1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package queue provides the implementation of transmit and receive queues
// based on shared memory ring buffers.
package queue
import (
"encoding/binary"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/tcpip/link/sharedmem/pipe"
)
const (
// Offsets within a posted buffer.
postedOffset = 0
postedSize = 8
postedRemainingInGroup = 12
postedUserData = 16
postedID = 24
sizeOfPostedBuffer = 32
// Offsets within a received packet header.
consumedPacketSize = 0
consumedPacketReserved = 4
sizeOfConsumedPacketHeader = 8
// Offsets within a consumed buffer.
consumedOffset = 0
consumedSize = 8
consumedUserData = 12
consumedID = 20
sizeOfConsumedBuffer = 28
// The following are the allowed states of the shared data area.
// EventFDUinitialized is the value stored at the start of the shared data
// region when it hasn't been initialized.
EventFDUninitialized = 0
// EventFDDisabled is the value stored at the start of the shared data region
// when notifications using eventFD has been disabled.
EventFDDisabled = 1
// EventFDEnabled is the value stored at the start of the shared data region
// when eventFD should be notified as the peer might be blocked waiting on
// notifications.
EventFDEnabled = 2
)
// RxBuffer is the descriptor of a receive buffer.
type RxBuffer struct {
Offset uint64
Size uint32
ID uint64
UserData uint64
}
// Rx is a receive queue. It is implemented with one tx and one rx pipe: the tx
// pipe is used to "post" buffers, while the rx pipe is used to receive packets
// whose contents have been written to previously posted buffers.
//
// This struct is thread-compatible.
type Rx struct {
tx pipe.Tx
rx pipe.Rx
sharedEventFDState *atomicbitops.Uint32
}
// Init initializes the receive queue with the given pipes, and shared state
// pointer -- the latter is used to enable/disable eventfd notifications.
func (r *Rx) Init(tx, rx []byte, sharedEventFDState *atomicbitops.Uint32) {
r.sharedEventFDState = sharedEventFDState
r.tx.Init(tx)
r.rx.Init(rx)
}
// EnableNotification updates the shared state such that the peer will notify
// the eventfd when there are packets to be dequeued.
func (r *Rx) EnableNotification() {
r.sharedEventFDState.Store(EventFDEnabled)
}
// DisableNotification updates the shared state such that the peer will not
// notify the eventfd.
func (r *Rx) DisableNotification() {
r.sharedEventFDState.Store(EventFDDisabled)
}
// PostedBuffersLimit returns the maximum number of buffers that can be posted
// before the tx queue fills up.
func (r *Rx) PostedBuffersLimit() uint64 {
return r.tx.Capacity(sizeOfPostedBuffer)
}
// PostBuffers makes the given buffers available for receiving data from the
// peer. Once they are posted, the peer is free to write to them and will
// eventually post them back for consumption.
func (r *Rx) PostBuffers(buffers []RxBuffer) bool {
for i := range buffers {
b := r.tx.Push(sizeOfPostedBuffer)
if b == nil {
r.tx.Abort()
return false
}
pb := &buffers[i]
binary.LittleEndian.PutUint64(b[postedOffset:], pb.Offset)
binary.LittleEndian.PutUint32(b[postedSize:], pb.Size)
binary.LittleEndian.PutUint32(b[postedRemainingInGroup:], 0)
binary.LittleEndian.PutUint64(b[postedUserData:], pb.UserData)
binary.LittleEndian.PutUint64(b[postedID:], pb.ID)
}
r.tx.Flush()
return true
}
// Dequeue receives buffers that have been previously posted by PostBuffers()
// and that have been filled by the peer and posted back.
//
// This is similar to append() in that new buffers are appended to "bufs", with
// reallocation only if "bufs" doesn't have enough capacity.
func (r *Rx) Dequeue(bufs []RxBuffer) ([]RxBuffer, uint32) {
for {
outBufs := bufs
// Pull the next descriptor from the rx pipe.
b := r.rx.Pull()
if b == nil {
return bufs, 0
}
if len(b) < sizeOfConsumedPacketHeader {
log.Warningf("Ignoring packet header: size (%v) is less than header size (%v)", len(b), sizeOfConsumedPacketHeader)
r.rx.Flush()
continue
}
totalDataSize := binary.LittleEndian.Uint32(b[consumedPacketSize:])
// Calculate the number of buffer descriptors and copy them
// over to the output.
count := (len(b) - sizeOfConsumedPacketHeader) / sizeOfConsumedBuffer
offset := sizeOfConsumedPacketHeader
buffersSize := uint32(0)
for i := count; i > 0; i-- {
s := binary.LittleEndian.Uint32(b[offset+consumedSize:])
buffersSize += s
if buffersSize < s {
// The buffer size overflows an unsigned 32-bit
// integer, so break out and force it to be
// ignored.
totalDataSize = 1
buffersSize = 0
break
}
outBufs = append(outBufs, RxBuffer{
Offset: binary.LittleEndian.Uint64(b[offset+consumedOffset:]),
Size: s,
ID: binary.LittleEndian.Uint64(b[offset+consumedID:]),
})
offset += sizeOfConsumedBuffer
}
r.rx.Flush()
if buffersSize < totalDataSize {
// The descriptor is corrupted, ignore it.
log.Warningf("Ignoring packet: actual data size (%v) less than expected size (%v)", buffersSize, totalDataSize)
continue
}
return outBufs, totalDataSize
}
}
// Bytes returns the byte slices on which the queue operates.
func (r *Rx) Bytes() (tx, rx []byte) {
return r.tx.Bytes(), r.rx.Bytes()
}
// DecodeRxBufferHeader decodes the header of a buffer posted on an rx queue.
func DecodeRxBufferHeader(b []byte) RxBuffer {
return RxBuffer{
Offset: binary.LittleEndian.Uint64(b[postedOffset:]),
Size: binary.LittleEndian.Uint32(b[postedSize:]),
ID: binary.LittleEndian.Uint64(b[postedID:]),
UserData: binary.LittleEndian.Uint64(b[postedUserData:]),
}
}
// RxCompletionSize returns the number of bytes needed to encode an rx
// completion containing "count" buffers.
func RxCompletionSize(count int) uint64 {
return sizeOfConsumedPacketHeader + uint64(count)*sizeOfConsumedBuffer
}
// EncodeRxCompletion encodes an rx completion header.
func EncodeRxCompletion(b []byte, size, reserved uint32) {
binary.LittleEndian.PutUint32(b[consumedPacketSize:], size)
binary.LittleEndian.PutUint32(b[consumedPacketReserved:], reserved)
}
// EncodeRxCompletionBuffer encodes the i-th rx completion buffer header.
func EncodeRxCompletionBuffer(b []byte, i int, rxb RxBuffer) {
b = b[RxCompletionSize(i):]
binary.LittleEndian.PutUint64(b[consumedOffset:], rxb.Offset)
binary.LittleEndian.PutUint32(b[consumedSize:], rxb.Size)
binary.LittleEndian.PutUint64(b[consumedUserData:], rxb.UserData)
binary.LittleEndian.PutUint64(b[consumedID:], rxb.ID)
}
|