1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kvm
import (
"fmt"
"runtime"
gosync "sync"
"sync/atomic"
"time"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/hosttid"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/metric"
"gvisor.dev/gvisor/pkg/ring0"
"gvisor.dev/gvisor/pkg/ring0/pagetables"
"gvisor.dev/gvisor/pkg/seccomp"
ktime "gvisor.dev/gvisor/pkg/sentry/time"
"gvisor.dev/gvisor/pkg/sighandling"
"gvisor.dev/gvisor/pkg/sync"
)
// machine contains state associated with the VM as a whole.
type machine struct {
// fd is the vm fd.
fd int
// machinePoolIndex is the index in the machinePool array.
machinePoolIndex uint32
// nextSlot is the next slot for setMemoryRegion.
//
// If nextSlot is ^uint32(0), then slots are currently being updated, and the
// caller should retry.
nextSlot atomicbitops.Uint32
// upperSharedPageTables tracks the read-only shared upper of all the pagetables.
upperSharedPageTables *pagetables.PageTables
// kernel is the set of global structures.
kernel ring0.Kernel
// mu protects vCPUs.
mu sync.RWMutex
// available is notified when vCPUs are available.
available sync.Cond
// vCPUsByTID are the machine vCPUs.
//
// These are populated dynamically.
vCPUsByTID map[uint64]*vCPU
// vCPUsByID are the machine vCPUs, can be indexed by the vCPU's ID.
vCPUsByID []*vCPU
// usedVCPUs is the number of vCPUs that have been used from the
// vCPUsByID pool.
usedVCPUs int
// maxVCPUs is the maximum number of vCPUs supported by the machine.
maxVCPUs int
// maxSlots is the maximum number of memory slots supported by the machine.
maxSlots int
// tscControl checks whether cpu supports TSC scaling
tscControl bool
// usedSlots is the set of used physical addresses (not sorted).
usedSlots []uintptr
}
const (
// vCPUReady is an alias for all the below clear.
vCPUReady uint32 = 0
// vCPUser indicates that the vCPU is in or about to enter user mode.
vCPUUser uint32 = 1 << 0
// vCPUGuest indicates the vCPU is in guest mode.
vCPUGuest uint32 = 1 << 1
// vCPUWaiter indicates that there is a waiter.
//
// If this is set, then notify must be called on any state transitions.
vCPUWaiter uint32 = 1 << 2
)
// Field values for the get_vcpu metric acquisition path used.
var (
getVCPUAcquisitionFastReused = metric.FieldValue{"fast_reused"}
getVCPUAcquisitionReused = metric.FieldValue{"reused"}
getVCPUAcquisitionUnused = metric.FieldValue{"unused"}
getVCPUAcquisitionStolen = metric.FieldValue{"stolen"}
)
var (
// hostExitCounter is a metric that tracks how many times the sentry
// performed a host to guest world switch.
hostExitCounter = KVMProfiling.MustCreateNewUint64Metric(
"/kvm/host_exits",
metric.Uint64Metadata{
Cumulative: true,
Description: "The number of times the sentry performed a host to guest world switch.",
})
// userExitCounter is a metric that tracks how many times the sentry has
// had an exit from userspace. Analogous to vCPU.userExits.
userExitCounter = KVMProfiling.MustCreateNewUint64Metric(
"/kvm/user_exits",
metric.Uint64Metadata{
Cumulative: true,
Description: "The number of times the sentry has had an exit from userspace.",
})
// interruptCounter is a metric that tracks how many times execution returned
// to the KVM host to handle a pending signal.
interruptCounter = KVMProfiling.MustCreateNewUint64Metric(
"/kvm/interrupts",
metric.Uint64Metadata{
Cumulative: true,
Description: "The number of times the signal handler was invoked.",
})
// mmapCallCounter is a metric that tracks how many times the function
// seccompMmapSyscall has been called.
mmapCallCounter = KVMProfiling.MustCreateNewUint64Metric(
"/kvm/mmap_calls",
metric.Uint64Metadata{
Cumulative: true,
Description: "The number of times seccompMmapSyscall has been called.",
})
// getVCPUCounter is a metric that tracks how many times different paths of
// machine.Get() are triggered.
getVCPUCounter = KVMProfiling.MustCreateNewUint64Metric(
"/kvm/get_vcpu",
metric.Uint64Metadata{
Cumulative: true,
Description: "The number of times that machine.Get() was called, split by path the function took.",
Fields: []metric.Field{
metric.NewField("acquisition_type", &getVCPUAcquisitionFastReused, &getVCPUAcquisitionReused, &getVCPUAcquisitionUnused, &getVCPUAcquisitionStolen),
},
})
// asInvalidateDuration are durations of calling addressSpace.invalidate().
asInvalidateDuration = KVMProfiling.MustCreateNewTimerMetric("/kvm/address_space_invalidate",
metric.NewExponentialBucketer(15, uint64(time.Nanosecond*100), 1, 2),
"Duration of calling addressSpace.invalidate().")
)
// vCPU is a single KVM vCPU.
type vCPU struct {
// CPU is the kernel CPU data.
//
// This must be the first element of this structure, it is referenced
// by the bluepill code (see bluepill_amd64.s).
ring0.CPU
// id is the vCPU id.
id int
// fd is the vCPU fd.
fd int
// tid is the last set tid.
tid atomicbitops.Uint64
// userExits is the count of user exits.
userExits atomicbitops.Uint64
// guestExits is the count of guest to host world switches.
guestExits atomicbitops.Uint64
// faults is a count of world faults (informational only).
faults uint32
// state is the vCPU state.
//
// This is a bitmask of the three fields (vCPU*) described above.
state atomicbitops.Uint32
// runData for this vCPU.
runData *runData
// machine associated with this vCPU.
machine *machine
// active is the current addressSpace: this is set and read atomically,
// it is used to elide unnecessary interrupts due to invalidations.
active atomicAddressSpace
// vCPUArchState is the architecture-specific state.
vCPUArchState
// dieState holds state related to vCPU death.
dieState dieState
}
type dieState struct {
// message is thrown from die.
message string
// guestRegs is used to store register state during vCPU.die() to prevent
// allocation inside nosplit function.
guestRegs userRegs
}
// createVCPU creates and returns a new vCPU.
//
// Precondition: mu must be held.
func (m *machine) createVCPU(id int) *vCPU {
// Create the vCPU.
fd, _, errno := unix.RawSyscall(unix.SYS_IOCTL, uintptr(m.fd), KVM_CREATE_VCPU, uintptr(id))
if errno != 0 {
panic(fmt.Sprintf("error creating new vCPU: %v", errno))
}
c := &vCPU{
id: id,
fd: int(fd),
machine: m,
}
c.CPU.Init(&m.kernel, c.id, c)
m.vCPUsByID[c.id] = c
// Ensure the signal mask is correct.
if err := c.setSignalMask(); err != nil {
panic(fmt.Sprintf("error setting signal mask: %v", err))
}
// Map the run data.
runData, err := mapRunData(int(fd))
if err != nil {
panic(fmt.Sprintf("error mapping run data: %v", err))
}
c.runData = runData
// Initialize architecture state.
if err := c.initArchState(); err != nil {
panic(fmt.Sprintf("error initialization vCPU state: %v", err))
}
return c // Done.
}
// newMachine returns a new VM context.
func newMachine(vm int) (*machine, error) {
// Create the machine.
m := &machine{fd: vm}
m.available.L = &m.mu
// Pull the maximum vCPUs.
m.getMaxVCPU()
log.Debugf("The maximum number of vCPUs is %d.", m.maxVCPUs)
m.vCPUsByTID = make(map[uint64]*vCPU)
m.vCPUsByID = make([]*vCPU, m.maxVCPUs)
m.kernel.Init(m.maxVCPUs)
// Pull the maximum slots.
maxSlots, _, errno := unix.RawSyscall(unix.SYS_IOCTL, uintptr(m.fd), KVM_CHECK_EXTENSION, _KVM_CAP_MAX_MEMSLOTS)
if errno != 0 {
m.maxSlots = _KVM_NR_MEMSLOTS
} else {
m.maxSlots = int(maxSlots)
}
log.Debugf("The maximum number of slots is %d.", m.maxSlots)
m.usedSlots = make([]uintptr, m.maxSlots)
// Check TSC Scaling
hasTSCControl, _, errno := unix.RawSyscall(unix.SYS_IOCTL, uintptr(m.fd), KVM_CHECK_EXTENSION, _KVM_CAP_TSC_CONTROL)
m.tscControl = errno == 0 && hasTSCControl == 1
log.Debugf("TSC scaling support: %t.", m.tscControl)
// Create the upper shared pagetables and kernel(sentry) pagetables.
m.upperSharedPageTables = pagetables.New(newAllocator())
m.mapUpperHalf(m.upperSharedPageTables)
m.upperSharedPageTables.Allocator.(*allocator).base.Drain()
m.upperSharedPageTables.MarkReadOnlyShared()
m.kernel.PageTables = pagetables.NewWithUpper(newAllocator(), m.upperSharedPageTables, ring0.KernelStartAddress)
// Install seccomp rules to trap runtime mmap system calls. They will
// be handled by seccompMmapHandler.
seccompMmapRules(m)
// Apply the physical mappings. Note that these mappings may point to
// guest physical addresses that are not actually available. These
// physical pages are mapped on demand, see kernel_unsafe.go.
applyPhysicalRegions(func(pr physicalRegion) bool {
// Map everything in the lower half.
m.kernel.PageTables.Map(
hostarch.Addr(pr.virtual),
pr.length,
pagetables.MapOpts{AccessType: hostarch.ReadWrite},
pr.physical)
return true // Keep iterating.
})
// Ensure that the currently mapped virtual regions are actually
// available in the VM. Note that this doesn't guarantee no future
// faults, however it should guarantee that everything is available to
// ensure successful vCPU entry.
mapRegion := func(vr virtualRegion, flags uint32) {
for virtual := vr.virtual; virtual < vr.virtual+vr.length; {
physical, length, ok := translateToPhysical(virtual)
if !ok {
// This must be an invalid region that was
// knocked out by creation of the physical map.
return
}
if virtual+length > vr.virtual+vr.length {
// Cap the length to the end of the area.
length = vr.virtual + vr.length - virtual
}
// Update page tables for executable mappings.
if vr.accessType.Execute {
if vr.accessType.Write {
panic(fmt.Sprintf("executable mapping can't be writable: %#v", vr))
}
m.kernel.PageTables.Map(
hostarch.Addr(virtual),
length,
pagetables.MapOpts{AccessType: vr.accessType},
physical)
}
// Ensure the physical range is mapped.
m.mapPhysical(physical, length, physicalRegions)
virtual += length
}
}
// handleBluepillFault takes the slot spinlock and it is called from
// seccompMmapHandler, so here we have to guarantee that mmap is not
// called while we hold the slot spinlock.
disableAsyncPreemption()
applyVirtualRegions(func(vr virtualRegion) {
if excludeVirtualRegion(vr) {
return // skip region.
}
// Take into account that the stack can grow down.
if vr.filename == "[stack]" {
vr.virtual -= 1 << 20
vr.length += 1 << 20
}
mapRegion(vr, 0)
})
enableAsyncPreemption()
// Initialize architecture state.
if err := m.initArchState(); err != nil {
m.Destroy()
return nil, err
}
// Ensure the machine is cleaned up properly.
runtime.SetFinalizer(m, (*machine).Destroy)
return m, nil
}
// hasSlot returns true if the given address is mapped.
//
// This must be done via a linear scan.
//
//go:nosplit
func (m *machine) hasSlot(physical uintptr) bool {
slotLen := int(m.nextSlot.Load())
// When slots are being updated, nextSlot is ^uint32(0). As this situation
// is less likely happen, we just set the slotLen to m.maxSlots, and scan
// the whole usedSlots array.
if slotLen == int(^uint32(0)) {
slotLen = m.maxSlots
}
for i := 0; i < slotLen; i++ {
if p := atomic.LoadUintptr(&m.usedSlots[i]); p == physical {
return true
}
}
return false
}
// mapPhysical checks for the mapping of a physical range, and installs one if
// not available. This attempts to be efficient for calls in the hot path.
//
// This throws on error.
//
//go:nosplit
func (m *machine) mapPhysical(physical, length uintptr, phyRegions []physicalRegion) {
for end := physical + length; physical < end; {
_, physicalStart, length, pr := calculateBluepillFault(physical, phyRegions)
if pr == nil {
// Should never happen.
throw("mapPhysical on unknown physical address")
}
// Is this already mapped? Check the usedSlots.
if !m.hasSlot(physicalStart) {
if _, ok := handleBluepillFault(m, physical, phyRegions); !ok {
throw("handleBluepillFault failed")
}
}
// Move to the next chunk.
physical = physicalStart + length
}
}
// Destroy frees associated resources.
//
// Destroy should only be called once all active users of the machine are gone.
// The machine object should not be used after calling Destroy.
//
// Precondition: all vCPUs must be returned to the machine.
func (m *machine) Destroy() {
runtime.SetFinalizer(m, nil)
// Destroy vCPUs.
for _, c := range m.vCPUsByID {
if c == nil {
continue
}
// Ensure the vCPU is not still running in guest mode. This is
// possible iff teardown has been done by other threads, and
// somehow a single thread has not executed any system calls.
c.BounceToHost()
// Note that the runData may not be mapped if an error occurs
// during the middle of initialization.
if c.runData != nil {
if err := unmapRunData(c.runData); err != nil {
panic(fmt.Sprintf("error unmapping rundata: %v", err))
}
}
if err := unix.Close(int(c.fd)); err != nil {
panic(fmt.Sprintf("error closing vCPU fd: %v", err))
}
}
machinePool[m.machinePoolIndex].Store(nil)
seccompMmapSync()
// vCPUs are gone: teardown machine state.
if err := unix.Close(m.fd); err != nil {
panic(fmt.Sprintf("error closing VM fd: %v", err))
}
}
// Get gets an available vCPU.
//
// This will return with the OS thread locked.
//
// It is guaranteed that if any OS thread TID is in guest, m.vCPUs[TID] points
// to the vCPU in which the OS thread TID is running. So if Get() returns with
// the current context in guest, the vCPU of it must be the same as what
// Get() returns.
func (m *machine) Get() *vCPU {
m.mu.RLock()
runtime.LockOSThread()
tid := hosttid.Current()
// Check for an exact match.
if c := m.vCPUsByTID[tid]; c != nil {
c.lock()
m.mu.RUnlock()
getVCPUCounter.Increment(&getVCPUAcquisitionFastReused)
return c
}
// The happy path failed. We now proceed to acquire an exclusive lock
// (because the vCPU map may change), and scan all available vCPUs.
// In this case, we first unlock the OS thread. Otherwise, if mu is
// not available, the current system thread will be parked and a new
// system thread spawned. We avoid this situation by simply refreshing
// tid after relocking the system thread.
m.mu.RUnlock()
runtime.UnlockOSThread()
m.mu.Lock()
runtime.LockOSThread()
tid = hosttid.Current()
// Recheck for an exact match.
if c := m.vCPUsByTID[tid]; c != nil {
c.lock()
m.mu.Unlock()
getVCPUCounter.Increment(&getVCPUAcquisitionReused)
return c
}
for {
// Get vCPU from the m.vCPUsByID pool.
if m.usedVCPUs < m.maxVCPUs {
c := m.vCPUsByID[m.usedVCPUs]
m.usedVCPUs++
c.lock()
m.vCPUsByTID[tid] = c
m.mu.Unlock()
c.loadSegments(tid)
getVCPUCounter.Increment(&getVCPUAcquisitionUnused)
return c
}
// Scan for an available vCPU.
for origTID, c := range m.vCPUsByTID {
if c.state.CompareAndSwap(vCPUReady, vCPUUser) {
delete(m.vCPUsByTID, origTID)
m.vCPUsByTID[tid] = c
m.mu.Unlock()
c.loadSegments(tid)
getVCPUCounter.Increment(&getVCPUAcquisitionUnused)
return c
}
}
// Scan for something not in user mode.
for origTID, c := range m.vCPUsByTID {
if !c.state.CompareAndSwap(vCPUGuest, vCPUGuest|vCPUWaiter) {
continue
}
// The vCPU is not be able to transition to
// vCPUGuest|vCPUWaiter or to vCPUUser because that
// transition requires holding the machine mutex, as we
// do now. There is no path to register a waiter on
// just the vCPUReady state.
for {
c.waitUntilNot(vCPUGuest | vCPUWaiter)
if c.state.CompareAndSwap(vCPUReady, vCPUUser) {
break
}
}
// Steal the vCPU.
delete(m.vCPUsByTID, origTID)
m.vCPUsByTID[tid] = c
m.mu.Unlock()
c.loadSegments(tid)
getVCPUCounter.Increment(&getVCPUAcquisitionStolen)
return c
}
// Everything is executing in user mode. Wait until something
// is available. Note that signaling the condition variable
// will have the extra effect of kicking the vCPUs out of guest
// mode if that's where they were.
m.available.Wait()
}
}
// Put puts the current vCPU.
func (m *machine) Put(c *vCPU) {
c.unlock()
runtime.UnlockOSThread()
m.mu.RLock()
m.available.Signal()
m.mu.RUnlock()
}
// newDirtySet returns a new dirty set.
func (m *machine) newDirtySet() *dirtySet {
return &dirtySet{
vCPUMasks: make([]atomicbitops.Uint64,
(m.maxVCPUs+63)/64, (m.maxVCPUs+63)/64),
}
}
// dropPageTables drops cached page table entries.
func (m *machine) dropPageTables(pt *pagetables.PageTables) {
m.mu.Lock()
defer m.mu.Unlock()
// Clear from all PCIDs.
for _, c := range m.vCPUsByID {
if c != nil && c.PCIDs != nil {
c.PCIDs.Drop(pt)
}
}
}
// lock marks the vCPU as in user mode.
//
// This should only be called directly when known to be safe, i.e. when
// the vCPU is owned by the current TID with no chance of theft.
//
//go:nosplit
func (c *vCPU) lock() {
atomicbitops.OrUint32(&c.state, vCPUUser)
}
// unlock clears the vCPUUser bit.
//
//go:nosplit
func (c *vCPU) unlock() {
origState := atomicbitops.CompareAndSwapUint32(&c.state, vCPUUser|vCPUGuest, vCPUGuest)
if origState == vCPUUser|vCPUGuest {
// Happy path: no exits are forced, and we can continue
// executing on our merry way with a single atomic access.
return
}
// Clear the lock.
for {
state := atomicbitops.CompareAndSwapUint32(&c.state, origState, origState&^vCPUUser)
if state == origState {
break
}
origState = state
}
switch origState {
case vCPUUser:
// Normal state.
case vCPUUser | vCPUGuest | vCPUWaiter:
// Force a transition: this must trigger a notification when we
// return from guest mode. We must clear vCPUWaiter here
// anyways, because BounceToKernel will force a transition only
// from ring3 to ring0, which will not clear this bit. Halt may
// workaround the issue, but if there is no exception or
// syscall in this period, BounceToKernel will hang.
atomicbitops.AndUint32(&c.state, ^vCPUWaiter)
c.notify()
case vCPUUser | vCPUWaiter:
// Waiting for the lock to be released; the responsibility is
// on us to notify the waiter and clear the associated bit.
atomicbitops.AndUint32(&c.state, ^vCPUWaiter)
c.notify()
default:
panic("invalid state")
}
}
// NotifyInterrupt implements interrupt.Receiver.NotifyInterrupt.
//
//go:nosplit
func (c *vCPU) NotifyInterrupt() {
c.BounceToKernel()
}
// pid is used below in bounce.
var pid = unix.Getpid()
// bounce forces a return to the kernel or to host mode.
//
// This effectively unwinds the state machine.
func (c *vCPU) bounce(forceGuestExit bool) {
origGuestExits := c.guestExits.Load()
origUserExits := c.userExits.Load()
for {
switch state := c.state.Load(); state {
case vCPUReady, vCPUWaiter:
// There is nothing to be done, we're already in the
// kernel pre-acquisition. The Bounce criteria have
// been satisfied.
return
case vCPUUser:
// We need to register a waiter for the actual guest
// transition. When the transition takes place, then we
// can inject an interrupt to ensure a return to host
// mode.
c.state.CompareAndSwap(state, state|vCPUWaiter)
case vCPUUser | vCPUWaiter:
// Wait for the transition to guest mode. This should
// come from the bluepill handler.
c.waitUntilNot(state)
case vCPUGuest, vCPUUser | vCPUGuest:
if state == vCPUGuest && !forceGuestExit {
// The vCPU is already not acquired, so there's
// no need to do a fresh injection here.
return
}
// The vCPU is in user or kernel mode. Attempt to
// register a notification on change.
if !c.state.CompareAndSwap(state, state|vCPUWaiter) {
break // Retry.
}
for {
// We need to spin here until the signal is
// delivered, because Tgkill can return EAGAIN
// under memory pressure. Since we already
// marked ourselves as a waiter, we need to
// ensure that a signal is actually delivered.
if err := unix.Tgkill(pid, int(c.tid.Load()), bounceSignal); err == nil {
break
} else if err.(unix.Errno) == unix.EAGAIN {
continue
} else {
// Nothing else should be returned by tgkill.
panic(fmt.Sprintf("unexpected tgkill error: %v", err))
}
}
case vCPUGuest | vCPUWaiter, vCPUUser | vCPUGuest | vCPUWaiter:
if state == vCPUGuest|vCPUWaiter && !forceGuestExit {
// See above.
return
}
// Wait for the transition. This again should happen
// from the bluepill handler, but on the way out.
c.waitUntilNot(state)
default:
// Should not happen: the above is exhaustive.
panic("invalid state")
}
// Check if we've missed the state transition, but
// we can safely return at this point in time.
newGuestExits := c.guestExits.Load()
newUserExits := c.userExits.Load()
if newUserExits != origUserExits && (!forceGuestExit || newGuestExits != origGuestExits) {
return
}
}
}
// BounceToKernel ensures that the vCPU bounces back to the kernel.
//
//go:nosplit
func (c *vCPU) BounceToKernel() {
c.bounce(false)
}
// BounceToHost ensures that the vCPU is in host mode.
//
//go:nosplit
func (c *vCPU) BounceToHost() {
c.bounce(true)
}
// setSystemTimeLegacy calibrates and sets an approximate system time.
func (c *vCPU) setSystemTimeLegacy() error {
const minIterations = 10
minimum := uint64(0)
for iter := 0; ; iter++ {
// Try to set the TSC to an estimate of where it will be
// on the host during a "fast" system call iteration.
start := uint64(ktime.Rdtsc())
if err := c.setTSC(start + (minimum / 2)); err != nil {
return err
}
// See if this is our new minimum call time. Note that this
// serves two functions: one, we make sure that we are
// accurately predicting the offset we need to set. Second, we
// don't want to do the final set on a slow call, which could
// produce a really bad result.
end := uint64(ktime.Rdtsc())
if end < start {
continue // Totally bogus: unstable TSC?
}
current := end - start
if current < minimum || iter == 0 {
minimum = current // Set our new minimum.
}
// Is this past minIterations and within ~10% of minimum?
upperThreshold := (((minimum << 3) + minimum) >> 3)
if iter >= minIterations && current <= upperThreshold {
return nil
}
}
}
const machinePoolSize = 16
// machinePool is enumerated from the seccompMmapHandler signal handler
var (
machinePool [machinePoolSize]machineAtomicPtr
machinePoolLen atomicbitops.Uint32
machinePoolMu sync.Mutex
seccompMmapRulesOnce gosync.Once
)
func sigsysHandler()
func addrOfSigsysHandler() uintptr
// seccompMmapRules adds seccomp rules to trap mmap system calls that will be
// handled in seccompMmapHandler.
func seccompMmapRules(m *machine) {
seccompMmapRulesOnce.Do(func() {
// Install the handler.
if err := sighandling.ReplaceSignalHandler(unix.SIGSYS, addrOfSigsysHandler(), &savedSigsysHandler); err != nil {
panic(fmt.Sprintf("Unable to set handler for signal %d: %v", bluepillSignal, err))
}
rules := []seccomp.RuleSet{
// Trap mmap system calls and handle them in sigsysGoHandler
{
Rules: seccomp.MakeSyscallRules(map[uintptr]seccomp.SyscallRule{
unix.SYS_MMAP: seccomp.PerArg{
seccomp.AnyValue{},
seccomp.AnyValue{},
seccomp.MaskedEqual(unix.PROT_EXEC, 0),
/* MAP_DENYWRITE is ignored and used only for filtering. */
seccomp.MaskedEqual(unix.MAP_DENYWRITE, 0),
},
}),
Action: linux.SECCOMP_RET_TRAP,
},
}
instrs, _, err := seccomp.BuildProgram(rules, seccomp.ProgramOptions{
DefaultAction: linux.SECCOMP_RET_ALLOW,
BadArchAction: linux.SECCOMP_RET_ALLOW,
})
if err != nil {
panic(fmt.Sprintf("failed to build rules: %v", err))
}
// Perform the actual installation.
if err := seccomp.SetFilter(instrs); err != nil {
panic(fmt.Sprintf("failed to set filter: %v", err))
}
})
machinePoolMu.Lock()
n := machinePoolLen.Load()
i := uint32(0)
for ; i < n; i++ {
if machinePool[i].Load() == nil {
break
}
}
if i == n {
if i == machinePoolSize {
machinePoolMu.Unlock()
panic("machinePool is full")
}
machinePoolLen.Add(1)
}
machinePool[i].Store(m)
m.machinePoolIndex = i
machinePoolMu.Unlock()
}
|