilePayload.Files) < 1 {
return nil // Allowed.
}
output, err := fd.NewFromFile(o.FilePayload.Files[0])
if err != nil {
return err
}
defer output.Close()
p.traceMu.Lock()
defer p.traceMu.Unlock()
// Returns an error if profiling is already started.
if err := trace.Start(output); err != nil {
output.Close()
return err
}
defer trace.Stop()
// Ensure all trace contexts are registered.
p.kernel.RebuildTraceContexts()
// Wait for the trace.
select {
case <-time.After(o.Duration):
case <-p.done:
}
// Similarly to the case above, if tasks have not ended traces, we will
// lose information. Thus we need to rebuild the tasks in order to have
// complete information. This will not lose information if multiple
// traces are overlapping.
p.kernel.RebuildTraceContexts()
return nil
}
|