1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package control
import (
"bytes"
"encoding/json"
"fmt"
"os"
"sort"
"strings"
"text/tabwriter"
"time"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/fd"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sentry/fdimport"
"gvisor.dev/gvisor/pkg/sentry/fsimpl/host"
"gvisor.dev/gvisor/pkg/sentry/fsimpl/user"
"gvisor.dev/gvisor/pkg/sentry/kernel"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time"
"gvisor.dev/gvisor/pkg/sentry/limits"
"gvisor.dev/gvisor/pkg/sentry/usage"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/urpc"
)
// Proc includes task-related functions.
//
// At the moment, this is limited to exec support.
type Proc struct {
Kernel *kernel.Kernel
}
// FilePayload aids to ensure that payload files and guest file descriptors are
// consistent when instantiated through the NewFilePayload helper method.
type FilePayload struct {
// FilePayload is the file payload that is transferred via RPC.
urpc.FilePayload
// GuestFDs are the file descriptors in the file descriptor map of the
// executed application. They correspond 1:1 to the files in the
// urpc.FilePayload. If a program is executed from a host file descriptor,
// the file payload may contain one additional file. In that case, the file
// used for program execution is the last file in the Files array.
GuestFDs []int
}
// NewFilePayload returns a FilePayload that maps file descriptors to files inside
// the executed process and provides a file for execution.
func NewFilePayload(fdMap map[int]*os.File, execFile *os.File) FilePayload {
fileCount := len(fdMap)
if execFile != nil {
fileCount++
}
files := make([]*os.File, 0, fileCount)
guestFDs := make([]int, 0, len(fdMap))
// Make the map iteration order deterministic for the sake of testing.
// Otherwise, the order is randomized and tests relying on the comparison
// of equality will fail.
for key := range fdMap {
guestFDs = append(guestFDs, key)
}
sort.Ints(guestFDs)
for _, guestFD := range guestFDs {
files = append(files, fdMap[guestFD])
}
if execFile != nil {
files = append(files, execFile)
}
return FilePayload{
FilePayload: urpc.FilePayload{Files: files},
GuestFDs: guestFDs,
}
}
// ExecArgs is the set of arguments to exec.
type ExecArgs struct {
// Filename is the filename to load.
//
// If this is provided as "", then the file will be guessed via Argv[0].
Filename string `json:"filename"`
// Argv is a list of arguments.
Argv []string `json:"argv"`
// Envv is a list of environment variables.
Envv []string `json:"envv"`
// MountNamespace is the mount namespace to execute the new process in.
// A reference on MountNamespace must be held for the lifetime of the
// ExecArgs. If MountNamespace is nil, it will default to the init
// process's MountNamespace.
MountNamespace *vfs.MountNamespace
// WorkingDirectory defines the working directory for the new process.
WorkingDirectory string `json:"wd"`
// KUID is the UID to run with in the root user namespace. Defaults to
// root if not set explicitly.
KUID auth.KUID
// KGID is the GID to run with in the root user namespace. Defaults to
// the root group if not set explicitly.
KGID auth.KGID
// ExtraKGIDs is the list of additional groups to which the user belongs.
ExtraKGIDs []auth.KGID
// Capabilities is the list of capabilities to give to the process.
Capabilities *auth.TaskCapabilities
// StdioIsPty indicates that FDs 0, 1, and 2 are connected to a host pty FD.
StdioIsPty bool
// FilePayload determines the files to give to the new process.
FilePayload
// ContainerID is the container for the process being executed.
ContainerID string
// PIDNamespace is the pid namespace for the process being executed.
PIDNamespace *kernel.PIDNamespace
// Limits is the limit set for the process being executed.
Limits *limits.LimitSet
}
// String prints the arguments as a string.
func (args *ExecArgs) String() string {
if len(args.Argv) == 0 {
return args.Filename
}
a := make([]string, len(args.Argv))
copy(a, args.Argv)
if args.Filename != "" {
a[0] = args.Filename
}
return strings.Join(a, " ")
}
// Exec runs a new task.
func (proc *Proc) Exec(args *ExecArgs, waitStatus *uint32) error {
newTG, _, _, err := proc.execAsync(args)
if err != nil {
return err
}
// Wait for completion.
newTG.WaitExited()
*waitStatus = uint32(newTG.ExitStatus())
return nil
}
// ExecAsync runs a new task, but doesn't wait for it to finish. It is defined
// as a function rather than a method to avoid exposing execAsync as an RPC.
func ExecAsync(proc *Proc, args *ExecArgs) (*kernel.ThreadGroup, kernel.ThreadID, *host.TTYFileDescription, error) {
return proc.execAsync(args)
}
// execAsync runs a new task, but doesn't wait for it to finish. It returns the
// newly created thread group and its PID. If the stdio FDs are TTYs, then a
// TTYFileOperations that wraps the TTY is also returned.
func (proc *Proc) execAsync(args *ExecArgs) (*kernel.ThreadGroup, kernel.ThreadID, *host.TTYFileDescription, error) {
// Import file descriptors.
fdTable := proc.Kernel.NewFDTable()
creds := auth.NewUserCredentials(
args.KUID,
args.KGID,
args.ExtraKGIDs,
args.Capabilities,
proc.Kernel.RootUserNamespace())
pidns := args.PIDNamespace
if pidns == nil {
pidns = proc.Kernel.RootPIDNamespace()
}
limitSet := args.Limits
if limitSet == nil {
limitSet = limits.NewLimitSet()
}
initArgs := kernel.CreateProcessArgs{
Filename: args.Filename,
Argv: args.Argv,
Envv: args.Envv,
WorkingDirectory: args.WorkingDirectory,
MountNamespace: args.MountNamespace,
Credentials: creds,
FDTable: fdTable,
Umask: 0022,
Limits: limitSet,
MaxSymlinkTraversals: linux.MaxSymlinkTraversals,
UTSNamespace: proc.Kernel.RootUTSNamespace(),
IPCNamespace: proc.Kernel.RootIPCNamespace(),
ContainerID: args.ContainerID,
PIDNamespace: pidns,
Origin: kernel.OriginExec,
}
if initArgs.MountNamespace != nil {
// initArgs must hold a reference on MountNamespace, which will
// be donated to the new process in CreateProcess.
initArgs.MountNamespace.IncRef()
}
ctx := initArgs.NewContext(proc.Kernel)
defer fdTable.DecRef(ctx)
// Get the full path to the filename from the PATH env variable.
if initArgs.MountNamespace == nil {
// Set initArgs so that 'ctx' returns the namespace.
//
// Add a reference to the namespace, which is transferred to the new process.
initArgs.MountNamespace = proc.Kernel.GlobalInit().Leader().MountNamespace()
initArgs.MountNamespace.IncRef()
}
fdMap, execFD, err := args.unpackFiles()
if err != nil {
return nil, 0, nil, fmt.Errorf("creating fd map: %w", err)
}
defer func() {
for _, hostFD := range fdMap {
_ = hostFD.Close()
}
}()
if execFD != nil {
if initArgs.Filename != "" {
return nil, 0, nil, fmt.Errorf("process must either be started from a file or a filename, not both")
}
file, err := host.NewFD(ctx, proc.Kernel.HostMount(), execFD.FD(), &host.NewFDOptions{
Readonly: true,
Savable: true,
VirtualOwner: true,
UID: args.KUID,
GID: args.KGID,
})
if err != nil {
return nil, 0, nil, err
}
defer file.DecRef(ctx)
execFD.Release()
initArgs.File = file
} else {
resolved, err := user.ResolveExecutablePath(ctx, &initArgs)
if err != nil {
return nil, 0, nil, err
}
initArgs.Filename = resolved
}
// TODO(gvisor.dev/issue/1956): Container name is not really needed because
// exec processes are not restored, but add it for completeness.
ttyFile, err := fdimport.Import(ctx, fdTable, args.StdioIsPty, args.KUID, args.KGID, fdMap, "")
if err != nil {
return nil, 0, nil, err
}
// Set cgroups to the new exec task if cgroups are mounted.
cgroupRegistry := proc.Kernel.CgroupRegistry()
initialCgrps := map[kernel.Cgroup]struct{}{}
for _, ctrl := range kernel.CgroupCtrls {
cg, err := cgroupRegistry.FindCgroup(ctx, ctrl, "/"+args.ContainerID)
if err != nil {
log.Warningf("cgroup mount for controller %v not found", ctrl)
continue
}
initialCgrps[cg] = struct{}{}
}
if len(initialCgrps) > 0 {
initArgs.InitialCgroups = initialCgrps
}
tg, tid, err := proc.Kernel.CreateProcess(initArgs)
if err != nil {
return nil, 0, nil, err
}
// Set the foreground process group on the TTY before starting the process.
if ttyFile != nil {
ttyFile.InitForegroundProcessGroup(tg.ProcessGroup())
}
// Start the newly created process.
proc.Kernel.StartProcess(tg)
return tg, tid, ttyFile, nil
}
// PsArgs is the set of arguments to ps.
type PsArgs struct {
// JSON will force calls to Ps to return the result as a JSON payload.
JSON bool
}
// Ps provides a process listing for the running kernel.
func (proc *Proc) Ps(args *PsArgs, out *string) error {
var p []*Process
if e := Processes(proc.Kernel, "", &p); e != nil {
return e
}
if !args.JSON {
*out = ProcessListToTable(p)
} else {
s, e := ProcessListToJSON(p)
if e != nil {
return e
}
*out = s
}
return nil
}
// Process contains information about a single process in a Sandbox.
type Process struct {
UID auth.KUID `json:"uid"`
PID kernel.ThreadID `json:"pid"`
// Parent PID
PPID kernel.ThreadID `json:"ppid"`
Threads []kernel.ThreadID `json:"threads"`
// Processor utilization
C int32 `json:"c"`
// TTY name of the process. Will be of the form "pts/N" if there is a
// TTY, or "?" if there is not.
TTY string `json:"tty"`
// Start time
STime string `json:"stime"`
// CPU time
Time string `json:"time"`
// Executable shortname (e.g. "sh" for /bin/sh)
Cmd string `json:"cmd"`
}
// ProcessListToTable prints a table with the following format:
// UID PID PPID C TTY STIME TIME CMD
// 0 1 0 0 pty/4 14:04 505262ns tail
func ProcessListToTable(pl []*Process) string {
var buf bytes.Buffer
tw := tabwriter.NewWriter(&buf, 10, 1, 3, ' ', 0)
fmt.Fprint(tw, "UID\tPID\tPPID\tC\tTTY\tSTIME\tTIME\tCMD")
for _, d := range pl {
fmt.Fprintf(tw, "\n%d\t%d\t%d\t%d\t%s\t%s\t%s\t%s",
d.UID,
d.PID,
d.PPID,
d.C,
d.TTY,
d.STime,
d.Time,
d.Cmd)
}
tw.Flush()
return buf.String()
}
// ProcessListToJSON will return the JSON representation of ps.
func ProcessListToJSON(pl []*Process) (string, error) {
b, err := json.MarshalIndent(pl, "", " ")
if err != nil {
return "", fmt.Errorf("couldn't marshal process list %v: %v", pl, err)
}
return string(b), nil
}
// PrintPIDsJSON prints a JSON object containing only the PIDs in pl. This
// behavior is the same as runc's.
func PrintPIDsJSON(pl []*Process) (string, error) {
pids := make([]kernel.ThreadID, 0, len(pl))
for _, d := range pl {
pids = append(pids, d.PID)
}
b, err := json.Marshal(pids)
if err != nil {
return "", fmt.Errorf("couldn't marshal PIDs %v: %v", pids, err)
}
return string(b), nil
}
// Processes retrieves information about processes running in the sandbox with
// the given container id. All processes are returned if 'containerID' is empty.
func Processes(k *kernel.Kernel, containerID string, out *[]*Process) error {
ts := k.TaskSet()
now := k.RealtimeClock().Now()
pidns := ts.Root
for _, tg := range pidns.ThreadGroups() {
pid := pidns.IDOfThreadGroup(tg)
// If tg has already been reaped ignore it.
if pid == 0 {
continue
}
if containerID != "" && containerID != tg.Leader().ContainerID() {
continue
}
ppid := kernel.ThreadID(0)
if p := tg.Leader().Parent(); p != nil {
ppid = pidns.IDOfThreadGroup(p.ThreadGroup())
}
threads := tg.MemberIDs(pidns)
*out = append(*out, &Process{
UID: tg.Leader().Credentials().EffectiveKUID,
PID: pid,
PPID: ppid,
Threads: threads,
STime: formatStartTime(now, tg.Leader().StartTime()),
C: percentCPU(tg.CPUStats(), tg.Leader().StartTime(), now),
Time: tg.CPUStats().SysTime.String(),
Cmd: tg.Leader().Name(),
TTY: ttyName(tg.TTY()),
})
}
sort.Slice(*out, func(i, j int) bool { return (*out)[i].PID < (*out)[j].PID })
return nil
}
// formatStartTime formats startTime depending on the current time:
// - If startTime was today, HH:MM is used.
// - If startTime was not today but was this year, MonDD is used (e.g. Jan02)
// - If startTime was not this year, the year is used.
func formatStartTime(now, startTime ktime.Time) string {
nowS, nowNs := now.Unix()
n := time.Unix(nowS, nowNs)
startTimeS, startTimeNs := startTime.Unix()
st := time.Unix(startTimeS, startTimeNs)
format := "15:04"
if st.YearDay() != n.YearDay() {
format = "Jan02"
}
if st.Year() != n.Year() {
format = "2006"
}
return st.Format(format)
}
func percentCPU(stats usage.CPUStats, startTime, now ktime.Time) int32 {
// Note: In procps, there is an option to include child CPU stats. As
// it is disabled by default, we do not include them.
total := stats.UserTime + stats.SysTime
lifetime := now.Sub(startTime)
if lifetime <= 0 {
return 0
}
percentCPU := total * 100 / lifetime
// Cap at 99% since procps does the same.
if percentCPU > 99 {
percentCPU = 99
}
return int32(percentCPU)
}
func ttyName(tty *kernel.TTY) string {
if tty == nil {
return "?"
}
return fmt.Sprintf("pts/%d", tty.Index)
}
// ContainerUsage retrieves per-container CPU usage.
func ContainerUsage(kr *kernel.Kernel) map[string]uint64 {
cusage := make(map[string]uint64)
for _, tg := range kr.TaskSet().Root.ThreadGroups() {
// We want each tg's usage including reaped children.
cid := tg.Leader().ContainerID()
stats := tg.CPUStats()
stats.Accumulate(tg.JoinedChildCPUStats())
cusage[cid] += uint64(stats.UserTime.Nanoseconds()) + uint64(stats.SysTime.Nanoseconds())
}
return cusage
}
// unpackFiles unpacks the file descriptor map and, if applicable, the file
// descriptor to be used for execution from the unmarshalled ExecArgs.
func (args *ExecArgs) unpackFiles() (map[int]*fd.FD, *fd.FD, error) {
var execFD *fd.FD
var err error
// If there is one additional file, the last file is used for program
// execution.
if len(args.Files) == len(args.GuestFDs)+1 {
execFD, err = fd.NewFromFile(args.Files[len(args.Files)-1])
if err != nil {
return nil, nil, fmt.Errorf("duplicating exec file: %w", err)
}
} else if len(args.Files) != len(args.GuestFDs) {
return nil, nil, fmt.Errorf("length of payload files does not match length of file descriptor array")
}
// GuestFDs are the indexes of our FD map.
fdMap := make(map[int]*fd.FD, len(args.GuestFDs))
for i, appFD := range args.GuestFDs {
file := args.Files[i]
if appFD < 0 {
return nil, nil, fmt.Errorf("guest file descriptors must be 0 or greater")
}
hostFD, err := fd.NewFromFile(file)
if err != nil {
return nil, nil, fmt.Errorf("duplicating payload files: %w", err)
}
fdMap[appFD] = hostFD
}
return fdMap, execFD, nil
}
|