1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build linux
// +build linux
// Package fdbased provides the implementation of data-link layer endpoints
// backed by boundary-preserving file descriptors (e.g., TUN devices,
// seqpacket/datagram sockets).
//
// FD based endpoints can be used in the networking stack by calling New() to
// create a new endpoint, and then passing it as an argument to
// Stack.CreateNIC().
//
// FD based endpoints can use more than one file descriptor to read incoming
// packets. If there are more than one FDs specified and the underlying FD is an
// AF_PACKET then the endpoint will enable FANOUT mode on the socket so that the
// host kernel will consistently hash the packets to the sockets. This ensures
// that packets for the same TCP streams are not reordered.
//
// Similarly if more than one FD's are specified where the underlying FD is not
// AF_PACKET then it's the caller's responsibility to ensure that all inbound
// packets on the descriptors are consistently 5 tuple hashed to one of the
// descriptors to prevent TCP reordering.
//
// Since netstack today does not compute 5 tuple hashes for outgoing packets we
// only use the first FD to write outbound packets. Once 5 tuple hashes for
// all outbound packets are available we will make use of all underlying FD's to
// write outbound packets.
package fdbased
import (
"fmt"
"runtime"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/buffer"
"gvisor.dev/gvisor/pkg/rawfile"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
// linkDispatcher reads packets from the link FD and dispatches them to the
// NetworkDispatcher.
type linkDispatcher interface {
Stop()
dispatch() (bool, tcpip.Error)
release()
}
// PacketDispatchMode are the various supported methods of receiving and
// dispatching packets from the underlying FD.
type PacketDispatchMode int
// BatchSize is the number of packets to write in each syscall. It is 47
// because when GVisorGSO is in use then a single 65KB TCP segment can get
// split into 46 segments of 1420 bytes and a single 216 byte segment.
const BatchSize = 47
const (
// Readv is the default dispatch mode and is the least performant of the
// dispatch options but the one that is supported by all underlying FD
// types.
Readv PacketDispatchMode = iota
// RecvMMsg enables use of recvmmsg() syscall instead of readv() to
// read inbound packets. This reduces # of syscalls needed to process
// packets.
//
// NOTE: recvmmsg() is only supported for sockets, so if the underlying
// FD is not a socket then the code will still fall back to the readv()
// path.
RecvMMsg
// PacketMMap enables use of PACKET_RX_RING to receive packets from the
// NIC. PacketMMap requires that the underlying FD be an AF_PACKET. The
// primary use-case for this is runsc which uses an AF_PACKET FD to
// receive packets from the veth device.
PacketMMap
)
func (p PacketDispatchMode) String() string {
switch p {
case Readv:
return "Readv"
case RecvMMsg:
return "RecvMMsg"
case PacketMMap:
return "PacketMMap"
default:
return fmt.Sprintf("unknown packet dispatch mode '%d'", p)
}
}
var _ stack.LinkEndpoint = (*endpoint)(nil)
var _ stack.GSOEndpoint = (*endpoint)(nil)
// +stateify savable
type fdInfo struct {
fd int
isSocket bool
}
// +stateify savable
type endpoint struct {
// fds is the set of file descriptors each identifying one inbound/outbound
// channel. The endpoint will dispatch from all inbound channels as well as
// hash outbound packets to specific channels based on the packet hash.
fds []fdInfo
// hdrSize specifies the link-layer header size. If set to 0, no header
// is added/removed; otherwise an ethernet header is used.
hdrSize int
// caps holds the endpoint capabilities.
caps stack.LinkEndpointCapabilities
// closed is a function to be called when the FD's peer (if any) closes
// its end of the communication pipe.
closed func(tcpip.Error)
inboundDispatchers []linkDispatcher
mu sync.RWMutex `state:"nosave"`
// +checklocks:mu
dispatcher stack.NetworkDispatcher
// packetDispatchMode controls the packet dispatcher used by this
// endpoint.
packetDispatchMode PacketDispatchMode
// gsoMaxSize is the maximum GSO packet size. It is zero if GSO is
// disabled.
gsoMaxSize uint32
// wg keeps track of running goroutines.
wg sync.WaitGroup
// gsoKind is the supported kind of GSO.
gsoKind stack.SupportedGSO
// maxSyscallHeaderBytes has the same meaning as
// Options.MaxSyscallHeaderBytes.
maxSyscallHeaderBytes uintptr
// writevMaxIovs is the maximum number of iovecs that may be passed to
// rawfile.NonBlockingWriteIovec, as possibly limited by
// maxSyscallHeaderBytes. (No analogous limit is defined for
// rawfile.NonBlockingSendMMsg, since in that case the maximum number of
// iovecs also depends on the number of mmsghdrs. Instead, if sendBatch
// encounters a packet whose iovec count is limited by
// maxSyscallHeaderBytes, it falls back to writing the packet using writev
// via WritePacket.)
writevMaxIovs int
// addr is the address of the endpoint.
//
// +checklocks:mu
addr tcpip.LinkAddress
// mtu (maximum transmission unit) is the maximum size of a packet.
// +checklocks:mu
mtu uint32
}
// Options specify the details about the fd-based endpoint to be created.
//
// +stateify savable
type Options struct {
// FDs is a set of FDs used to read/write packets.
FDs []int
// MTU is the mtu to use for this endpoint.
MTU uint32
// EthernetHeader if true, indicates that the endpoint should read/write
// ethernet frames instead of IP packets.
EthernetHeader bool
// ClosedFunc is a function to be called when an endpoint's peer (if
// any) closes its end of the communication pipe.
ClosedFunc func(tcpip.Error)
// Address is the link address for this endpoint. Only used if
// EthernetHeader is true.
Address tcpip.LinkAddress
// SaveRestore if true, indicates that this NIC capability set should
// include CapabilitySaveRestore
SaveRestore bool
// DisconnectOk if true, indicates that this NIC capability set should
// include CapabilityDisconnectOk.
DisconnectOk bool
// GSOMaxSize is the maximum GSO packet size. It is zero if GSO is
// disabled.
GSOMaxSize uint32
// GVisorGSOEnabled indicates whether Gvisor GSO is enabled or not.
GVisorGSOEnabled bool
// PacketDispatchMode specifies the type of inbound dispatcher to be
// used for this endpoint.
PacketDispatchMode PacketDispatchMode
// TXChecksumOffload if true, indicates that this endpoints capability
// set should include CapabilityTXChecksumOffload.
TXChecksumOffload bool
// RXChecksumOffload if true, indicates that this endpoints capability
// set should include CapabilityRXChecksumOffload.
RXChecksumOffload bool
// If MaxSyscallHeaderBytes is non-zero, it is the maximum number of bytes
// of struct iovec, msghdr, and mmsghdr that may be passed by each host
// system call.
MaxSyscallHeaderBytes int
// InterfaceIndex is the interface index of the underlying device.
InterfaceIndex int
// GRO enables generic receive offload.
GRO bool
// ProcessorsPerChannel is the number of goroutines used to handle packets
// from each FD.
ProcessorsPerChannel int
}
// fanoutID is used for AF_PACKET based endpoints to enable PACKET_FANOUT
// support in the host kernel. This allows us to use multiple FD's to receive
// from the same underlying NIC. The fanoutID needs to be the same for a given
// set of FD's that point to the same NIC. Trying to set the PACKET_FANOUT
// option for an FD with a fanoutID already in use by another FD for a different
// NIC will return an EINVAL.
//
// Since fanoutID must be unique within the network namespace, we start with
// the PID to avoid collisions. The only way to be sure of avoiding collisions
// is to run in a new network namespace.
var fanoutID atomicbitops.Int32 = atomicbitops.FromInt32(int32(unix.Getpid()))
// New creates a new fd-based endpoint.
//
// Makes fd non-blocking, but does not take ownership of fd, which must remain
// open for the lifetime of the returned endpoint (until after the endpoint has
// stopped being using and Wait returns).
func New(opts *Options) (stack.LinkEndpoint, error) {
caps := stack.LinkEndpointCapabilities(0)
if opts.RXChecksumOffload {
caps |= stack.CapabilityRXChecksumOffload
}
if opts.TXChecksumOffload {
caps |= stack.CapabilityTXChecksumOffload
}
hdrSize := 0
if opts.EthernetHeader {
hdrSize = header.EthernetMinimumSize
caps |= stack.CapabilityResolutionRequired
}
if opts.SaveRestore {
caps |= stack.CapabilitySaveRestore
}
if opts.DisconnectOk {
caps |= stack.CapabilityDisconnectOk
}
if len(opts.FDs) == 0 {
return nil, fmt.Errorf("opts.FD is empty, at least one FD must be specified")
}
if opts.MaxSyscallHeaderBytes < 0 {
return nil, fmt.Errorf("opts.MaxSyscallHeaderBytes is negative")
}
e := &endpoint{
mtu: opts.MTU,
caps: caps,
closed: opts.ClosedFunc,
addr: opts.Address,
hdrSize: hdrSize,
packetDispatchMode: opts.PacketDispatchMode,
maxSyscallHeaderBytes: uintptr(opts.MaxSyscallHeaderBytes),
writevMaxIovs: rawfile.MaxIovs,
}
if e.maxSyscallHeaderBytes != 0 {
if max := int(e.maxSyscallHeaderBytes / rawfile.SizeofIovec); max < e.writevMaxIovs {
e.writevMaxIovs = max
}
}
// Increment fanoutID to ensure that we don't re-use the same fanoutID
// for the next endpoint.
fid := fanoutID.Add(1)
// Create per channel dispatchers.
for _, fd := range opts.FDs {
if err := unix.SetNonblock(fd, true); err != nil {
return nil, fmt.Errorf("unix.SetNonblock(%v) failed: %v", fd, err)
}
isSocket, err := isSocketFD(fd)
if err != nil {
return nil, err
}
e.fds = append(e.fds, fdInfo{fd: fd, isSocket: isSocket})
if isSocket {
if opts.GSOMaxSize != 0 {
if opts.GVisorGSOEnabled {
e.gsoKind = stack.GVisorGSOSupported
} else {
e.gsoKind = stack.HostGSOSupported
}
e.gsoMaxSize = opts.GSOMaxSize
}
}
if opts.ProcessorsPerChannel == 0 {
opts.ProcessorsPerChannel = max(1, runtime.GOMAXPROCS(0)/len(opts.FDs))
}
inboundDispatcher, err := createInboundDispatcher(e, fd, isSocket, fid, opts)
if err != nil {
return nil, fmt.Errorf("createInboundDispatcher(...) = %v", err)
}
e.inboundDispatchers = append(e.inboundDispatchers, inboundDispatcher)
}
return e, nil
}
func createInboundDispatcher(e *endpoint, fd int, isSocket bool, fID int32, opts *Options) (linkDispatcher, error) {
// By default use the readv() dispatcher as it works with all kinds of
// FDs (tap/tun/unix domain sockets and af_packet).
inboundDispatcher, err := newReadVDispatcher(fd, e, opts)
if err != nil {
return nil, fmt.Errorf("newReadVDispatcher(%d, %+v) = %v", fd, e, err)
}
if isSocket {
sa, err := unix.Getsockname(fd)
if err != nil {
return nil, fmt.Errorf("unix.Getsockname(%d) = %v", fd, err)
}
switch sa.(type) {
case *unix.SockaddrLinklayer:
// Enable PACKET_FANOUT mode if the underlying socket is of type
// AF_PACKET. We do not enable PACKET_FANOUT_FLAG_DEFRAG as that will
// prevent gvisor from receiving fragmented packets and the host does the
// reassembly on our behalf before delivering the fragments. This makes it
// hard to test fragmentation reassembly code in Netstack.
//
// See: include/uapi/linux/if_packet.h (struct fanout_args).
//
// NOTE: We are using SetSockOptInt here even though the underlying
// option is actually a struct. The code follows the example in the
// kernel documentation as described at the link below:
//
// See: https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt
//
// This works out because the actual implementation for the option zero
// initializes the structure and will initialize the max_members field
// to a proper value if zero.
//
// See: https://github.com/torvalds/linux/blob/7acac4b3196caee5e21fb5ea53f8bc124e6a16fc/net/packet/af_packet.c#L3881
const fanoutType = unix.PACKET_FANOUT_HASH
fanoutArg := (int(fID) & 0xffff) | fanoutType<<16
if err := unix.SetsockoptInt(fd, unix.SOL_PACKET, unix.PACKET_FANOUT, fanoutArg); err != nil {
return nil, fmt.Errorf("failed to enable PACKET_FANOUT option: %v", err)
}
}
switch e.packetDispatchMode {
case PacketMMap:
inboundDispatcher, err = newPacketMMapDispatcher(fd, e, opts)
if err != nil {
return nil, fmt.Errorf("newPacketMMapDispatcher(%d, %+v) = %v", fd, e, err)
}
case RecvMMsg:
// If the provided FD is a socket then we optimize
// packet reads by using recvmmsg() instead of read() to
// read packets in a batch.
inboundDispatcher, err = newRecvMMsgDispatcher(fd, e, opts)
if err != nil {
return nil, fmt.Errorf("newRecvMMsgDispatcher(%d, %+v) = %v", fd, e, err)
}
case Readv:
default:
return nil, fmt.Errorf("unknown dispatch mode %d", e.packetDispatchMode)
}
}
return inboundDispatcher, nil
}
func isSocketFD(fd int) (bool, error) {
var stat unix.Stat_t
if err := unix.Fstat(fd, &stat); err != nil {
return false, fmt.Errorf("unix.Fstat(%v,...) failed: %v", fd, err)
}
return (stat.Mode & unix.S_IFSOCK) == unix.S_IFSOCK, nil
}
// Attach launches the goroutine that reads packets from the file descriptor and
// dispatches them via the provided dispatcher. If one is already attached,
// then nothing happens.
//
// Attach implements stack.LinkEndpoint.Attach.
func (e *endpoint) Attach(dispatcher stack.NetworkDispatcher) {
e.mu.Lock()
defer e.mu.Unlock()
// nil means the NIC is being removed.
if dispatcher == nil && e.dispatcher != nil {
for _, dispatcher := range e.inboundDispatchers {
dispatcher.Stop()
}
e.Wait()
e.dispatcher = nil
return
}
if dispatcher != nil && e.dispatcher == nil {
e.dispatcher = dispatcher
// Link endpoints are not savable. When transportation endpoints are
// saved, they stop sending outgoing packets and all incoming packets
// are rejected.
for i := range e.inboundDispatchers {
e.wg.Add(1)
go func(i int) { // S/R-SAFE: See above.
e.dispatchLoop(e.inboundDispatchers[i])
e.wg.Done()
}(i)
}
}
}
// IsAttached implements stack.LinkEndpoint.IsAttached.
func (e *endpoint) IsAttached() bool {
e.mu.RLock()
defer e.mu.RUnlock()
return e.dispatcher != nil
}
// MTU implements stack.LinkEndpoint.MTU.
func (e *endpoint) MTU() uint32 {
e.mu.RLock()
defer e.mu.RUnlock()
return e.mtu
}
// SetMTU implements stack.LinkEndpoint.SetMTU.
func (e *endpoint) SetMTU(mtu uint32) {
e.mu.Lock()
defer e.mu.Unlock()
e.mtu = mtu
}
// Capabilities implements stack.LinkEndpoint.Capabilities.
func (e *endpoint) Capabilities() stack.LinkEndpointCapabilities {
return e.caps
}
// MaxHeaderLength returns the maximum size of the link-layer header.
func (e *endpoint) MaxHeaderLength() uint16 {
return uint16(e.hdrSize)
}
// LinkAddress returns the link address of this endpoint.
func (e *endpoint) LinkAddress() tcpip.LinkAddress {
e.mu.RLock()
defer e.mu.RUnlock()
return e.addr
}
// SetLinkAddress implements stack.LinkEndpoint.SetLinkAddress.
func (e *endpoint) SetLinkAddress(addr tcpip.LinkAddress) {
e.mu.Lock()
defer e.mu.Unlock()
e.addr = addr
}
// Wait implements stack.LinkEndpoint.Wait. It waits for the endpoint to stop
// reading from its FD.
func (e *endpoint) Wait() {
e.wg.Wait()
}
// virtioNetHdr is declared in linux/virtio_net.h.
type virtioNetHdr struct {
flags uint8
gsoType uint8
hdrLen uint16
gsoSize uint16
csumStart uint16
csumOffset uint16
}
// marshal serializes h to a newly-allocated byte slice, in little-endian byte
// order.
//
// Note: Virtio v1.0 onwards specifies little-endian as the byte ordering used
// for general serialization. This makes it difficult to use go-marshal for
// virtio types, as go-marshal implicitly uses the native byte ordering.
func (h *virtioNetHdr) marshal() []byte {
buf := [virtioNetHdrSize]byte{
0: byte(h.flags),
1: byte(h.gsoType),
// Manually lay out the fields in little-endian byte order. Little endian =>
// least significant bit goes to the lower address.
2: byte(h.hdrLen),
3: byte(h.hdrLen >> 8),
4: byte(h.gsoSize),
5: byte(h.gsoSize >> 8),
6: byte(h.csumStart),
7: byte(h.csumStart >> 8),
8: byte(h.csumOffset),
9: byte(h.csumOffset >> 8),
}
return buf[:]
}
// These constants are declared in linux/virtio_net.h.
const (
_VIRTIO_NET_HDR_F_NEEDS_CSUM = 1
_VIRTIO_NET_HDR_GSO_TCPV4 = 1
_VIRTIO_NET_HDR_GSO_TCPV6 = 4
)
// AddHeader implements stack.LinkEndpoint.AddHeader.
func (e *endpoint) AddHeader(pkt *stack.PacketBuffer) {
if e.hdrSize > 0 {
// Add ethernet header if needed.
eth := header.Ethernet(pkt.LinkHeader().Push(header.EthernetMinimumSize))
eth.Encode(&header.EthernetFields{
SrcAddr: pkt.EgressRoute.LocalLinkAddress,
DstAddr: pkt.EgressRoute.RemoteLinkAddress,
Type: pkt.NetworkProtocolNumber,
})
}
}
func (e *endpoint) parseHeader(pkt *stack.PacketBuffer) bool {
_, ok := pkt.LinkHeader().Consume(e.hdrSize)
return ok
}
// ParseHeader implements stack.LinkEndpoint.ParseHeader.
func (e *endpoint) ParseHeader(pkt *stack.PacketBuffer) bool {
if e.hdrSize > 0 {
return e.parseHeader(pkt)
}
return true
}
// writePacket writes outbound packets to the file descriptor. If it is not
// currently writable, the packet is dropped.
func (e *endpoint) writePacket(pkt *stack.PacketBuffer) tcpip.Error {
fdInfo := e.fds[pkt.Hash%uint32(len(e.fds))]
fd := fdInfo.fd
var vnetHdrBuf []byte
if e.gsoKind == stack.HostGSOSupported {
vnetHdr := virtioNetHdr{}
if pkt.GSOOptions.Type != stack.GSONone {
vnetHdr.hdrLen = uint16(pkt.HeaderSize())
if pkt.GSOOptions.NeedsCsum {
vnetHdr.flags = _VIRTIO_NET_HDR_F_NEEDS_CSUM
vnetHdr.csumStart = header.EthernetMinimumSize + pkt.GSOOptions.L3HdrLen
vnetHdr.csumOffset = pkt.GSOOptions.CsumOffset
}
if uint16(pkt.Data().Size()) > pkt.GSOOptions.MSS {
switch pkt.GSOOptions.Type {
case stack.GSOTCPv4:
vnetHdr.gsoType = _VIRTIO_NET_HDR_GSO_TCPV4
case stack.GSOTCPv6:
vnetHdr.gsoType = _VIRTIO_NET_HDR_GSO_TCPV6
default:
panic(fmt.Sprintf("Unknown gso type: %v", pkt.GSOOptions.Type))
}
vnetHdr.gsoSize = pkt.GSOOptions.MSS
}
}
vnetHdrBuf = vnetHdr.marshal()
}
views := pkt.AsSlices()
numIovecs := len(views)
if len(vnetHdrBuf) != 0 {
numIovecs++
}
if numIovecs > e.writevMaxIovs {
numIovecs = e.writevMaxIovs
}
// Allocate small iovec arrays on the stack.
var iovecsArr [8]unix.Iovec
iovecs := iovecsArr[:0]
if numIovecs > len(iovecsArr) {
iovecs = make([]unix.Iovec, 0, numIovecs)
}
iovecs = rawfile.AppendIovecFromBytes(iovecs, vnetHdrBuf, numIovecs)
for _, v := range views {
iovecs = rawfile.AppendIovecFromBytes(iovecs, v, numIovecs)
}
if errno := rawfile.NonBlockingWriteIovec(fd, iovecs); errno != 0 {
return tcpip.TranslateErrno(errno)
}
return nil
}
func (e *endpoint) sendBatch(batchFDInfo fdInfo, pkts []*stack.PacketBuffer) (int, tcpip.Error) {
// Degrade to writePacket if underlying fd is not a socket.
if !batchFDInfo.isSocket {
var written int
var err tcpip.Error
for written < len(pkts) {
if err = e.writePacket(pkts[written]); err != nil {
break
}
written++
}
return written, err
}
// Send a batch of packets through batchFD.
batchFD := batchFDInfo.fd
mmsgHdrsStorage := make([]rawfile.MMsgHdr, 0, len(pkts))
packets := 0
for packets < len(pkts) {
mmsgHdrs := mmsgHdrsStorage
batch := pkts[packets:]
syscallHeaderBytes := uintptr(0)
for _, pkt := range batch {
var vnetHdrBuf []byte
if e.gsoKind == stack.HostGSOSupported {
vnetHdr := virtioNetHdr{}
if pkt.GSOOptions.Type != stack.GSONone {
vnetHdr.hdrLen = uint16(pkt.HeaderSize())
if pkt.GSOOptions.NeedsCsum {
vnetHdr.flags = _VIRTIO_NET_HDR_F_NEEDS_CSUM
vnetHdr.csumStart = header.EthernetMinimumSize + pkt.GSOOptions.L3HdrLen
vnetHdr.csumOffset = pkt.GSOOptions.CsumOffset
}
if pkt.GSOOptions.Type != stack.GSONone && uint16(pkt.Data().Size()) > pkt.GSOOptions.MSS {
switch pkt.GSOOptions.Type {
case stack.GSOTCPv4:
vnetHdr.gsoType = _VIRTIO_NET_HDR_GSO_TCPV4
case stack.GSOTCPv6:
vnetHdr.gsoType = _VIRTIO_NET_HDR_GSO_TCPV6
default:
panic(fmt.Sprintf("Unknown gso type: %v", pkt.GSOOptions.Type))
}
vnetHdr.gsoSize = pkt.GSOOptions.MSS
}
}
vnetHdrBuf = vnetHdr.marshal()
}
views, offset := pkt.AsViewList()
var skipped int
var view *buffer.View
for view = views.Front(); view != nil && offset >= view.Size(); view = view.Next() {
offset -= view.Size()
skipped++
}
// We've made it to the usable views.
numIovecs := views.Len() - skipped
if len(vnetHdrBuf) != 0 {
numIovecs++
}
if numIovecs > rawfile.MaxIovs {
numIovecs = rawfile.MaxIovs
}
if e.maxSyscallHeaderBytes != 0 {
syscallHeaderBytes += rawfile.SizeofMMsgHdr + uintptr(numIovecs)*rawfile.SizeofIovec
if syscallHeaderBytes > e.maxSyscallHeaderBytes {
// We can't fit this packet into this call to sendmmsg().
// We could potentially do so if we reduced numIovecs
// further, but this might incur considerable extra
// copying. Leave it to the next batch instead.
break
}
}
// We can't easily allocate iovec arrays on the stack here since
// they will escape this loop iteration via mmsgHdrs.
iovecs := make([]unix.Iovec, 0, numIovecs)
iovecs = rawfile.AppendIovecFromBytes(iovecs, vnetHdrBuf, numIovecs)
// At most one slice has a non-zero offset.
iovecs = rawfile.AppendIovecFromBytes(iovecs, view.AsSlice()[offset:], numIovecs)
for view = view.Next(); view != nil; view = view.Next() {
iovecs = rawfile.AppendIovecFromBytes(iovecs, view.AsSlice(), numIovecs)
}
var mmsgHdr rawfile.MMsgHdr
mmsgHdr.Msg.Iov = &iovecs[0]
mmsgHdr.Msg.SetIovlen(len(iovecs))
mmsgHdrs = append(mmsgHdrs, mmsgHdr)
}
if len(mmsgHdrs) == 0 {
// We can't fit batch[0] into a mmsghdr while staying under
// e.maxSyscallHeaderBytes. Use WritePacket, which will avoid the
// mmsghdr (by using writev) and re-buffer iovecs more aggressively
// if necessary (by using e.writevMaxIovs instead of
// rawfile.MaxIovs).
pkt := batch[0]
if err := e.writePacket(pkt); err != nil {
return packets, err
}
packets++
} else {
for len(mmsgHdrs) > 0 {
sent, errno := rawfile.NonBlockingSendMMsg(batchFD, mmsgHdrs)
if errno != 0 {
return packets, tcpip.TranslateErrno(errno)
}
packets += sent
mmsgHdrs = mmsgHdrs[sent:]
}
}
}
return packets, nil
}
// WritePackets writes outbound packets to the underlying file descriptors. If
// one is not currently writable, the packet is dropped.
//
// Being a batch API, each packet in pkts should have the following
// fields populated:
// - pkt.EgressRoute
// - pkt.GSOOptions
// - pkt.NetworkProtocolNumber
func (e *endpoint) WritePackets(pkts stack.PacketBufferList) (int, tcpip.Error) {
// Preallocate to avoid repeated reallocation as we append to batch.
batch := make([]*stack.PacketBuffer, 0, BatchSize)
batchFDInfo := fdInfo{fd: -1, isSocket: false}
sentPackets := 0
for _, pkt := range pkts.AsSlice() {
if len(batch) == 0 {
batchFDInfo = e.fds[pkt.Hash%uint32(len(e.fds))]
}
pktFDInfo := e.fds[pkt.Hash%uint32(len(e.fds))]
if sendNow := pktFDInfo != batchFDInfo; !sendNow {
batch = append(batch, pkt)
continue
}
n, err := e.sendBatch(batchFDInfo, batch)
sentPackets += n
if err != nil {
return sentPackets, err
}
batch = batch[:0]
batch = append(batch, pkt)
batchFDInfo = pktFDInfo
}
if len(batch) != 0 {
n, err := e.sendBatch(batchFDInfo, batch)
sentPackets += n
if err != nil {
return sentPackets, err
}
}
return sentPackets, nil
}
// InjectOutbound implements stack.InjectableEndpoint.InjectOutbound.
func (e *endpoint) InjectOutbound(dest tcpip.Address, packet *buffer.View) tcpip.Error {
if errno := rawfile.NonBlockingWrite(e.fds[0].fd, packet.AsSlice()); errno != 0 {
return tcpip.TranslateErrno(errno)
}
return nil
}
// dispatchLoop reads packets from the file descriptor in a loop and dispatches
// them to the network stack.
func (e *endpoint) dispatchLoop(inboundDispatcher linkDispatcher) tcpip.Error {
for {
cont, err := inboundDispatcher.dispatch()
if err != nil || !cont {
if e.closed != nil {
e.closed(err)
}
inboundDispatcher.release()
return err
}
}
}
// GSOMaxSize implements stack.GSOEndpoint.
func (e *endpoint) GSOMaxSize() uint32 {
return e.gsoMaxSize
}
// SupportedGSO implements stack.GSOEndpoint.
func (e *endpoint) SupportedGSO() stack.SupportedGSO {
return e.gsoKind
}
// ARPHardwareType implements stack.LinkEndpoint.ARPHardwareType.
func (e *endpoint) ARPHardwareType() header.ARPHardwareType {
if e.hdrSize > 0 {
return header.ARPHardwareEther
}
return header.ARPHardwareNone
}
// Close implements stack.LinkEndpoint.
func (e *endpoint) Close() {}
// SetOnCloseAction implements stack.LinkEndpoint.
func (*endpoint) SetOnCloseAction(func()) {}
// InjectableEndpoint is an injectable fd-based endpoint. The endpoint writes
// to the FD, but does not read from it. All reads come from injected packets.
//
// +satetify savable
type InjectableEndpoint struct {
endpoint
mu sync.RWMutex `state:"nosave"`
// +checklocks:mu
dispatcher stack.NetworkDispatcher
}
// Attach saves the stack network-layer dispatcher for use later when packets
// are injected.
func (e *InjectableEndpoint) Attach(dispatcher stack.NetworkDispatcher) {
e.mu.Lock()
defer e.mu.Unlock()
e.dispatcher = dispatcher
}
// InjectInbound injects an inbound packet. If the endpoint is not attached, the
// packet is not delivered.
func (e *InjectableEndpoint) InjectInbound(protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) {
e.mu.RLock()
d := e.dispatcher
e.mu.RUnlock()
if d != nil {
d.DeliverNetworkPacket(protocol, pkt)
}
}
// NewInjectable creates a new fd-based InjectableEndpoint.
func NewInjectable(fd int, mtu uint32, capabilities stack.LinkEndpointCapabilities) (*InjectableEndpoint, error) {
unix.SetNonblock(fd, true)
isSocket, err := isSocketFD(fd)
if err != nil {
return nil, err
}
return &InjectableEndpoint{endpoint: endpoint{
fds: []fdInfo{{fd: fd, isSocket: isSocket}},
mtu: mtu,
caps: capabilities,
writevMaxIovs: rawfile.MaxIovs,
}}, nil
}
|