File: sighandler_amd64.c

package info (click to toggle)
golang-gvisor-gvisor 0.0~20240729.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie, trixie-proposed-updates
  • size: 21,300 kB
  • sloc: asm: 3,361; ansic: 1,197; cpp: 348; makefile: 92; python: 89; sh: 83
file content (486 lines) | stat: -rw-r--r-- 18,795 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#define _GNU_SOURCE
#include <asm/prctl.h>
#include <asm/unistd_64.h>
#include <errno.h>
#include <linux/audit.h>
#include <linux/futex.h>
#include <linux/unistd.h>
#include <signal.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/prctl.h>
#include <sys/ucontext.h>

#include "atomic.h"
#include "sysmsg.h"
#include "sysmsg_offsets.h"
#include "sysmsg_offsets_amd64.h"

// TODO(b/271631387): These globals are shared between AMD64 and ARM64; move to
// sysmsg_lib.c.
struct arch_state __export_arch_state;
uint64_t __export_stub_start;

long __syscall(long n, long a1, long a2, long a3, long a4, long a5, long a6) {
  unsigned long ret;
  register long r10 __asm__("r10") = a4;
  register long r8 __asm__("r8") = a5;
  register long r9 __asm__("r9") = a6;
  __asm__ __volatile__("syscall"
                       : "=a"(ret)
                       : "a"(n), "D"(a1), "S"(a2), "d"(a3), "r"(r10), "r"(r8),
                         "r"(r9)
                       : "rcx", "r11", "memory");
  return ret;
}

long sys_futex(uint32_t *addr, int op, int val, struct __kernel_timespec *tv,
               uint32_t *addr2, int val3) {
  return __syscall(__NR_futex, (long)addr, (long)op, (long)val, (long)tv,
                   (long)addr2, (long)val3);
}

union csgsfs {
  uint64_t csgsfs;  // REG_CSGSFS
  struct {
    uint16_t cs;
    uint16_t gs;
    uint16_t fs;
    uint16_t ss;
  };
};

static void gregs_to_ptregs(ucontext_t *ucontext,
                            struct user_regs_struct *ptregs) {
  union csgsfs csgsfs = {.csgsfs = ucontext->uc_mcontext.gregs[REG_CSGSFS]};

  // Set all registers except:
  // * fs_base and gs_base, because they can be only changed by arch_prctl.
  // * DS and ES are not used on x86_64.
  ptregs->r15 = ucontext->uc_mcontext.gregs[REG_R15];
  ptregs->r14 = ucontext->uc_mcontext.gregs[REG_R14];
  ptregs->r13 = ucontext->uc_mcontext.gregs[REG_R13];
  ptregs->r12 = ucontext->uc_mcontext.gregs[REG_R12];
  ptregs->rbp = ucontext->uc_mcontext.gregs[REG_RBP];
  ptregs->rbx = ucontext->uc_mcontext.gregs[REG_RBX];
  ptregs->r11 = ucontext->uc_mcontext.gregs[REG_R11];
  ptregs->r10 = ucontext->uc_mcontext.gregs[REG_R10];
  ptregs->r9 = ucontext->uc_mcontext.gregs[REG_R9];
  ptregs->r8 = ucontext->uc_mcontext.gregs[REG_R8];
  ptregs->rax = ucontext->uc_mcontext.gregs[REG_RAX];
  ptregs->rcx = ucontext->uc_mcontext.gregs[REG_RCX];
  ptregs->rdx = ucontext->uc_mcontext.gregs[REG_RDX];
  ptregs->rsi = ucontext->uc_mcontext.gregs[REG_RSI];
  ptregs->rdi = ucontext->uc_mcontext.gregs[REG_RDI];
  ptregs->rip = ucontext->uc_mcontext.gregs[REG_RIP];
  ptregs->eflags = ucontext->uc_mcontext.gregs[REG_EFL];
  ptregs->rsp = ucontext->uc_mcontext.gregs[REG_RSP];

  ptregs->cs = csgsfs.cs;
  ptregs->ss = csgsfs.ss;
  ptregs->fs = csgsfs.fs;
  ptregs->gs = csgsfs.gs;
}

static void ptregs_to_gregs(ucontext_t *ucontext,
                            struct user_regs_struct *ptregs) {
  union csgsfs csgsfs = {.csgsfs = ucontext->uc_mcontext.gregs[REG_CSGSFS]};

  ucontext->uc_mcontext.gregs[REG_R15] = ptregs->r15;
  ucontext->uc_mcontext.gregs[REG_R14] = ptregs->r14;
  ucontext->uc_mcontext.gregs[REG_R13] = ptregs->r13;
  ucontext->uc_mcontext.gregs[REG_R12] = ptregs->r12;
  ucontext->uc_mcontext.gregs[REG_RBP] = ptregs->rbp;
  ucontext->uc_mcontext.gregs[REG_RBX] = ptregs->rbx;
  ucontext->uc_mcontext.gregs[REG_R11] = ptregs->r11;
  ucontext->uc_mcontext.gregs[REG_R10] = ptregs->r10;
  ucontext->uc_mcontext.gregs[REG_R9] = ptregs->r9;
  ucontext->uc_mcontext.gregs[REG_R8] = ptregs->r8;
  ucontext->uc_mcontext.gregs[REG_RAX] = ptregs->rax;
  ucontext->uc_mcontext.gregs[REG_RCX] = ptregs->rcx;
  ucontext->uc_mcontext.gregs[REG_RDX] = ptregs->rdx;
  ucontext->uc_mcontext.gregs[REG_RSI] = ptregs->rsi;
  ucontext->uc_mcontext.gregs[REG_RDI] = ptregs->rdi;
  ucontext->uc_mcontext.gregs[REG_RIP] = ptregs->rip;
  ucontext->uc_mcontext.gregs[REG_EFL] = ptregs->eflags;
  ucontext->uc_mcontext.gregs[REG_RSP] = ptregs->rsp;

  csgsfs.cs = ptregs->cs;
  csgsfs.ss = ptregs->ss;
  csgsfs.fs = ptregs->fs;
  csgsfs.gs = ptregs->gs;

  ucontext->uc_mcontext.gregs[REG_CSGSFS] = csgsfs.csgsfs;
}

// get_fsbase writes the current thread's fsbase value to ptregs.
static uint64_t get_fsbase(void) {
  uint64_t fsbase;
  if (__export_arch_state.fsgsbase) {
    asm volatile("rdfsbase %0" : "=r"(fsbase));
  } else {
    int ret =
        __syscall(__NR_arch_prctl, ARCH_GET_FS, (long)&fsbase, 0, 0, 0, 0);
    if (ret) {
      panic(STUB_ERROR_ARCH_PRCTL, ret);
    }
  }
  return fsbase;
}

// set_fsbase sets the current thread's fsbase to the fsbase value in ptregs.
static void set_fsbase(uint64_t fsbase) {
  if (__export_arch_state.fsgsbase) {
    asm volatile("wrfsbase %0" : : "r"(fsbase) : "memory");
  } else {
    int ret = __syscall(__NR_arch_prctl, ARCH_SET_FS, fsbase, 0, 0, 0, 0);
    if (ret) {
      panic(STUB_ERROR_ARCH_PRCTL, ret);
    }
  }
}

// switch_context_amd64 is a wrapper of switch_context() which does checks
// specific to amd64.
struct thread_context *switch_context_amd64(
    struct sysmsg *sysmsg, struct thread_context *ctx,
    enum context_state new_context_state) {
  struct thread_context *old_ctx = sysmsg->context;

  for (;;) {
    ctx = switch_context(sysmsg, ctx, new_context_state);

    // After setting THREAD_STATE_NONE, syshandled can be interrupted by
    // SIGCHLD. In this case, we consider that the current context contains
    // the actual state and sighandler can take control on it.
    atomic_store(&sysmsg->state, THREAD_STATE_NONE);
    if (atomic_load(&ctx->interrupt) != 0) {
      atomic_store(&sysmsg->state, THREAD_STATE_PREP);
      // This context got interrupted while it was waiting in the queue.
      // Setup all the necessary bits to let the sentry know this context has
      // switched back because of it.
      atomic_store(&ctx->interrupt, 0);
      new_context_state = CONTEXT_STATE_FAULT;
      ctx->signo = SIGCHLD;
      ctx->siginfo.si_signo = SIGCHLD;
      ctx->ptregs.orig_rax = -1;
    } else {
      break;
    }
  }
  if (old_ctx != ctx || ctx->last_thread_id != sysmsg->thread_id) {
    ctx->fpstate_changed = 1;
  }
  return ctx;
}

static void prep_fpstate_for_sigframe(void *buf, uint32_t user_size,
                                      bool use_xsave);

void __export_sighandler(int signo, siginfo_t *siginfo, void *_ucontext) {
  ucontext_t *ucontext = _ucontext;
  void *sp = sysmsg_sp();
  struct sysmsg *sysmsg = sysmsg_addr(sp);

  if (sysmsg != sysmsg->self) panic(STUB_ERROR_BAD_SYSMSG, 0);
  int32_t thread_state = atomic_load(&sysmsg->state);
  if (thread_state == THREAD_STATE_INITIALIZING) {
    // This thread was interrupted before it even had a context.
    return;
  }

  struct thread_context *ctx = sysmsg->context;

  // If the current thread is in syshandler, an interrupt has to be postponed,
  // because sysmsg can't be changed.
  if (signo == SIGCHLD && thread_state != THREAD_STATE_NONE) {
    return;
  }

  // Handle faults in syshandler.
  if ((signo == SIGSEGV || signo == SIGBUS) && sysmsg->fault_jump) {
    ucontext->uc_mcontext.gregs[REG_RIP] += sysmsg->fault_jump;
    sysmsg->fault_jump = 0;
    return;
  }

  long fs_base = get_fsbase();

  ctx->signo = signo;
  ctx->siginfo = *siginfo;
  // syshandler sets THREAD_STATE_NONE right before it starts resuming a
  // context. It means the context contains the actual state, and the state of
  // the stub thread is incomplete.
  if (signo != SIGCHLD ||
      ucontext->uc_mcontext.gregs[REG_RIP] < __export_stub_start) {
    ctx->ptregs.fs_base = fs_base;
    gregs_to_ptregs(ucontext, &ctx->ptregs);
    memcpy(ctx->fpstate, (uint8_t *)ucontext->uc_mcontext.fpregs,
           __export_arch_state.fp_len);

    atomic_store(&ctx->fpstate_changed, 0);
  }

  enum context_state ctx_state = CONTEXT_STATE_INVALID;

  switch (signo) {
    case SIGSYS: {
      ctx_state = CONTEXT_STATE_SYSCALL;

      // Check whether this syscall can be replaced on a function call or not.
      // If a syscall instruction set is "mov sysno, %eax, syscall", it can be
      // replaced on a function call which works much faster.
      // Look at pkg/sentry/usertrap for more details.
      if (siginfo->si_arch == AUDIT_ARCH_X86_64) {
        uint8_t *rip = (uint8_t *)ctx->ptregs.rip;
        // FIXME(b/144063246): Even if all five bytes before the syscall
        // instruction match the "mov sysno, %eax" instruction, they can be a
        // part of a longer instruction. Here is not easy way to decode x86
        // instructions in reverse.
        uint64_t syscall_code_int[2];
        uint8_t *syscall_code = (uint8_t *)&syscall_code_int[0];

        // We need to receive 5 bytes before the syscall instruction, but they
        // are not aligned, so we can't read them atomically. Let's read them
        // twice. If the second copy will not contain the FAULT_OPCODE, this
        // will mean that the first copy is in the consistent state.
        for (int i = 0; i < 2; i++) {
          // fault_jump is set to the size of "mov (%rbx)" which is 3 bytes.
          atomic_store(&sysmsg->fault_jump, 3);
          asm volatile("movq (%1), %0\n"
                       : "=a"(syscall_code_int[i])
                       : "b"(rip - 8)
                       : "cc", "memory");
          atomic_store(&sysmsg->fault_jump, 0);
        }
        // The mov instruction is 5 bytes:  b8 <sysno, 4 bytes>.
        // The syscall instruction is 2 bytes: 0f 05.
        uint32_t sysno = *(uint32_t *)(syscall_code + 2);
        int need_trap = *(syscall_code + 6) == 0x0f &&  // syscall
                        *(syscall_code + 7) == 0x05 &&
                        *(syscall_code + 1) == 0xb8 &&  // mov sysno, %eax
                        sysno == siginfo->si_syscall &&
                        sysno == ctx->ptregs.rax;

        // Restart syscall if it has been patched by another thread.  When a
        // syscall instruction set is replaced on a function call, all threads
        // have to call it via the function call. Otherwise the syscall will not
        // be restarted properly if it will be interrupted by signal.
        syscall_code = (uint8_t *)&syscall_code_int[1];
        uint8_t syscall_opcode = *(syscall_code + 6);

        // A binary patch is built so that the first byte of the syscall
        // instruction is changed on the invalid instruction. If we meet this
        // case, this means that another thread has been patched this syscall
        // and we need to restart it.
        if (syscall_opcode == FAULT_OPCODE) {
          ucontext->uc_mcontext.gregs[REG_RIP] -= 7;
          return;
        }

        if (need_trap) {
          // This syscall can be replaced on the function call.
          ctx_state = CONTEXT_STATE_SYSCALL_NEED_TRAP;
        }
      }
      ctx->ptregs.orig_rax = ctx->ptregs.rax;
      ctx->ptregs.rax = (unsigned long)-ENOSYS;
      if (siginfo->si_arch != AUDIT_ARCH_X86_64)
        // gVisor doesn't support x32 system calls, so let's change the syscall
        // number so that it returns ENOSYS.
        ctx->ptregs.orig_rax += 0x86000000;
      break;
    }
    case SIGCHLD:
    case SIGSEGV:
    case SIGBUS:
    case SIGFPE:
    case SIGTRAP:
    case SIGILL:
      ctx->ptregs.orig_rax = -1;
      ctx_state = CONTEXT_STATE_FAULT;
      break;
    default:
      return;
  }

  ctx = switch_context_amd64(sysmsg, ctx, ctx_state);
  if (fs_base != ctx->ptregs.fs_base) {
    set_fsbase(ctx->ptregs.fs_base);
  }

  if (atomic_load(&ctx->fpstate_changed)) {
    prep_fpstate_for_sigframe(
        ctx->fpstate, __export_arch_state.fp_len,
        __export_arch_state.xsave_mode != XSAVE_MODE_FXSAVE);
    ucontext->uc_mcontext.fpregs = (void *)ctx->fpstate;
  }
  ptregs_to_gregs(ucontext, &ctx->ptregs);
}

void __syshandler() {
  struct sysmsg *sysmsg;
  asm volatile("movq %%gs:0, %0\n" : "=r"(sysmsg) : :);
  // SYSMSG_STATE_PREP is set to postpone interrupts. Look at
  // __export_sighandler for more details.
  int state = atomic_load(&sysmsg->state);
  if (state != THREAD_STATE_PREP) panic(STUB_ERROR_BAD_THREAD_STATE, 0);

  struct thread_context *ctx = sysmsg->context;

  enum context_state ctx_state = CONTEXT_STATE_SYSCALL_TRAP;
  ctx->signo = SIGSYS;
  ctx->siginfo.si_addr = 0;
  ctx->siginfo.si_syscall = ctx->ptregs.rax;
  ctx->ptregs.rax = (unsigned long)-ENOSYS;

  long fs_base = get_fsbase();
  ctx->ptregs.fs_base = fs_base;

  ctx = switch_context_amd64(sysmsg, ctx, ctx_state);
  // switch_context_amd64 changed sysmsg->state to THREAD_STATE_NONE, so we can
  // only resume the current process, all other actions are
  // prohibited after this point.

  if (fs_base != ctx->ptregs.fs_base) {
    set_fsbase(ctx->ptregs.fs_base);
  }
}

void __export_start(struct sysmsg *sysmsg, void *_ucontext) {
  init_new_thread();

  asm volatile("movq %%gs:0, %0\n" : "=r"(sysmsg) : :);
  if (sysmsg->self != sysmsg) {
    panic(STUB_ERROR_BAD_SYSMSG, 0);
  }

  struct thread_context *ctx =
      switch_context_amd64(sysmsg, NULL, CONTEXT_STATE_INVALID);

  restore_state(sysmsg, ctx, _ucontext);
}

// asm_restore_state is implemented in syshandler_amd64.S
void asm_restore_state();

// On x86 restore_state jumps straight to user code and does not return.
void restore_state(struct sysmsg *sysmsg, struct thread_context *ctx,
                   void *unused) {
  set_fsbase(ctx->ptregs.fs_base);
  asm_restore_state();
}

void verify_offsets_amd64() {
#define PTREGS_OFFSET offsetof(struct thread_context, ptregs)
  BUILD_BUG_ON(offsetof_thread_context_ptregs != PTREGS_OFFSET);
  BUILD_BUG_ON(offsetof_thread_context_ptregs_r15 !=
               (offsetof(struct user_regs_struct, r15) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_r14 !=
               (offsetof(struct user_regs_struct, r14) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_r13 !=
               (offsetof(struct user_regs_struct, r13) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_r12 !=
               (offsetof(struct user_regs_struct, r12) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_rbp !=
               (offsetof(struct user_regs_struct, rbp) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_rbx !=
               (offsetof(struct user_regs_struct, rbx) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_r11 !=
               (offsetof(struct user_regs_struct, r11) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_r10 !=
               (offsetof(struct user_regs_struct, r10) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_r9 !=
               (offsetof(struct user_regs_struct, r9) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_r8 !=
               (offsetof(struct user_regs_struct, r8) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_rax !=
               (offsetof(struct user_regs_struct, rax) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_rcx !=
               (offsetof(struct user_regs_struct, rcx) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_rdx !=
               (offsetof(struct user_regs_struct, rdx) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_rsi !=
               (offsetof(struct user_regs_struct, rsi) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_rdi !=
               (offsetof(struct user_regs_struct, rdi) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_orig_rax !=
               (offsetof(struct user_regs_struct, orig_rax) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_rip !=
               (offsetof(struct user_regs_struct, rip) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_cs !=
               (offsetof(struct user_regs_struct, cs) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_eflags !=
               (offsetof(struct user_regs_struct, eflags) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_rsp !=
               (offsetof(struct user_regs_struct, rsp) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_ss !=
               (offsetof(struct user_regs_struct, ss) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_fs_base !=
               (offsetof(struct user_regs_struct, fs_base) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_gs_base !=
               (offsetof(struct user_regs_struct, gs_base) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_ds !=
               (offsetof(struct user_regs_struct, ds) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_es !=
               (offsetof(struct user_regs_struct, es) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_fs !=
               (offsetof(struct user_regs_struct, fs) + PTREGS_OFFSET));
  BUILD_BUG_ON(offsetof_thread_context_ptregs_gs !=
               (offsetof(struct user_regs_struct, gs) + PTREGS_OFFSET));
#undef PTREGS_OFFSET
}

// asm/sigcontext.h conflicts with signal.h.
struct __fpx_sw_bytes {
  uint32_t magic1;
  uint32_t extended_size;
  uint64_t xfeatures;
  uint32_t xstate_size;
  uint32_t padding[7];
};

struct __fpstate {
  uint16_t cwd;
  uint16_t swd;
  uint16_t twd;
  uint16_t fop;
  uint64_t rip;
  uint64_t rdp;
  uint32_t mxcsr;
  uint32_t mxcsr_mask;
  uint32_t st_space[32];
  uint32_t xmm_space[64];
  uint32_t reserved2[12];
  struct __fpx_sw_bytes sw_reserved;
};

// The kernel expects to see some additional info in an FPU state. More details
// can be found in arch/x86/kernel/fpu/signal.c:check_xstate_in_sigframe.
static void prep_fpstate_for_sigframe(void *buf, uint32_t user_size,
                                      bool use_xsave) {
  struct __fpstate *fpstate = buf;
  struct __fpx_sw_bytes *sw_bytes = &fpstate->sw_reserved;

  sw_bytes->magic1 = FP_XSTATE_MAGIC1;
  sw_bytes->extended_size = user_size + FP_XSTATE_MAGIC2_SIZE;
  sw_bytes->xfeatures = ~(0ULL) ^ (XCR0_DISABLED_MASK);
  sw_bytes->xstate_size = user_size;
  *(uint32_t *)(buf + user_size) = use_xsave ? FP_XSTATE_MAGIC2 : 0;
}