1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
// Copyright 2023 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package tpuproxy implements proxying for TPU devices.
package tpuproxy
import (
"fmt"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/fdnotifier"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/marshal/primitive"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/fsimpl/eventfd"
"gvisor.dev/gvisor/pkg/sentry/kernel"
"gvisor.dev/gvisor/pkg/sentry/mm"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/usermem"
"gvisor.dev/gvisor/pkg/waiter"
)
const (
// A value of -1 can be used to either de-assign interrupts if already
// assigned or skip un-assigned interrupts.
disableInterrupt = -1
)
var (
// vfioDeviceInfoFlags contains all available flags for
// IOCTL command VFIO_DEVICE_GET_INFO.
vfioDeviceInfoFlags uint32 = linux.VFIO_DEVICE_FLAGS_RESET | linux.VFIO_DEVICE_FLAGS_PCI |
linux.VFIO_DEVICE_FLAGS_PLATFORM | linux.VFIO_DEVICE_FLAGS_AMBA |
linux.VFIO_DEVICE_FLAGS_CCW | linux.VFIO_DEVICE_FLAGS_AP | linux.VFIO_DEVICE_FLAGS_FSL_MC |
linux.VFIO_DEVICE_FLAGS_CAPS | linux.VFIO_DEVICE_FLAGS_CDX
// vfioIrqSetFlags includes all available flags for IOCTL comamnd VFIO_DEVICE_SET_IRQS
vfioIrqSetFlags uint32 = linux.VFIO_IRQ_SET_DATA_TYPE_MASK | linux.VFIO_IRQ_SET_ACTION_TYPE_MASK
)
// tpuFD implements vfs.FileDescriptionImpl for /dev/vfio/[0-9]+
//
// tpuFD is not savable until TPU save/restore is needed.
type tpuFD struct {
vfsfd vfs.FileDescription
vfs.FileDescriptionDefaultImpl
vfs.DentryMetadataFileDescriptionImpl
vfs.NoLockFD
hostFD int32
device *tpuDevice
queue waiter.Queue
memmapFile tpuFDMemmapFile
}
// Release implements vfs.FileDescriptionImpl.Release.
func (fd *tpuFD) Release(context.Context) {
fdnotifier.RemoveFD(fd.hostFD)
fd.queue.Notify(waiter.EventHUp)
unix.Close(int(fd.hostFD))
}
// EventRegister implements waiter.Waitable.EventRegister.
func (fd *tpuFD) EventRegister(e *waiter.Entry) error {
fd.queue.EventRegister(e)
if err := fdnotifier.UpdateFD(fd.hostFD); err != nil {
fd.queue.EventUnregister(e)
return err
}
return nil
}
// EventUnregister implements waiter.Waitable.EventUnregister.
func (fd *tpuFD) EventUnregister(e *waiter.Entry) {
fd.queue.EventUnregister(e)
if err := fdnotifier.UpdateFD(fd.hostFD); err != nil {
panic(fmt.Sprint("UpdateFD:", err))
}
}
// Readiness implements waiter.Waitable.Readiness.
func (fd *tpuFD) Readiness(mask waiter.EventMask) waiter.EventMask {
return fdnotifier.NonBlockingPoll(fd.hostFD, mask)
}
// Epollable implements vfs.FileDescriptionImpl.Epollable.
func (fd *tpuFD) Epollable() bool {
return true
}
// Ioctl implements vfs.FileDescriptionImpl.Ioctl.
func (fd *tpuFD) Ioctl(ctx context.Context, uio usermem.IO, sysno uintptr, args arch.SyscallArguments) (uintptr, error) {
cmd := args[1].Uint()
t := kernel.TaskFromContext(ctx)
if t == nil {
panic("Ioctl should be called from a task context")
}
switch cmd {
case linux.VFIO_GROUP_SET_CONTAINER:
return fd.setContainer(ctx, t, args[2].Pointer())
case linux.VFIO_GROUP_GET_DEVICE_FD:
ret, cleanup, err := fd.getPciDeviceFd(t, args[2].Pointer())
defer cleanup()
return ret, err
}
return 0, linuxerr.ENOSYS
}
func (fd *tpuFD) setContainer(ctx context.Context, t *kernel.Task, arg hostarch.Addr) (uintptr, error) {
var vfioContainerFD int32
if _, err := primitive.CopyInt32In(t, arg, &vfioContainerFD); err != nil {
return 0, err
}
vfioContainerFile, _ := t.FDTable().Get(vfioContainerFD)
if vfioContainerFile == nil {
return 0, linuxerr.EBADF
}
defer vfioContainerFile.DecRef(ctx)
vfioContainer, ok := vfioContainerFile.Impl().(*vfioFD)
if !ok {
return 0, linuxerr.EINVAL
}
return IOCTLInvokePtrArg[uint32](fd.hostFD, linux.VFIO_GROUP_SET_CONTAINER, &vfioContainer.hostFD)
}
// It will be the caller's responsibility to call the returned cleanup function.
func (fd *tpuFD) getPciDeviceFd(t *kernel.Task, arg hostarch.Addr) (uintptr, func(), error) {
pciAddress, err := t.CopyInString(arg, hostarch.PageSize)
if err != nil {
return 0, func() {}, err
}
// Build a NUL-terminated slice of bytes containing the PCI address.
pciAddressBytes, err := unix.ByteSliceFromString(pciAddress)
if err != nil {
return 0, func() {}, err
}
// Pass the address of the PCI address' first byte which can be
// recognized by the IOCTL syscall.
hostFD, err := IOCTLInvokePtrArg[uint32](fd.hostFD, linux.VFIO_GROUP_GET_DEVICE_FD, &pciAddressBytes[0])
if err != nil {
return 0, func() {}, err
}
pciDevFD := &pciDeviceFD{
hostFD: int32(hostFD),
}
cleanup := func() {
unix.Close(int(hostFD))
}
// See drivers/vfio/group.c:vfio_device_open_file(), the PCI device
// is accessed for both reads and writes.
vd := t.Kernel().VFS().NewAnonVirtualDentry("[vfio-device]")
if err := pciDevFD.vfsfd.Init(pciDevFD, linux.O_RDWR, vd.Mount(), vd.Dentry(), &vfs.FileDescriptionOptions{
UseDentryMetadata: true,
}); err != nil {
return 0, cleanup, err
}
if err := fdnotifier.AddFD(int32(hostFD), &fd.queue); err != nil {
return 0, cleanup, err
}
newFD, err := t.NewFDFrom(0, &pciDevFD.vfsfd, kernel.FDFlags{})
if err != nil {
return 0, cleanup, err
}
// Initialize a mapping that is backed by a host FD.
pciDevFD.memmapFile.fd = pciDevFD
return uintptr(newFD), func() {}, nil
}
// pciDeviceFD implements vfs.FileDescriptionImpl for TPU's PCI device.
type pciDeviceFD struct {
vfsfd vfs.FileDescription
vfs.FileDescriptionDefaultImpl
vfs.DentryMetadataFileDescriptionImpl
vfs.NoLockFD
hostFD int32
queue waiter.Queue
memmapFile pciDeviceFdMemmapFile
}
// Release implements vfs.FileDescriptionImpl.Release.
func (fd *pciDeviceFD) Release(context.Context) {
fdnotifier.RemoveFD(fd.hostFD)
fd.queue.Notify(waiter.EventHUp)
unix.Close(int(fd.hostFD))
}
// EventRegister implements waiter.Waitable.EventRegister.
func (fd *pciDeviceFD) EventRegister(e *waiter.Entry) error {
fd.queue.EventRegister(e)
if err := fdnotifier.UpdateFD(fd.hostFD); err != nil {
fd.queue.EventUnregister(e)
return err
}
return nil
}
// EventUnregister implements waiter.Waitable.EventUnregister.
func (fd *pciDeviceFD) EventUnregister(e *waiter.Entry) {
fd.queue.EventUnregister(e)
if err := fdnotifier.UpdateFD(fd.hostFD); err != nil {
panic(fmt.Sprint("UpdateFD:", err))
}
}
// Readiness implements waiter.Waitable.Readiness.
func (fd *pciDeviceFD) Readiness(mask waiter.EventMask) waiter.EventMask {
return fdnotifier.NonBlockingPoll(fd.hostFD, mask)
}
// Epollable implements vfs.FileDescriptionImpl.Epollable.
func (fd *pciDeviceFD) Epollable() bool {
return true
}
// Ioctl implements vfs.FileDescriptionImpl.Ioctl.
func (fd *pciDeviceFD) Ioctl(ctx context.Context, uio usermem.IO, sysno uintptr, args arch.SyscallArguments) (uintptr, error) {
cmd := args[1].Uint()
t := kernel.TaskFromContext(ctx)
if t == nil {
panic("Ioctl should be called from a task context")
}
switch cmd {
// TODO(b/299303493): consider making VFIO's GET_INFO commands more generic.
case linux.VFIO_DEVICE_GET_INFO:
return fd.vfioDeviceInfo(ctx, t, args[2].Pointer())
case linux.VFIO_DEVICE_GET_REGION_INFO:
return fd.vfioRegionInfo(ctx, t, args[2].Pointer())
case linux.VFIO_DEVICE_GET_IRQ_INFO:
return fd.vfioIrqInfo(ctx, t, args[2].Pointer())
case linux.VFIO_DEVICE_SET_IRQS:
return fd.vfioSetIrqs(ctx, t, args[2].Pointer())
case linux.VFIO_DEVICE_RESET:
// VFIO_DEVICE_RESET is just a simple IOCTL command that carries no data.
return IOCTLInvoke[uint32, uintptr](fd.hostFD, linux.VFIO_DEVICE_RESET, 0)
}
return 0, linuxerr.ENOSYS
}
// Retrieve the host TPU device's region information, which could be used by
// vfio driver to setup mappings.
func (fd *pciDeviceFD) vfioRegionInfo(ctx context.Context, t *kernel.Task, arg hostarch.Addr) (uintptr, error) {
var regionInfo linux.VFIORegionInfo
if _, err := regionInfo.CopyIn(t, arg); err != nil {
return 0, err
}
if regionInfo.Argsz == 0 {
return 0, linuxerr.EINVAL
}
ret, err := IOCTLInvokePtrArg[uint32](fd.hostFD, linux.VFIO_DEVICE_GET_REGION_INFO, ®ionInfo)
if err != nil {
return 0, err
}
if _, err := regionInfo.CopyOut(t, arg); err != nil {
return 0, err
}
return ret, nil
}
// Retrieve the host TPU device's information.
func (fd *pciDeviceFD) vfioDeviceInfo(ctx context.Context, t *kernel.Task, arg hostarch.Addr) (uintptr, error) {
var deviceInfo linux.VFIODeviceInfo
if _, err := deviceInfo.CopyIn(t, arg); err != nil {
return 0, err
}
// Callers must set VFIODeviceInfo.Argsz.
if deviceInfo.Argsz == 0 {
return 0, linuxerr.EINVAL
}
if deviceInfo.Flags&^vfioDeviceInfoFlags != 0 {
return 0, linuxerr.EINVAL
}
ret, err := IOCTLInvokePtrArg[uint32](fd.hostFD, linux.VFIO_DEVICE_GET_INFO, &deviceInfo)
if err != nil {
return 0, err
}
// gVisor is not supposed to change any device information that is
// returned from the host since gVisor doesn't own the device.
// Passing the device info back to the caller will be just fine.
if _, err := deviceInfo.CopyOut(t, arg); err != nil {
return 0, err
}
return ret, nil
}
// Retrieve the device's interrupt information.
func (fd *pciDeviceFD) vfioIrqInfo(ctx context.Context, t *kernel.Task, arg hostarch.Addr) (uintptr, error) {
var irqInfo linux.VFIOIrqInfo
if _, err := irqInfo.CopyIn(t, arg); err != nil {
return 0, err
}
// Callers must set the payload's size.
if irqInfo.Argsz == 0 {
return 0, linuxerr.EINVAL
}
ret, err := IOCTLInvokePtrArg[uint32](fd.hostFD, linux.VFIO_DEVICE_GET_IRQ_INFO, &irqInfo)
if err != nil {
return 0, err
}
if _, err := irqInfo.CopyOut(t, arg); err != nil {
return 0, err
}
return ret, nil
}
func (fd *pciDeviceFD) vfioSetIrqs(ctx context.Context, t *kernel.Task, arg hostarch.Addr) (uintptr, error) {
var irqSet linux.VFIOIrqSet
if _, err := irqSet.CopyIn(t, arg); err != nil {
return 0, err
}
// Callers must set the payload's size.
if irqSet.Argsz == 0 {
return 0, linuxerr.EINVAL
}
// Invalidate unknown flags.
if irqSet.Flags&^vfioIrqSetFlags != 0 {
return 0, linuxerr.EINVAL
}
// See drivers/vfio/vfio_main.c:vfio_set_irqs_validate_and_prepare,
// VFIO uses the data type at the request's flags to determine
// the memory layout of data field.
//
// The struct vfio_irq_set includes a flexible array member, it
// allocates an array for a continuous trunk of memory to back
// a vfio_irq_set object. In order to mirror that behavior, gVisor
// would allocate a slice to store the underlying bytes
// and pass that through to its host.
switch irqSet.Flags & linux.VFIO_IRQ_SET_DATA_TYPE_MASK {
// VFIO_IRQ_SET_DATA_NONE indicates there is no data field for
// the IOCTL command.
// It works with VFIO_IRQ_SET_ACTION_MASK, VFIO_IRQ_SET_ACTION_UNMASK,
// or VFIO_IRQ_SET_ACTION_TRIGGER to mask an interrupt, unmask an
// interrupt, and trigger an interrupt unconditionally.
case linux.VFIO_IRQ_SET_DATA_NONE:
// When there is no data, passing through the given payload
// works just fine.
return IOCTLInvokePtrArg[uint32](fd.hostFD, linux.VFIO_DEVICE_SET_IRQS, &irqSet)
// VFIO_IRQ_SET_DATA_BOOL indicates that the data field is an array of uint8.
// The action will be performed if the corresponding boolean is true.
case linux.VFIO_IRQ_SET_DATA_BOOL:
payloadSize := uint32(irqSet.Size()) + irqSet.Count
payload := make([]uint8, payloadSize)
if _, err := primitive.CopyUint8SliceIn(t, arg, payload); err != nil {
return 0, err
}
return IOCTLInvokePtrArg[uint32](fd.hostFD, linux.VFIO_DEVICE_SET_IRQS, &payload[0])
// VFIO_IRQ_SET_DATA_EVENTFD indicates that the data field is an array
// of int32 (or event file descriptors). These descriptors will be
// signalled when an action in the flags happens.
case linux.VFIO_IRQ_SET_DATA_EVENTFD:
payloadSize := uint32(irqSet.Size())/4 + irqSet.Count
payload := make([]int32, payloadSize)
if _, err := primitive.CopyInt32SliceIn(t, arg, payload); err != nil {
return 0, err
}
// Transform the input FDs to host FDs.
for i := 0; i < int(irqSet.Count); i++ {
index := len(payload) - 1 - i
fd := payload[index]
// Skip non-event FD.
if fd == disableInterrupt {
continue
}
eventFileGeneric, _ := t.FDTable().Get(fd)
if eventFileGeneric == nil {
return 0, linuxerr.EBADF
}
defer eventFileGeneric.DecRef(ctx)
eventFile, ok := eventFileGeneric.Impl().(*eventfd.EventFileDescription)
if !ok {
return 0, linuxerr.EINVAL
}
eventfd, err := eventFile.HostFD()
if err != nil {
return 0, err
}
payload[index] = int32(eventfd)
}
return IOCTLInvokePtrArg[uint32](fd.hostFD, linux.VFIO_DEVICE_SET_IRQS, &payload[0])
}
// No data type is specified or multiple data types are specified.
return 0, linuxerr.EINVAL
}
// PRead implements vfs.FileDescriptionImpl.PRead.
func (fd *pciDeviceFD) PRead(ctx context.Context, dst usermem.IOSequence, offset int64, opts vfs.ReadOptions) (int64, error) {
if offset < 0 {
return 0, linuxerr.EINVAL
}
buf := make([]byte, dst.NumBytes())
_, err := unix.Pread(int(fd.hostFD), buf, offset)
if err != nil {
return 0, err
}
n, err := dst.CopyOut(ctx, buf)
return int64(n), err
}
// PWrite implements vfs.FileDescriptionImpl.PWrite.
func (fd *pciDeviceFD) PWrite(ctx context.Context, src usermem.IOSequence, offset int64, opts vfs.WriteOptions) (int64, error) {
if offset < 0 {
return 0, linuxerr.EINVAL
}
buf := make([]byte, src.NumBytes())
_, err := src.CopyIn(ctx, buf)
if err != nil {
return 0, err
}
n, err := unix.Pwrite(int(fd.hostFD), buf, offset)
return int64(n), err
}
// DevAddrSet tracks device address ranges that have been mapped.
type devAddrSetFuncs struct{}
func (devAddrSetFuncs) MinKey() uint64 {
return 0
}
func (devAddrSetFuncs) MaxKey() uint64 {
return ^uint64(0)
}
func (devAddrSetFuncs) ClearValue(val *mm.PinnedRange) {
*val = mm.PinnedRange{}
}
func (devAddrSetFuncs) Merge(r1 DevAddrRange, v1 mm.PinnedRange, r2 DevAddrRange, v2 mm.PinnedRange) (mm.PinnedRange, bool) {
// Do we have the same backing file?
if v1.File != v2.File {
return mm.PinnedRange{}, false
}
// Do we have contiguous offsets in the backing file?
if v1.Offset+uint64(v1.Source.Length()) != v2.Offset {
return mm.PinnedRange{}, false
}
// Are the virtual addresses contiguous?
//
// This check isn't strictly needed because 'mm.PinnedRange.Source'
// is only used to track the size of the pinned region (this is
// because the virtual address range can be unmapped or remapped
// elsewhere). Regardless we require this for simplicity.
if v1.Source.End != v2.Source.Start {
return mm.PinnedRange{}, false
}
// Extend v1 to account for the adjacent PinnedRange.
v1.Source.End = v2.Source.End
return v1, true
}
func (devAddrSetFuncs) Split(r DevAddrRange, val mm.PinnedRange, split uint64) (mm.PinnedRange, mm.PinnedRange) {
n := split - r.Start
left := val
left.Source.End = left.Source.Start + hostarch.Addr(n)
right := val
right.Source.Start += hostarch.Addr(n)
right.Offset += n
return left, right
}
|