1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package pgalloc contains the page allocator subsystem, which provides
// allocatable memory that may be mapped into application address spaces.
package pgalloc
import (
"fmt"
"math"
"os"
"strings"
"sync/atomic"
"time"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/safemem"
"gvisor.dev/gvisor/pkg/sentry/hostmm"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/usage"
"gvisor.dev/gvisor/pkg/sync"
)
const pagesPerHugePage = hostarch.HugePageSize / hostarch.PageSize
// MemoryFile is a memmap.File whose pages may be allocated to arbitrary
// users.
type MemoryFile struct {
memmap.NoBufferedIOFallback
// MemoryFile owns a single backing file. Each page in the backing file is
// considered "committed" or "uncommitted". A page is committed if the host
// kernel is spending resources to store its contents and uncommitted
// otherwise. This definition includes pages that the host kernel has
// swapped. This is intentional; it means that committed pages can only
// become uncommitted as a result of MemoryFile's actions, such that page
// commitment does not change even if host kernel swapping behavior changes.
//
// Each page in the MemoryFile is in one of the following logical states,
// protected by mu:
//
// - Void: Pages beyond the backing file's current size cannot store data.
// Void pages are uncommitted. Extending the file's size transitions pages
// between the old and new sizes from void to free.
//
// - Free: Free pages are immediately allocatable. Free pages are
// uncommitted, and implicitly zeroed. Free pages become used when they are
// allocated.
//
// - Used: Used pages have been allocated and currently have a non-zero
// reference count. Used pages may transition from uncommitted to committed
// outside of MemoryFile's control, but can only transition from committed
// to uncommitted via MemoryFile.Decommit(). The content of used pages is
// unknown. Used pages become waste when their reference count becomes
// zero.
//
// - Waste: Waste pages have no users, but cannot be immediately
// reallocated since their commitment state and content is unknown. Waste
// pages may be uncommitted or committed, but cannot transition between the
// two. MemoryFile's releaser goroutine transitions pages from waste to
// releasing. Allocations that may return committed pages can transition
// pages from waste to used (referred to as "recycling").
//
// - Releasing: Releasing pages are waste pages that the releaser goroutine
// has removed from waste-tracking, making them ineligible for recycling.
// The releaser decommits releasing pages without holding mu, then
// transitions them back to free or sub-released with mu locked.
//
// - Sub-release: Sub-released pages are released small pages within a
// huge-page-backed allocation where the containing huge page as a whole
// has not yet been released, which can arise because references are still
// counted at page granularity within huge-page-backed ranges. Sub-released
// pages cannot be used for allocations until release of the whole
// containing huge page causes it to transition it to free. We assume that
// sub-released pages are uncommitted; this isn't necessarily true (see
// discussion of khugepaged elsewhere in this file), but the assumption is
// consistent with legacy behavior.
mu memoryFileMutex
// unwasteSmall and unwasteHuge track waste ranges backed by small/huge pages
// respectively. Both sets are "inverted"; segments exist for all ranges that
// are *not* waste, allowing use of segment.Set gap-tracking to efficiently
// find ranges for both release and recycling allocations.
//
// unwasteSmall and unwasteHuge are protected by mu.
unwasteSmall unwasteSet
unwasteHuge unwasteSet
// haveWaste is true if there may be at least one waste page in the
// MemoryFile.
//
// haveWaste is protected by mu.
haveWaste bool
// releaseCond is signaled (with mu locked) when haveWaste or destroyed
// transitions from false to true.
releaseCond sync.Cond
// unfreeSmall and unfreeHuge track information for non-free ranges backed
// by small/huge pages respectively. Each unfreeSet also contains segments
// representing chunks that are backed by a different page size. Gaps in
// the sets therefore represent free ranges backed by small/huge pages,
// allowing use of segment.Set gap-tracking to efficiently find free ranges
// for allocation.
//
// unfreeSmall and unfreeHuge are protected by mu.
unfreeSmall unfreeSet
unfreeHuge unfreeSet
// subreleased maps hugepage-aligned file offsets to the number of
// sub-released small pages within the hugepage beginning at that offset.
// subreleased is protected by mu.
subreleased map[uint64]uint64
// These fields are used for memory accounting.
//
// Memory accounting is based on identifying the set of committed pages.
// Since we do not have direct access to application page tables (on most
// platforms), tracking application accesses to uncommitted pages to detect
// commitment would introduce additional page faults, which would be
// prohibitively expensive. Instead, we query the host kernel to determine
// which pages are committed.
//
// memAcct tracks memory accounting state, including commitment status, for
// each page. Non-empty gaps in memAcct represent pages known to be
// uncommitted (void, free, and sub-released pages).
//
// knownCommittedBytes is the number of bytes in the file known to be
// committed, i.e. the span of all segments in memAcct for which
// knownCommitted is true.
//
// commitSeq is a sequence counter used to detect races between scans for
// committed pages and concurrent decommitment.
//
// nextCommitScan is the next time at which UpdateUsage() may scan the
// backing file for commitment information.
//
// All of these fields are protected by mu.
memAcct memAcctSet
knownCommittedBytes uint64
commitSeq uint64
nextCommitScan time.Time
// evictable maps EvictableMemoryUsers to eviction state.
//
// evictable is protected by mu.
evictable map[EvictableMemoryUser]*evictableMemoryUserInfo
// evictionWG counts the number of goroutines currently performing evictions.
evictionWG sync.WaitGroup
// opts holds options passed to NewMemoryFile. opts is immutable.
opts MemoryFileOpts
// savable is true if this MemoryFile will be saved via SaveTo() during
// the kernel's SaveTo operation. savable is protected by mu.
savable bool
// destroyed is set by Destroy to instruct the releaser goroutine to
// release all MemoryFile resources and exit. destroyed is protected by mu.
destroyed bool
// stopNotifyPressure stops memory cgroup pressure level
// notifications used to drive eviction. stopNotifyPressure is
// immutable.
stopNotifyPressure func()
// file is the backing file. The file pointer is immutable.
file *os.File
// chunks holds metadata for each usable chunk in the backing file.
//
// chunks is at the end of MemoryFile in hopes of placing it on a relatively
// quiet cache line, since MapInternal() is by far the hottest path through
// pgalloc.
//
// chunks is protected by mu. chunks slices are immutable.
chunks atomic.Pointer[[]chunkInfo]
}
const (
chunkShift = 30
chunkSize = 1 << chunkShift // 1 GB
chunkMask = chunkSize - 1
maxChunks = math.MaxInt64 / chunkSize // because file size is int64
)
// chunkInfo is the value type of MemoryFile.chunks.
//
// +stateify savable
type chunkInfo struct {
// mapping is the start address of a mapping of the chunk.
//
// mapping is immutable.
mapping uintptr `state:"nosave"`
// huge is true if this chunk is expected to be hugepage-backed and false if
// this chunk is expected to be smallpage-backed.
//
// huge is immutable.
huge bool
}
func (f *MemoryFile) chunksLoad() []chunkInfo {
return *f.chunks.Load()
}
// forEachChunk invokes fn on a sequence of chunks that collectively span all
// bytes in fr. In each call, chunkFR is the subset of fr that falls within
// chunk. If any call to f returns false, forEachChunk stops iteration and
// returns.
func (f *MemoryFile) forEachChunk(fr memmap.FileRange, fn func(chunk *chunkInfo, chunkFR memmap.FileRange) bool) {
chunks := f.chunksLoad()
chunkStart := fr.Start &^ chunkMask
i := int(fr.Start / chunkSize)
for chunkStart < fr.End {
chunkEnd := chunkStart + chunkSize
if !fn(&chunks[i], fr.Intersect(memmap.FileRange{chunkStart, chunkEnd})) {
return
}
chunkStart = chunkEnd
i++
}
}
// unwasteInfo is the value type of MemoryFile.unwasteSmall/Huge.
//
// +stateify savable
type unwasteInfo struct{}
// unfreeInfo is the value type of MemoryFile.unfreeSmall/Huge.
//
// +stateify savable
type unfreeInfo struct {
// refs is the per-page reference count. refs is non-zero for used pages,
// and zero for void, waste, releasing, and sub-released pages, as well as
// pages backed by a different page size.
refs uint64
}
// memAcctInfo is the value type of MemoryFile.memAcct.
//
// +stateify savable
type memAcctInfo struct {
// kind is the memory accounting type. kind is allocation-dependent for
// used pages, and usage.System for void, waste, releasing, and
// sub-released pages.
kind usage.MemoryKind
// memCgID is the memory cgroup ID to which represented pages are accounted.
memCgID uint32
// knownCommitted is true if represented pages are definitely committed.
// (If knownCommitted is false, represented pages may or may not be
// committed; pages that are definitely not committed are represented by
// gaps in MemoryFile.memAcct.)
knownCommitted bool
// If true, represented pages are waste or releasing pages.
wasteOrReleasing bool
// If knownCommitted is false, commitSeq was the value of
// MemoryFile.commitSeq when knownCommitted last transitioned to false.
// Otherwise, commitSeq is 0.
commitSeq uint64
}
// An EvictableMemoryUser represents a user of MemoryFile-allocated memory that
// may be asked to deallocate that memory in the presence of memory pressure.
type EvictableMemoryUser interface {
// Evict requests that the EvictableMemoryUser deallocate memory used by
// er, which was registered as evictable by a previous call to
// MemoryFile.MarkEvictable.
//
// Evict is not required to deallocate memory. In particular, since pgalloc
// must call Evict without holding locks to avoid circular lock ordering,
// it is possible that the passed range has already been marked as
// unevictable by a racing call to MemoryFile.MarkUnevictable.
// Implementations of EvictableMemoryUser must detect such races and handle
// them by making Evict have no effect on unevictable ranges.
//
// After a call to Evict, the MemoryFile will consider the evicted range
// unevictable (i.e. it will not call Evict on the same range again) until
// informed otherwise by a subsequent call to MarkEvictable.
Evict(ctx context.Context, er EvictableRange)
}
// An EvictableRange represents a range of uint64 offsets in an
// EvictableMemoryUser.
//
// In practice, most EvictableMemoryUsers will probably be implementations of
// memmap.Mappable, and EvictableRange therefore corresponds to
// memmap.MappableRange. However, this package cannot depend on the memmap
// package, since doing so would create a circular dependency.
//
// type EvictableRange <generated using go_generics>
// evictableMemoryUserInfo is the value type of MemoryFile.evictable.
type evictableMemoryUserInfo struct {
// ranges tracks all evictable ranges for the given user.
ranges evictableRangeSet
// If evicting is true, there is a goroutine currently evicting all
// evictable ranges for this user.
evicting bool
}
// MemoryFileOpts provides options to NewMemoryFile.
type MemoryFileOpts struct {
// DelayedEviction controls the extent to which the MemoryFile may delay
// eviction of evictable allocations.
DelayedEviction DelayedEvictionType
// If UseHostMemcgPressure is true, use host memory cgroup pressure level
// notifications to determine when eviction is necessary. This option has
// no effect unless DelayedEviction is DelayedEvictionEnabled.
UseHostMemcgPressure bool
// DecommitOnDestroy indicates whether the entire host file should be
// decommitted on destruction. This is appropriate for host filesystem based
// files that need to be explicitly cleaned up to release disk space.
DecommitOnDestroy bool
// If DisableIMAWorkAround is true, NewMemoryFile will not call
// IMAWorkAroundForMemFile().
DisableIMAWorkAround bool
// DiskBackedFile indicates that the MemoryFile is backed by a file on disk.
DiskBackedFile bool
// RestoreID is an opaque string used to reassociate the MemoryFile with its
// replacement during restore.
RestoreID string
// If ExpectHugepages is true, MemoryFile will expect that the host will
// attempt to back AllocOpts.Huge == true allocations with huge pages. If
// ExpectHugepages is false, MemoryFile will expect that the host will back
// all allocations with small pages.
ExpectHugepages bool
// If AdviseHugepage is true, MemoryFile will request that the host back
// AllocOpts.Huge == true allocations with huge pages using MADV_HUGEPAGE.
AdviseHugepage bool
// If AdviseNoHugepage is true, MemoryFile will request that the host back
// AllocOpts.Huge == false allocations with small pages using
// MADV_NOHUGEPAGE.
AdviseNoHugepage bool
// If DisableMemoryAccounting is true, memory usage observed by the
// MemoryFile will not be reported in usage.MemoryAccounting.
DisableMemoryAccounting bool
}
// DelayedEvictionType is the type of MemoryFileOpts.DelayedEviction.
type DelayedEvictionType uint8
const (
// DelayedEvictionDefault has unspecified behavior.
DelayedEvictionDefault DelayedEvictionType = iota
// DelayedEvictionDisabled requires that evictable allocations are evicted
// as soon as possible.
DelayedEvictionDisabled
// DelayedEvictionEnabled requests that the MemoryFile delay eviction of
// evictable allocations until doing so is considered necessary to avoid
// performance degradation due to host memory pressure, or OOM kills.
//
// As of this writing, the behavior of DelayedEvictionEnabled depends on
// whether or not MemoryFileOpts.UseHostMemcgPressure is enabled:
//
// - If UseHostMemcgPressure is true, evictions are delayed until memory
// pressure is indicated.
//
// - Otherwise, evictions are only delayed until the releaser goroutine is
// out of work (pages to release).
DelayedEvictionEnabled
// DelayedEvictionManual requires that evictable allocations are only
// evicted when MemoryFile.StartEvictions() is called. This is extremely
// dangerous outside of tests.
DelayedEvictionManual
)
// NewMemoryFile creates a MemoryFile backed by the given file. If
// NewMemoryFile succeeds, ownership of file is transferred to the returned
// MemoryFile.
func NewMemoryFile(file *os.File, opts MemoryFileOpts) (*MemoryFile, error) {
switch opts.DelayedEviction {
case DelayedEvictionDefault:
opts.DelayedEviction = DelayedEvictionEnabled
case DelayedEvictionDisabled, DelayedEvictionManual:
opts.UseHostMemcgPressure = false
case DelayedEvictionEnabled:
// ok
default:
return nil, fmt.Errorf("invalid MemoryFileOpts.DelayedEviction: %v", opts.DelayedEviction)
}
// Truncate the file to 0 bytes first to ensure that it's empty.
if err := file.Truncate(0); err != nil {
return nil, err
}
f := &MemoryFile{
opts: opts,
file: file,
}
f.initFields()
if f.opts.DelayedEviction == DelayedEvictionEnabled && f.opts.UseHostMemcgPressure {
stop, err := hostmm.NotifyCurrentMemcgPressureCallback(func() {
f.mu.Lock()
startedAny := f.startEvictionsLocked()
f.mu.Unlock()
if startedAny {
log.Debugf("pgalloc.MemoryFile performing evictions due to memcg pressure")
}
}, "low")
if err != nil {
return nil, fmt.Errorf("failed to configure memcg pressure level notifications: %v", err)
}
f.stopNotifyPressure = stop
}
go f.releaserMain() // S/R-SAFE: f.mu
if !opts.DisableIMAWorkAround {
IMAWorkAroundForMemFile(file.Fd())
}
return f, nil
}
func (f *MemoryFile) initFields() {
// Initially, all pages are void.
fullFR := memmap.FileRange{0, math.MaxUint64}
f.unwasteSmall.InsertRange(fullFR, unwasteInfo{})
f.unwasteHuge.InsertRange(fullFR, unwasteInfo{})
f.releaseCond.L = &f.mu
f.unfreeSmall.InsertRange(fullFR, unfreeInfo{})
f.unfreeHuge.InsertRange(fullFR, unfreeInfo{})
f.subreleased = make(map[uint64]uint64)
f.evictable = make(map[EvictableMemoryUser]*evictableMemoryUserInfo)
chunks := []chunkInfo(nil)
f.chunks.Store(&chunks)
}
// IMAWorkAroundForMemFile works around IMA by immediately creating a temporary
// PROT_EXEC mapping, while the backing file is still small. IMA will ignore
// any future mappings.
//
// The Linux kernel contains an optional feature called "Integrity
// Measurement Architecture" (IMA). If IMA is enabled, it will checksum
// binaries the first time they are mapped PROT_EXEC. This is bad news for
// executable pages mapped from our backing file, which can grow to
// terabytes in (sparse) size. If IMA attempts to checksum a file that
// large, it will allocate all of the sparse pages and quickly exhaust all
// memory.
func IMAWorkAroundForMemFile(fd uintptr) {
m, _, errno := unix.Syscall6(
unix.SYS_MMAP,
0,
hostarch.PageSize,
unix.PROT_EXEC,
unix.MAP_SHARED,
fd,
0)
if errno != 0 {
// This isn't fatal (IMA may not even be in use). Log the error, but
// don't return it.
log.Warningf("Failed to pre-map MemoryFile PROT_EXEC: %v", errno)
} else {
if _, _, errno := unix.Syscall(
unix.SYS_MUNMAP,
m,
hostarch.PageSize,
0); errno != 0 {
panic(fmt.Sprintf("failed to unmap PROT_EXEC MemoryFile mapping: %v", errno))
}
}
}
// Destroy releases all resources used by f.
//
// Preconditions: All pages allocated by f have been freed.
//
// Postconditions: None of f's methods may be called after Destroy.
func (f *MemoryFile) Destroy() {
f.mu.Lock()
defer f.mu.Unlock()
f.destroyed = true
f.releaseCond.Signal()
}
// Preconditions: f.mu must be locked.
func (f *MemoryFile) releaserDestroyLocked() {
if !f.destroyed {
panic("destroyed is no longer set")
}
if f.opts.DecommitOnDestroy {
if chunks := f.chunksLoad(); len(chunks) != 0 {
if err := f.decommitFile(memmap.FileRange{0, uint64(len(chunks)) * chunkSize}); err != nil {
panic(fmt.Sprintf("failed to decommit entire memory file during destruction: %v", err))
}
}
}
f.file.Close()
// Ensure that any attempts to use f.file.Fd() fail instead of getting a fd
// that has possibly been reassigned.
f.file = nil
chunks := f.chunksLoad()
for i := range chunks {
chunk := &chunks[i]
_, _, errno := unix.Syscall(unix.SYS_MUNMAP, chunk.mapping, chunkSize, 0)
if errno != 0 {
log.Warningf("Failed to unmap mapping %#x for MemoryFile chunk %d: %v", chunk.mapping, i, errno)
}
chunk.mapping = 0
}
}
// AllocOpts are options used in MemoryFile.Allocate.
type AllocOpts struct {
// Kind is the allocation's memory accounting type.
Kind usage.MemoryKind
// MemCgID is the memory cgroup ID and the zero value indicates that
// the memory will not be accounted to any cgroup.
MemCgID uint32
// Mode controls the commitment status of returned pages.
Mode AllocationMode
// If Huge is true, the allocation should be hugepage-backed if possible.
Huge bool
// Dir indicates the direction in which offsets are allocated.
Dir Direction
// If ReaderFunc is provided, the allocated memory is filled by calling it
// repeatedly until either length bytes are read or a non-nil error is
// returned. It returns the allocated memory, truncated down to the nearest
// page. If this is shorter than length bytes due to an error returned by
// ReaderFunc, it returns the partially filled fr and error.
ReaderFunc safemem.ReaderFunc
}
// Direction is the type of AllocOpts.Dir.
type Direction uint8
const (
// BottomUp allocates offsets in increasing offsets.
BottomUp Direction = iota
// TopDown allocates offsets in decreasing offsets.
TopDown
)
// String implements fmt.Stringer.
func (d Direction) String() string {
switch d {
case BottomUp:
return "up"
case TopDown:
return "down"
}
panic(fmt.Sprintf("invalid direction: %d", d))
}
// AllocationMode is the type of AllocOpts.Mode.
type AllocationMode int
const (
// AllocateUncommitted indicates that MemoryFile.Allocate() must return
// uncommitted pages.
AllocateUncommitted AllocationMode = iota
// AllocateCallerIndirectCommit indicates that the caller of
// MemoryFile.Allocate() intends to commit all allocated pages, without
// using our page tables. Thus, Allocate() may return committed or
// uncommitted pages.
AllocateCallerIndirectCommit
// AllocateAndCommit indicates that MemoryFile.Allocate() must return
// committed pages.
AllocateAndCommit
// AllocateAndWritePopulate indicates that the caller of
// MemoryFile.Allocate() intends to commit all allocated pages, using our
// page tables. Thus, Allocate() may return committed or uncommitted pages,
// and should pre-populate page table entries permitting writing for
// mappings of those pages returned by MapInternal().
AllocateAndWritePopulate
)
// allocState holds the state of a call to MemoryFile.Allocate().
type allocState struct {
length uint64
opts AllocOpts
willCommit bool // either us or our caller
recycled bool
huge bool
}
// Allocate returns a range of initially-zeroed pages of the given length, with
// a single reference on each page held by the caller. When the last reference
// on an allocated page is released, ownership of the page is returned to the
// MemoryFile, allowing it to be returned by a future call to Allocate.
//
// Preconditions:
// - length > 0.
// - length must be page-aligned.
// - If opts.Hugepage == true, length must be hugepage-aligned.
func (f *MemoryFile) Allocate(length uint64, opts AllocOpts) (memmap.FileRange, error) {
if length == 0 || !hostarch.IsPageAligned(length) || (opts.Huge && !hostarch.IsHugePageAligned(length)) {
panic(fmt.Sprintf("invalid allocation length: %#x", length))
}
alloc := allocState{
length: length,
opts: opts,
willCommit: opts.Mode != AllocateUncommitted,
huge: opts.Huge && f.opts.ExpectHugepages,
}
fr, err := f.findAllocatableAndMarkUsed(&alloc)
if err != nil {
return fr, err
}
var dsts safemem.BlockSeq
if alloc.willCommit {
needHugeTouch := false
if alloc.recycled {
// We will need writable page table entries in our address space to
// zero these pages.
alloc.opts.Mode = AllocateAndWritePopulate
} else if alloc.opts.Mode != AllocateAndWritePopulate && ((alloc.huge && f.opts.AdviseHugepage) || (!alloc.huge && f.opts.AdviseNoHugepage)) {
// If Mode is AllocateCallerIndirectCommit and we do nothing, the
// first access to the allocation may be by the application,
// through a platform.AddressSpace, which may not have
// MADV_HUGEPAGE (=> vma flag VM_HUGEPAGE) set. Consequently,
// shmem_fault() => shmem_get_folio_gfp() will commit a small page.
//
// If Mode is AllocateAndCommit and we do nothing, the first access
// to the allocation is via fallocate(2), which has the same
// problem: shmem_fallocate() => shmem_get_folio() =>
// shmem_get_folio_gfp(vma=NULL).
//
// khugepaged may eventually collapse the containing
// hugepage-aligned region into a huge page when it scans our
// mapping (khugepaged_scan_mm_slot() => khugepaged_scan_file()),
// but this depends on khugepaged_max_ptes_none, and in addition to
// the latency and overhead of doing so, this will incur another
// round of page faults.
//
// If write-populating through our mappings succeeds, then it will
// avoid this problem. Otherwise, we need to touch each huge page
// through our mappings.
//
// An analogous problem applies if MADV_NOHUGEPAGE is required
// rather than MADV_HUGEPAGE; MADV_NOHUGEPAGE is only enabled if
// the file defaults to huge pages, so populating or touching
// through our mappings is needed to ensure that the allocation is
// small-page-backed. In this case, we only need to force
// commitment of one small page per huge page to prevent future
// page faults within the huge page from faulting a huge page,
// though there's nothing we can do about khugepaged.
alloc.opts.Mode = AllocateAndWritePopulate
needHugeTouch = true
}
switch alloc.opts.Mode {
case AllocateUncommitted, AllocateCallerIndirectCommit:
// Nothing for us to do.
case AllocateAndCommit:
if err := f.commitFile(fr); err != nil {
f.DecRef(fr)
return memmap.FileRange{}, err
}
case AllocateAndWritePopulate:
dsts, err = f.MapInternal(fr, hostarch.Write)
if err != nil {
f.DecRef(fr)
return memmap.FileRange{}, err
}
if canPopulate() {
rem := dsts
for {
if !tryPopulate(rem.Head()) {
break
}
rem = rem.Tail()
if rem.IsEmpty() {
needHugeTouch = false
break
}
}
}
if alloc.recycled {
// The contents of recycled waste pages are initially unknown, so we
// need to zero them.
f.manuallyZero(fr)
} else if needHugeTouch {
// We only need to touch a single byte in each huge page.
f.forEachMappingSlice(fr, func(bs []byte) {
for i := 0; i < len(bs); i += hostarch.HugePageSize {
bs[i] = 0
}
})
}
default:
panic(fmt.Sprintf("unknown AllocOpts.Mode %d", alloc.opts.Mode))
}
}
if alloc.opts.ReaderFunc != nil {
if dsts.IsEmpty() {
dsts, err = f.MapInternal(fr, hostarch.Write)
if err != nil {
f.DecRef(fr)
return memmap.FileRange{}, err
}
}
n, err := safemem.ReadFullToBlocks(alloc.opts.ReaderFunc, dsts)
un := uint64(hostarch.Addr(n).RoundDown())
if un < length {
// Free unused memory and update fr to contain only the memory that is
// still allocated.
f.DecRef(memmap.FileRange{fr.Start + un, fr.End})
fr.End = fr.Start + un
}
if err != nil {
return fr, err
}
}
return fr, nil
}
func (f *MemoryFile) findAllocatableAndMarkUsed(alloc *allocState) (fr memmap.FileRange, err error) {
unwaste := &f.unwasteSmall
unfree := &f.unfreeSmall
if alloc.huge {
unwaste = &f.unwasteHuge
unfree = &f.unfreeHuge
}
f.mu.Lock()
defer f.mu.Unlock()
if alloc.willCommit {
// Try to recycle waste pages, since this avoids the overhead of
// decommitting and then committing them again.
var uwgap unwasteGapIterator
if alloc.opts.Dir == BottomUp {
uwgap = unwaste.FirstLargeEnoughGap(alloc.length)
} else {
uwgap = unwaste.LastLargeEnoughGap(alloc.length)
}
if uwgap.Ok() {
alloc.recycled = true
if alloc.opts.Dir == BottomUp {
fr = memmap.FileRange{
Start: uwgap.Start(),
End: uwgap.Start() + alloc.length,
}
} else {
fr = memmap.FileRange{
Start: uwgap.End() - alloc.length,
End: uwgap.End(),
}
}
unwaste.Insert(uwgap, fr, unwasteInfo{})
// Update reference count for these pages from 0 to 1.
unfree.MutateFullRange(fr, func(ufseg unfreeIterator) bool {
uf := ufseg.ValuePtr()
if uf.refs != 0 {
panic(fmt.Sprintf("waste pages %v have unexpected refcount %d during recycling of %v\n%s", ufseg.Range(), uf.refs, fr, f.stringLocked()))
}
uf.refs = 1
return true
})
// These pages should all be unknown-commitment or known-committed;
// mark them unknown-commitment, for consistency with non-recycling
// allocations (below).
f.memAcct.MutateFullRange(fr, func(maseg memAcctIterator) bool {
ma := maseg.ValuePtr()
malen := maseg.Range().Length()
if ma.knownCommitted {
if ma.kind != usage.System {
panic(fmt.Sprintf("waste pages %v have unexpected kind %v\n%s", maseg.Range(), ma.kind, f.stringLocked()))
}
ma.knownCommitted = false
ma.commitSeq = 0
f.knownCommittedBytes -= malen
if !f.opts.DisableMemoryAccounting {
usage.MemoryAccounting.Dec(malen, usage.System, ma.memCgID)
}
}
ma.kind = alloc.opts.Kind
ma.memCgID = alloc.opts.MemCgID
ma.wasteOrReleasing = false
return true
})
return
}
}
// No suitable waste pages or we can't use them.
retryFree:
// Try to allocate free pages from existing chunks.
var ufgap unfreeGapIterator
if alloc.opts.Dir == BottomUp {
ufgap = unfree.FirstLargeEnoughGap(alloc.length)
} else {
ufgap = unfree.LastLargeEnoughGap(alloc.length)
}
if !ufgap.Ok() {
// Extend the file to create more chunks.
err = f.extendChunksLocked(alloc)
if err != nil {
return
}
// Retry the allocation using new chunks.
goto retryFree
}
if alloc.opts.Dir == BottomUp {
fr = memmap.FileRange{
Start: ufgap.Start(),
End: ufgap.Start() + alloc.length,
}
} else {
fr = memmap.FileRange{
Start: ufgap.End() - alloc.length,
End: ufgap.End(),
}
}
unfree.Insert(ufgap, fr, unfreeInfo{refs: 1})
// These pages should all be known-decommitted; mark them
// unknown-commitment, since they can be concurrently committed by the
// allocation's users at any time until deallocation.
//
// If alloc.willCommit is true, we expect these pages to become committed
// in the near future; mark them unknown-commitment anyway, since marking
// them committed prematurely makes them more likely to be saved even if
// zeroed, unless SaveOpts.ExcludeCommittedZeroPages is enabled.
f.memAcct.InsertRange(fr, memAcctInfo{
kind: alloc.opts.Kind,
memCgID: alloc.opts.MemCgID,
knownCommitted: false,
commitSeq: f.commitSeq,
})
return
}
// Preconditions: f.mu must be locked.
func (f *MemoryFile) extendChunksLocked(alloc *allocState) error {
unfree := &f.unfreeSmall
if alloc.huge {
unfree = &f.unfreeHuge
}
oldChunks := f.chunksLoad()
oldNrChunks := uint64(len(oldChunks))
oldFileSize := oldNrChunks * chunkSize
// Determine how many chunks we need to satisfy alloc.
tail := uint64(0)
if oldNrChunks != 0 {
if lastChunk := oldChunks[oldNrChunks-1]; lastChunk.huge == alloc.huge {
// We can use free pages at the end of the current last chunk.
if ufgap := unfree.FindGap(oldFileSize - 1); ufgap.Ok() {
tail = ufgap.Range().Length()
}
}
}
incNrChunks := (alloc.length + chunkMask - tail) / chunkSize
incFileSize := incNrChunks * chunkSize
newNrChunks := oldNrChunks + incNrChunks
if newNrChunks > maxChunks || newNrChunks < oldNrChunks /* overflow */ {
return linuxerr.ENOMEM
}
newFileSize := newNrChunks * chunkSize
// Extend the backing file and obtain mappings for the new chunks. If the
// backing file is memory-backed, and THP is enabled, Linux will align our
// mapping to a hugepage boundary; see
// mm/shmem.c:shmem_get_unmapped_area().
//
// In tests, f.file may be nil.
var mapStart uintptr
if f.file != nil {
if err := f.file.Truncate(int64(newFileSize)); err != nil {
return err
}
m, _, errno := unix.Syscall6(
unix.SYS_MMAP,
0,
uintptr(incFileSize),
unix.PROT_READ|unix.PROT_WRITE,
unix.MAP_SHARED,
f.file.Fd(),
uintptr(oldFileSize))
if errno != 0 {
return errno
}
mapStart = m
f.madviseChunkMapping(mapStart, uintptr(incFileSize), alloc.huge)
}
// Update chunk state.
newChunks := make([]chunkInfo, newNrChunks, newNrChunks)
copy(newChunks, oldChunks)
m := mapStart
for i := oldNrChunks; i < newNrChunks; i++ {
newChunks[i].huge = alloc.huge
if f.file != nil {
newChunks[i].mapping = m
m += chunkSize
}
}
f.chunks.Store(&newChunks)
// Mark void pages free.
unfree.RemoveFullRange(memmap.FileRange{
Start: oldNrChunks * chunkSize,
End: newNrChunks * chunkSize,
})
return nil
}
func (f *MemoryFile) madviseChunkMapping(addr, len uintptr, huge bool) {
if huge {
if f.opts.AdviseHugepage {
_, _, errno := unix.Syscall(unix.SYS_MADVISE, addr, len, unix.MADV_HUGEPAGE)
if errno != 0 {
// Log this failure but continue.
log.Warningf("madvise(%#x, %d, MADV_HUGEPAGE) failed: %s", addr, len, errno)
}
}
} else {
if f.opts.AdviseNoHugepage {
_, _, errno := unix.Syscall(unix.SYS_MADVISE, addr, len, unix.MADV_NOHUGEPAGE)
if errno != 0 {
// Log this failure but continue.
log.Warningf("madvise(%#x, %d, MADV_NOHUGEPAGE) failed: %s", addr, len, errno)
}
}
}
}
var mlockDisabled atomicbitops.Uint32
var madvPopulateWriteDisabled atomicbitops.Uint32
func canPopulate() bool {
return mlockDisabled.Load() == 0 || madvPopulateWriteDisabled.Load() == 0
}
func tryPopulateMadv(b safemem.Block) bool {
if madvPopulateWriteDisabled.Load() != 0 {
return false
}
// Only call madvise(MADV_POPULATE_WRITE) if >=2 pages are being populated.
// 1 syscall overhead >= 1 page fault overhead. This is because syscalls are
// susceptible to additional overheads like seccomp-bpf filters and auditing.
if b.Len() <= hostarch.PageSize {
return true
}
_, _, errno := unix.Syscall(unix.SYS_MADVISE, b.Addr(), uintptr(b.Len()), unix.MADV_POPULATE_WRITE)
if errno != 0 {
if errno == unix.EINVAL {
// EINVAL is expected if MADV_POPULATE_WRITE is not supported (Linux <5.14).
log.Infof("Disabling pgalloc.MemoryFile.AllocateAndFill pre-population: madvise failed: %s", errno)
} else {
log.Warningf("Disabling pgalloc.MemoryFile.AllocateAndFill pre-population: madvise failed: %s", errno)
}
madvPopulateWriteDisabled.Store(1)
return false
}
return true
}
func tryPopulateMlock(b safemem.Block) bool {
if mlockDisabled.Load() != 0 {
return false
}
// Call mlock to populate pages, then munlock to cancel the mlock (but keep
// the pages populated). Only do so for hugepage-aligned address ranges to
// ensure that splitting the VMA in mlock doesn't split any existing
// hugepages. This assumes that two host syscalls, plus the MM overhead of
// mlock + munlock, is faster on average than trapping for
// HugePageSize/PageSize small page faults.
start, ok := hostarch.Addr(b.Addr()).HugeRoundUp()
if !ok {
return true
}
end := hostarch.Addr(b.Addr() + uintptr(b.Len())).HugeRoundDown()
if start >= end {
return true
}
_, _, errno := unix.Syscall(unix.SYS_MLOCK, uintptr(start), uintptr(end-start), 0)
unix.RawSyscall(unix.SYS_MUNLOCK, uintptr(start), uintptr(end-start), 0)
if errno != 0 {
if errno == unix.ENOMEM || errno == unix.EPERM {
// These errors are expected from hitting non-zero RLIMIT_MEMLOCK, or
// hitting zero RLIMIT_MEMLOCK without CAP_IPC_LOCK, respectively.
log.Infof("Disabling pgalloc.MemoryFile.AllocateAndFill pre-population: mlock failed: %s", errno)
} else {
log.Warningf("Disabling pgalloc.MemoryFile.AllocateAndFill pre-population: mlock failed: %s", errno)
}
mlockDisabled.Store(1)
return false
}
return true
}
func tryPopulate(b safemem.Block) bool {
// There are two approaches for populating writable pages:
// 1. madvise(MADV_POPULATE_WRITE). It has the desired effect: "Populate
// (prefault) page tables writable, faulting in all pages in the range
// just as if manually writing to each each page".
// 2. Call mlock to populate pages, then munlock to cancel the mlock (but
// keep the pages populated).
//
// Prefer the madvise(MADV_POPULATE_WRITE) approach because:
// - Only requires 1 syscall, as opposed to 2 syscalls with mlock approach.
// - It is faster because it doesn't have to modify vmas like mlock does.
// - It works for disk-backed memory mappings too. The mlock approach doesn't
// work for disk-backed filesystems (e.g. ext4). This is because
// mlock(2) => mm/gup.c:__mm_populate() emulates a read fault on writable
// MAP_SHARED mappings. For memory-backed (shmem) files,
// mm/mmap.c:vma_set_page_prot() => vma_wants_writenotify() is false, so
// the page table entries populated by a read fault are writable. For
// disk-backed files, vma_set_page_prot() => vma_wants_writenotify() is
// true, so the page table entries populated by a read fault are read-only.
if tryPopulateMadv(b) {
return true
}
return tryPopulateMlock(b)
}
// Decommit uncommits the given pages, causing them to become zeroed.
//
// Preconditions:
// - fr.Start and fr.End must be page-aligned.
// - fr.Length() > 0.
// - At least one reference must be held on all pages in fr.
func (f *MemoryFile) Decommit(fr memmap.FileRange) {
if !fr.WellFormed() || fr.Length() == 0 || fr.Start%hostarch.PageSize != 0 || fr.End%hostarch.PageSize != 0 {
panic(fmt.Sprintf("invalid range: %v", fr))
}
f.decommitOrManuallyZero(fr)
f.mu.Lock()
defer f.mu.Unlock()
f.memAcct.MutateFullRange(fr, func(maseg memAcctIterator) bool {
ma := maseg.ValuePtr()
if ma.knownCommitted {
ma.knownCommitted = false
malen := maseg.Range().Length()
f.knownCommittedBytes -= malen
if !f.opts.DisableMemoryAccounting {
usage.MemoryAccounting.Dec(malen, ma.kind, ma.memCgID)
}
}
// Update commitSeq to invalidate any observations made by
// concurrent calls to f.updateUsageLocked().
ma.commitSeq = f.commitSeq
return true
})
}
func (f *MemoryFile) commitFile(fr memmap.FileRange) error {
// "The default operation (i.e., mode is zero) of fallocate() allocates the
// disk space within the range specified by offset and len." - fallocate(2)
return unix.Fallocate(
int(f.file.Fd()),
0, // mode
int64(fr.Start),
int64(fr.Length()))
}
func (f *MemoryFile) decommitFile(fr memmap.FileRange) error {
// "After a successful call, subsequent reads from this range will
// return zeroes. The FALLOC_FL_PUNCH_HOLE flag must be ORed with
// FALLOC_FL_KEEP_SIZE in mode ..." - fallocate(2)
return unix.Fallocate(
int(f.file.Fd()),
unix.FALLOC_FL_PUNCH_HOLE|unix.FALLOC_FL_KEEP_SIZE,
int64(fr.Start),
int64(fr.Length()))
}
func (f *MemoryFile) manuallyZero(fr memmap.FileRange) {
f.forEachMappingSlice(fr, func(bs []byte) {
clear(bs)
})
}
func (f *MemoryFile) decommitOrManuallyZero(fr memmap.FileRange) {
if err := f.decommitFile(fr); err != nil {
log.Warningf("Failed to decommit %v: %v", fr, err)
// Zero the pages manually. This won't reduce memory usage, but at
// least ensures that the pages will be zeroed when reallocated.
f.manuallyZero(fr)
}
}
// HasUniqueRef returns true if all pages in the given range have exactly one
// reference. A return value of false is inherently racy, but if the caller
// holds a reference on the given range and is preventing other goroutines from
// copying it, then a return value of true is not racy.
//
// Preconditions: At least one reference must be held on all pages in fr.
func (f *MemoryFile) HasUniqueRef(fr memmap.FileRange) bool {
hasUniqueRef := true
f.mu.Lock()
defer f.mu.Unlock()
f.forEachChunk(fr, func(chunk *chunkInfo, chunkFR memmap.FileRange) bool {
unfree := &f.unfreeSmall
if chunk.huge {
unfree = &f.unfreeHuge
}
unfree.VisitFullRange(fr, func(ufseg unfreeIterator) bool {
if ufseg.ValuePtr().refs != 1 {
hasUniqueRef = false
return false
}
return true
})
return hasUniqueRef
})
return hasUniqueRef
}
// IncRef implements memmap.File.IncRef.
func (f *MemoryFile) IncRef(fr memmap.FileRange, memCgID uint32) {
if !fr.WellFormed() || fr.Length() == 0 || !hostarch.IsPageAligned(fr.Start) || !hostarch.IsPageAligned(fr.End) {
panic(fmt.Sprintf("invalid range: %v", fr))
}
f.mu.Lock()
defer f.mu.Unlock()
f.forEachChunk(fr, func(chunk *chunkInfo, chunkFR memmap.FileRange) bool {
unfree := &f.unfreeSmall
if chunk.huge {
unfree = &f.unfreeHuge
}
unfree.MutateFullRange(chunkFR, func(ufseg unfreeIterator) bool {
uf := ufseg.ValuePtr()
if uf.refs <= 0 {
panic(fmt.Sprintf("IncRef(%v) called with %d references on pages %v", fr, uf.refs, ufseg.Range()))
}
uf.refs++
return true
})
return true
})
}
// DecRef implements memmap.File.DecRef.
func (f *MemoryFile) DecRef(fr memmap.FileRange) {
if !fr.WellFormed() || fr.Length() == 0 || !hostarch.IsPageAligned(fr.Start) || !hostarch.IsPageAligned(fr.End) {
panic(fmt.Sprintf("invalid range: %v", fr))
}
f.mu.Lock()
defer f.mu.Unlock()
haveWaste := false
f.forEachChunk(fr, func(chunk *chunkInfo, chunkFR memmap.FileRange) bool {
unwaste := &f.unwasteSmall
unfree := &f.unfreeSmall
if chunk.huge {
unwaste = &f.unwasteHuge
unfree = &f.unfreeHuge
}
unfree.MutateFullRange(chunkFR, func(ufseg unfreeIterator) bool {
uf := ufseg.ValuePtr()
if uf.refs <= 0 {
panic(fmt.Sprintf("DecRef(%v) called with %d references on pages %v", fr, uf.refs, ufseg.Range()))
}
uf.refs--
if uf.refs == 0 {
// Mark these pages as waste.
wasteFR := ufseg.Range()
unwaste.RemoveFullRange(wasteFR)
haveWaste = true
// Reclassify waste memory as System until it's recycled or
// released.
f.memAcct.MutateFullRange(wasteFR, func(maseg memAcctIterator) bool {
ma := maseg.ValuePtr()
if !f.opts.DisableMemoryAccounting && ma.knownCommitted {
usage.MemoryAccounting.Move(maseg.Range().Length(), usage.System, ma.kind, ma.memCgID)
}
ma.kind = usage.System
ma.wasteOrReleasing = true
return true
})
}
return true
})
return true
})
// Wake the releaser if we marked any pages as waste. Leave this until just
// before unlocking f.mu.
if haveWaste && !f.haveWaste {
f.haveWaste = true
f.releaseCond.Signal()
}
}
// releaserMain implements the releaser goroutine.
func (f *MemoryFile) releaserMain() {
f.mu.Lock()
MainLoop:
for {
for {
if f.destroyed {
f.releaserDestroyLocked()
f.mu.Unlock()
// This must be called without holding f.mu to avoid circular lock
// ordering.
if f.stopNotifyPressure != nil {
f.stopNotifyPressure()
}
return
}
if f.haveWaste {
break
}
if f.opts.DelayedEviction == DelayedEvictionEnabled && !f.opts.UseHostMemcgPressure {
// No work to do. Evict any pending evictable allocations to
// get more waste pages before going to sleep.
f.startEvictionsLocked()
}
f.releaseCond.Wait() // releases f.mu while waiting
}
// Huge pages are relatively rare and expensive due to fragmentation
// and the cost of compaction. Fragmentation is expected to increase
// over time. Most allocations are done upwards, with the main
// exception being thread stacks. So we expect lower offsets to weakly
// correlate with older allocations, which are more likely to actually
// be hugepage-backed. Thus, release from unwasteSmall before
// unwasteHuge, and higher offsets before lower ones.
for i, unwaste := range []*unwasteSet{&f.unwasteSmall, &f.unwasteHuge} {
if uwgap := unwaste.LastLargeEnoughGap(1); uwgap.Ok() {
fr := uwgap.Range()
// Linux serializes fallocate()s on shmem files, so limit the amount we
// release at once to avoid starving Decommit().
const maxReleasingBytes = 128 << 20 // 128 MB
if fr.Length() > maxReleasingBytes {
fr.Start = fr.End - maxReleasingBytes
}
unwaste.Insert(uwgap, fr, unwasteInfo{})
f.releaseLocked(fr, i == 1)
continue MainLoop
}
}
f.haveWaste = false
}
}
// Preconditions: f.mu must be locked; it may be unlocked and reacquired.
func (f *MemoryFile) releaseLocked(fr memmap.FileRange, huge bool) {
defer func() {
maseg := f.memAcct.LowerBoundSegmentSplitBefore(fr.Start)
for maseg.Ok() && maseg.Start() < fr.End {
maseg = f.memAcct.SplitAfter(maseg, fr.End)
ma := maseg.ValuePtr()
if ma.kind != usage.System {
panic(fmt.Sprintf("waste pages %v have unexpected kind %v\n%s", maseg.Range(), ma.kind, f.stringLocked()))
}
if ma.knownCommitted {
malen := maseg.Range().Length()
f.knownCommittedBytes -= malen
if !f.opts.DisableMemoryAccounting {
usage.MemoryAccounting.Dec(malen, ma.kind, ma.memCgID)
}
}
maseg = f.memAcct.Remove(maseg).NextSegment()
}
}()
if !huge {
// Decommit the range being released, then mark the released range as
// freed.
f.mu.Unlock()
f.decommitOrManuallyZero(fr)
f.mu.Lock()
f.unfreeSmall.RemoveFullRange(fr)
return
}
// Handle huge pages and sub-release.
firstHugeStart := hostarch.HugePageRoundDown(fr.Start)
lastHugeStart := hostarch.HugePageRoundDown(fr.End - 1)
firstHugeEnd := firstHugeStart + hostarch.HugePageSize
lastHugeEnd := lastHugeStart + hostarch.HugePageSize
if firstHugeStart == lastHugeStart {
// All of fr falls within a single huge page.
oldSubrel := f.subreleased[firstHugeStart]
incSubrel := fr.Length() / hostarch.PageSize
newSubrel := oldSubrel + incSubrel
if newSubrel == pagesPerHugePage {
// Free this huge page.
//
// When a small page within a hugepage-backed allocation is
// individually deallocated (becomes waste), we decommit it to
// reduce memory usage (and for consistency with legacy behavior).
// This requires the host to split the containing huge page, if one
// exists. khugepaged may later re-assemble the containing huge
// page, implicitly re-committing previously-decommitted small
// pages as a result.
//
// Thus: When a huge page is freed, ensure that the whole huge page
// is decommitted rather than just the final small page(s), to
// ensure that we leave behind an uncommitted hugepage-sized range
// with no re-committed small pages.
if oldSubrel != 0 {
delete(f.subreleased, firstHugeStart)
}
hugeFR := memmap.FileRange{firstHugeStart, firstHugeEnd}
f.mu.Unlock()
f.decommitOrManuallyZero(hugeFR)
f.mu.Lock()
f.unfreeHuge.RemoveFullRange(hugeFR)
} else {
f.subreleased[firstHugeStart] = newSubrel
f.mu.Unlock()
f.decommitOrManuallyZero(fr)
f.mu.Lock()
}
return
}
// fr spans at least two huge pages. Resolve sub-release in the first and
// last huge pages; any huge pages in between are decommitted/freed in
// full.
var (
decommitFR memmap.FileRange
freeFR memmap.FileRange
)
if fr.Start == firstHugeStart {
decommitFR.Start = firstHugeStart
freeFR.Start = firstHugeStart
} else {
oldSubrel := f.subreleased[firstHugeStart]
incSubrel := (firstHugeEnd - fr.Start) / hostarch.PageSize
newSubrel := oldSubrel + incSubrel
if newSubrel == pagesPerHugePage {
if oldSubrel != 0 {
delete(f.subreleased, firstHugeStart)
}
decommitFR.Start = firstHugeStart
freeFR.Start = firstHugeStart
} else {
decommitFR.Start = fr.Start
freeFR.Start = firstHugeEnd
}
}
if fr.End == lastHugeEnd {
decommitFR.End = lastHugeEnd
freeFR.End = lastHugeEnd
} else {
oldSubrel := f.subreleased[lastHugeStart]
incSubrel := (fr.End - lastHugeStart) / hostarch.PageSize
newSubrel := oldSubrel + incSubrel
if newSubrel == pagesPerHugePage {
if oldSubrel != 0 {
delete(f.subreleased, lastHugeStart)
}
decommitFR.End = lastHugeEnd
freeFR.End = lastHugeEnd
} else {
decommitFR.End = fr.End
freeFR.End = lastHugeStart
}
}
f.mu.Unlock()
f.decommitOrManuallyZero(decommitFR)
f.mu.Lock()
if freeFR.Length() != 0 {
f.unfreeHuge.RemoveFullRange(freeFR)
}
}
// MapInternal implements memmap.File.MapInternal.
func (f *MemoryFile) MapInternal(fr memmap.FileRange, at hostarch.AccessType) (safemem.BlockSeq, error) {
if !fr.WellFormed() || fr.Length() == 0 {
panic(fmt.Sprintf("invalid range: %v", fr))
}
if at.Execute {
return safemem.BlockSeq{}, linuxerr.EACCES
}
chunks := ((fr.End + chunkMask) / chunkSize) - (fr.Start / chunkSize)
if chunks == 1 {
// Avoid an unnecessary slice allocation.
var seq safemem.BlockSeq
f.forEachMappingSlice(fr, func(bs []byte) {
seq = safemem.BlockSeqOf(safemem.BlockFromSafeSlice(bs))
})
return seq, nil
}
blocks := make([]safemem.Block, 0, chunks)
f.forEachMappingSlice(fr, func(bs []byte) {
blocks = append(blocks, safemem.BlockFromSafeSlice(bs))
})
return safemem.BlockSeqFromSlice(blocks), nil
}
// forEachMappingSlice invokes fn on a sequence of byte slices that
// collectively map all bytes in fr.
func (f *MemoryFile) forEachMappingSlice(fr memmap.FileRange, fn func([]byte)) {
f.forEachChunk(fr, func(chunk *chunkInfo, chunkFR memmap.FileRange) bool {
fn(chunk.sliceAt(chunkFR))
return true
})
}
// MarkEvictable allows f to request memory deallocation by calling
// user.Evict(er) in the future.
//
// Redundantly marking an already-evictable range as evictable has no effect.
func (f *MemoryFile) MarkEvictable(user EvictableMemoryUser, er EvictableRange) {
f.mu.Lock()
defer f.mu.Unlock()
info, ok := f.evictable[user]
if !ok {
info = &evictableMemoryUserInfo{}
f.evictable[user] = info
}
gap := info.ranges.LowerBoundGap(er.Start)
for gap.Ok() && gap.Start() < er.End {
gapER := gap.Range().Intersect(er)
if gapER.Length() == 0 {
gap = gap.NextGap()
continue
}
gap = info.ranges.Insert(gap, gapER, evictableRangeSetValue{}).NextGap()
}
if !info.evicting {
switch f.opts.DelayedEviction {
case DelayedEvictionDisabled:
// Kick off eviction immediately.
f.startEvictionGoroutineLocked(user, info)
case DelayedEvictionEnabled:
if !f.opts.UseHostMemcgPressure {
// Ensure that the releaser goroutine is running, so that it
// can start eviction when necessary.
f.releaseCond.Signal()
}
}
}
}
// MarkUnevictable informs f that user no longer considers er to be evictable,
// so the MemoryFile should no longer call user.Evict(er). Note that, per
// EvictableMemoryUser.Evict's documentation, user.Evict(er) may still be
// called even after MarkUnevictable returns due to race conditions, and
// implementations of EvictableMemoryUser must handle this possibility.
//
// Redundantly marking an already-unevictable range as unevictable has no
// effect.
func (f *MemoryFile) MarkUnevictable(user EvictableMemoryUser, er EvictableRange) {
f.mu.Lock()
defer f.mu.Unlock()
info, ok := f.evictable[user]
if !ok {
return
}
info.ranges.RemoveRange(er)
// We can only remove info if there's no eviction goroutine running on its
// behalf.
if !info.evicting && info.ranges.IsEmpty() {
delete(f.evictable, user)
}
}
// MarkAllUnevictable informs f that user no longer considers any offsets to be
// evictable. It otherwise has the same semantics as MarkUnevictable.
func (f *MemoryFile) MarkAllUnevictable(user EvictableMemoryUser) {
f.mu.Lock()
defer f.mu.Unlock()
info, ok := f.evictable[user]
if !ok {
return
}
info.ranges.RemoveAll()
// We can only remove info if there's no eviction goroutine running on its
// behalf.
if !info.evicting {
delete(f.evictable, user)
}
}
// ShouldCacheEvictable returns true if f is meaningfully delaying evictions of
// evictable memory, such that it may be advantageous to cache data in
// evictable memory. The value returned by ShouldCacheEvictable may change
// between calls.
func (f *MemoryFile) ShouldCacheEvictable() bool {
return f.opts.DelayedEviction == DelayedEvictionManual || f.opts.UseHostMemcgPressure
}
// UpdateUsage ensures that the memory usage statistics in
// usage.MemoryAccounting are up to date. If memCgIDs is nil, all the pages
// will be scanned. Else only the pages which belong to the memory cgroup ids
// in memCgIDs will be scanned and the memory usage will be updated.
func (f *MemoryFile) UpdateUsage(memCgIDs map[uint32]struct{}) error {
// If we already know of every committed page, skip scanning.
currentUsage, err := f.TotalUsage()
if err != nil {
return err
}
f.mu.Lock()
defer f.mu.Unlock()
if currentUsage == f.knownCommittedBytes {
return nil
}
// Linux updates usage values at CONFIG_HZ; throttle our scans to the same
// frequency.
startTime := time.Now()
if startTime.Before(f.nextCommitScan) {
return nil
}
if memCgIDs == nil {
f.nextCommitScan = startTime.Add(time.Second / linux.CLOCKS_PER_SEC)
}
err = f.updateUsageLocked(memCgIDs, false /* alsoScanCommitted */, mincore)
if log.IsLogging(log.Debug) {
log.Debugf("UpdateUsage: took %v, currentUsage=%d knownCommittedBytes=%d",
time.Since(startTime), currentUsage, f.knownCommittedBytes)
}
return err
}
// updateUsageLocked attempts to detect commitment of previously-uncommitted
// pages by invoking checkCommitted, and updates memory accounting to reflect
// newly-committed pages. If alsoScanCommitted is true, updateUsageLocked also
// attempts to detect decommitment of previously-committed pages; this is only
// used by save/restore, which optionally temporarily treats zeroed pages as
// decommitted in order to skip saving them.
//
// For each page i in bs, checkCommitted must set committed[i] to 1 if the page
// is committed and 0 otherwise. off is the offset at which bs begins.
// wasCommitted is true if the page was known-committed before the call to
// checkCommitted and false otherwise; wasCommitted can only be true if
// alsoScanCommitted is true.
//
// Precondition: f.mu must be held; it may be unlocked and reacquired.
// +checklocks:f.mu
func (f *MemoryFile) updateUsageLocked(memCgIDs map[uint32]struct{}, alsoScanCommitted bool, checkCommitted func(bs []byte, committed []byte, off uint64, wasCommitted bool) error) error {
// Track if anything changed to elide the merge.
changedAny := false
defer func() {
if changedAny {
f.memAcct.MergeAll()
}
}()
// Reused mincore buffer.
var buf []byte
maseg := f.memAcct.FirstSegment()
unscannedStart := uint64(0)
for maseg.Ok() {
ma := maseg.ValuePtr()
if ma.wasteOrReleasing {
// Skip scanning of waste and releasing pages. This isn't
// necessarily correct, since !knownCommitted may have become
// committed after the last call to updateUsageLocked(), then
// transitioned from used to waste. However, this is consistent
// with legacy behavior.
maseg = maseg.NextSegment()
continue
}
wasCommitted := ma.knownCommitted
if !alsoScanCommitted && wasCommitted {
maseg = maseg.NextSegment()
continue
}
// Scan the pages of the given memCgID only. This will avoid scanning
// the whole memory file when the memory usage is required only for a
// specific cgroup. The total memory usage of all cgroups can be
// obtained when memCgIDs is nil.
if memCgIDs != nil {
if _, ok := memCgIDs[ma.memCgID]; !ok {
maseg = maseg.NextSegment()
continue
}
}
fr := maseg.Range()
if fr.Start < unscannedStart {
fr.Start = unscannedStart
}
var checkErr error
f.forEachChunk(fr, func(chunk *chunkInfo, chunkFR memmap.FileRange) bool {
s := chunk.sliceAt(chunkFR)
// Ensure that we have sufficient buffer for the call (one byte per
// page). The length of s must be page-aligned.
bufLen := len(s) / hostarch.PageSize
if len(buf) < bufLen {
buf = make([]byte, bufLen)
}
// Query for new pages in core.
// NOTE(b/165896008): mincore (which is passed as checkCommitted by
// f.UpdateUsage()) might take a really long time. So unlock f.mu while
// checkCommitted runs.
lastCommitSeq := f.commitSeq
f.commitSeq++
f.mu.Unlock() // +checklocksforce
err := checkCommitted(s, buf, chunkFR.Start, wasCommitted)
f.mu.Lock()
if err != nil {
checkErr = err
return false
}
// Reconcile internal state with buf. Since we temporarily dropped
// f.mu, f.memAcct may have changed, and maseg/ma are no longer
// valid. If wasCommitted is false, then we are marking ranges that
// are now committed; otherwise, we are marking ranges that are now
// uncommitted.
unchangedVal := byte(0)
if wasCommitted {
unchangedVal = 1
}
maseg = f.memAcct.LowerBoundSegment(chunkFR.Start)
for i := 0; i < bufLen; {
if buf[i]&0x1 == unchangedVal {
i++
continue
}
// Scan to the end of this changed range.
j := i + 1
for ; j < bufLen; j++ {
if buf[j]&0x1 == unchangedVal {
break
}
}
changedFR := memmap.FileRange{
Start: chunkFR.Start + uint64(i*hostarch.PageSize),
End: chunkFR.Start + uint64(j*hostarch.PageSize),
}
// Advance maseg to changedFR.Start.
for maseg.Ok() && maseg.End() <= changedFR.Start {
maseg = maseg.NextSegment()
}
// Update pages overlapping changedFR, but don't mark ranges as
// committed if they might have raced with decommit.
for maseg.Ok() && maseg.Start() < changedFR.End {
if !maseg.ValuePtr().wasteOrReleasing &&
((!wasCommitted && !maseg.ValuePtr().knownCommitted && ma.commitSeq <= lastCommitSeq) ||
(wasCommitted && maseg.ValuePtr().knownCommitted)) {
maseg = f.memAcct.Isolate(maseg, changedFR)
ma := maseg.ValuePtr()
amount := maseg.Range().Length()
if wasCommitted {
ma.knownCommitted = false
ma.commitSeq = f.commitSeq
f.knownCommittedBytes -= amount
if !f.opts.DisableMemoryAccounting {
usage.MemoryAccounting.Dec(amount, ma.kind, ma.memCgID)
}
} else {
ma.knownCommitted = true
ma.commitSeq = 0
f.knownCommittedBytes += amount
if !f.opts.DisableMemoryAccounting {
usage.MemoryAccounting.Inc(amount, ma.kind, ma.memCgID)
}
}
changedAny = true
}
maseg = maseg.NextSegment()
}
// Continue scanning for changed pages.
i = j + 1
}
// Don't continue to the next chunk, since while f.mu was unlocked
// its memory accounting state could have changed completely.
// Instead, continue the outer loop with the first segment after
// chunkFR.End.
maseg = f.memAcct.LowerBoundSegment(chunkFR.End)
unscannedStart = chunkFR.End
return false
})
if checkErr != nil {
return checkErr
}
}
return nil
}
// TotalUsage returns an aggregate usage for all memory statistics except
// Mapped (which is external to MemoryFile). This is generally much cheaper
// than UpdateUsage, but will not provide a fine-grained breakdown.
func (f *MemoryFile) TotalUsage() (uint64, error) {
// Stat the underlying file to discover the underlying usage. stat(2)
// always reports the allocated block count in units of 512 bytes. This
// includes pages in the page cache and swapped pages.
var stat unix.Stat_t
if err := unix.Fstat(int(f.file.Fd()), &stat); err != nil {
return 0, err
}
return uint64(stat.Blocks * 512), nil
}
// TotalSize returns the current size of the backing file in bytes, which is an
// upper bound on the amount of memory that can currently be allocated from the
// MemoryFile. The value returned by TotalSize is permitted to change.
func (f *MemoryFile) TotalSize() uint64 {
return uint64(len(f.chunksLoad())) * chunkSize
}
// File returns the backing file.
func (f *MemoryFile) File() *os.File {
return f.file
}
// FD implements memmap.File.FD.
func (f *MemoryFile) FD() int {
return int(f.file.Fd())
}
// IsDiskBacked returns true if f is backed by a file on disk.
func (f *MemoryFile) IsDiskBacked() bool {
return f.opts.DiskBackedFile
}
// HugepagesEnabled returns true if the MemoryFile expects to back allocations
// for which AllocOpts.Huge == true with huge pages.
func (f *MemoryFile) HugepagesEnabled() bool {
return f.opts.ExpectHugepages
}
// String implements fmt.Stringer.String.
func (f *MemoryFile) String() string {
f.mu.Lock()
defer f.mu.Unlock()
return f.stringLocked()
}
// Preconditions: f.mu must be locked.
func (f *MemoryFile) stringLocked() string {
var b strings.Builder
fmt.Fprintf(&b, "unwasteSmall:\n%s", &f.unwasteSmall)
if f.opts.ExpectHugepages {
fmt.Fprintf(&b, "unwasteHuge:\n%s", &f.unwasteHuge)
}
fmt.Fprintf(&b, "unfreeSmall:\n%s", &f.unfreeSmall)
if f.opts.ExpectHugepages {
fmt.Fprintf(&b, "unfreeHuge:\n%s", &f.unfreeHuge)
fmt.Fprintf(&b, "subreleased:\n")
for off, pgs := range f.subreleased {
fmt.Fprintf(&b, "- %#x: %d\n", off, pgs)
}
}
fmt.Fprintf(&b, "memAcct:\n%s", &f.memAcct)
return b.String()
}
// StartEvictions requests that f evict all evictable allocations. It does not
// wait for eviction to complete; for this, see MemoryFile.WaitForEvictions.
func (f *MemoryFile) StartEvictions() {
f.mu.Lock()
defer f.mu.Unlock()
f.startEvictionsLocked()
}
// Preconditions: f.mu must be locked.
func (f *MemoryFile) startEvictionsLocked() bool {
startedAny := false
for user, info := range f.evictable {
// Don't start multiple goroutines to evict the same user's
// allocations.
if !info.evicting {
f.startEvictionGoroutineLocked(user, info)
startedAny = true
}
}
return startedAny
}
// Preconditions:
// - info == f.evictable[user].
// - !info.evicting.
// - f.mu must be locked.
func (f *MemoryFile) startEvictionGoroutineLocked(user EvictableMemoryUser, info *evictableMemoryUserInfo) {
info.evicting = true
f.evictionWG.Add(1)
go func() { // S/R-SAFE: f.evictionWG
defer f.evictionWG.Done()
for {
f.mu.Lock()
info, ok := f.evictable[user]
if !ok {
// This shouldn't happen: only this goroutine is permitted
// to delete this entry.
f.mu.Unlock()
panic(fmt.Sprintf("evictableMemoryUserInfo for EvictableMemoryUser %v deleted while eviction goroutine running", user))
}
if info.ranges.IsEmpty() {
delete(f.evictable, user)
f.mu.Unlock()
return
}
// Evict from the end of info.ranges, under the assumption that
// if ranges in user start being used again (and are
// consequently marked unevictable), such uses are more likely
// to start from the beginning of user.
seg := info.ranges.LastSegment()
er := seg.Range()
info.ranges.Remove(seg)
// user.Evict() must be called without holding f.mu to avoid
// circular lock ordering.
f.mu.Unlock()
user.Evict(context.Background(), er)
}
}()
}
// WaitForEvictions blocks until f is no longer evicting any evictable
// allocations.
func (f *MemoryFile) WaitForEvictions() {
f.evictionWG.Wait()
}
type unwasteSetFunctions struct{}
func (unwasteSetFunctions) MinKey() uint64 {
return 0
}
func (unwasteSetFunctions) MaxKey() uint64 {
return math.MaxUint64
}
func (unwasteSetFunctions) ClearValue(val *unwasteInfo) {
}
func (unwasteSetFunctions) Merge(_ memmap.FileRange, val1 unwasteInfo, _ memmap.FileRange, val2 unwasteInfo) (unwasteInfo, bool) {
return val1, val1 == val2
}
func (unwasteSetFunctions) Split(_ memmap.FileRange, val unwasteInfo, _ uint64) (unwasteInfo, unwasteInfo) {
return val, val
}
type unfreeSetFunctions struct{}
func (unfreeSetFunctions) MinKey() uint64 {
return 0
}
func (unfreeSetFunctions) MaxKey() uint64 {
return math.MaxUint64
}
func (unfreeSetFunctions) ClearValue(val *unfreeInfo) {
}
func (unfreeSetFunctions) Merge(_ memmap.FileRange, val1 unfreeInfo, _ memmap.FileRange, val2 unfreeInfo) (unfreeInfo, bool) {
return val1, val1 == val2
}
func (unfreeSetFunctions) Split(_ memmap.FileRange, val unfreeInfo, _ uint64) (unfreeInfo, unfreeInfo) {
return val, val
}
type memAcctSetFunctions struct{}
func (memAcctSetFunctions) MinKey() uint64 {
return 0
}
func (memAcctSetFunctions) MaxKey() uint64 {
return math.MaxUint64
}
func (memAcctSetFunctions) ClearValue(val *memAcctInfo) {
}
func (memAcctSetFunctions) Merge(_ memmap.FileRange, val1 memAcctInfo, _ memmap.FileRange, val2 memAcctInfo) (memAcctInfo, bool) {
return val1, val1 == val2
}
func (memAcctSetFunctions) Split(_ memmap.FileRange, val memAcctInfo, _ uint64) (memAcctInfo, memAcctInfo) {
return val, val
}
// evictableRangeSetValue is the value type of evictableRangeSet.
type evictableRangeSetValue struct{}
type evictableRangeSetFunctions struct{}
func (evictableRangeSetFunctions) MinKey() uint64 {
return 0
}
func (evictableRangeSetFunctions) MaxKey() uint64 {
return math.MaxUint64
}
func (evictableRangeSetFunctions) ClearValue(val *evictableRangeSetValue) {
}
func (evictableRangeSetFunctions) Merge(_ EvictableRange, _ evictableRangeSetValue, _ EvictableRange, _ evictableRangeSetValue) (evictableRangeSetValue, bool) {
return evictableRangeSetValue{}, true
}
func (evictableRangeSetFunctions) Split(_ EvictableRange, _ evictableRangeSetValue, _ uint64) (evictableRangeSetValue, evictableRangeSetValue) {
return evictableRangeSetValue{}, evictableRangeSetValue{}
}
|