1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package fragmentation contains the implementation of IP fragmentation.
// It is based on RFC 791, RFC 815 and RFC 8200.
package fragmentation
import (
"errors"
"fmt"
"time"
"gvisor.dev/gvisor/pkg/buffer"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
const (
// HighFragThreshold is the threshold at which we start trimming old
// fragmented packets. Linux uses a default value of 4 MB. See
// net.ipv4.ipfrag_high_thresh for more information.
HighFragThreshold = 4 << 20 // 4MB
// LowFragThreshold is the threshold we reach to when we start dropping
// older fragmented packets. It's important that we keep enough room for newer
// packets to be re-assembled. Hence, this needs to be lower than
// HighFragThreshold enough. Linux uses a default value of 3 MB. See
// net.ipv4.ipfrag_low_thresh for more information.
LowFragThreshold = 3 << 20 // 3MB
// minBlockSize is the minimum block size for fragments.
minBlockSize = 1
)
var (
// ErrInvalidArgs indicates to the caller that an invalid argument was
// provided.
ErrInvalidArgs = errors.New("invalid args")
// ErrFragmentOverlap indicates that, during reassembly, a fragment overlaps
// with another one.
ErrFragmentOverlap = errors.New("overlapping fragments")
// ErrFragmentConflict indicates that, during reassembly, some fragments are
// in conflict with one another.
ErrFragmentConflict = errors.New("conflicting fragments")
)
// FragmentID is the identifier for a fragment.
//
// +stateify savable
type FragmentID struct {
// Source is the source address of the fragment.
Source tcpip.Address
// Destination is the destination address of the fragment.
Destination tcpip.Address
// ID is the identification value of the fragment.
//
// This is a uint32 because IPv6 uses a 32-bit identification value.
ID uint32
// The protocol for the packet.
Protocol uint8
}
// Fragmentation is the main structure that other modules
// of the stack should use to implement IP Fragmentation.
//
// +stateify savable
type Fragmentation struct {
mu sync.Mutex `state:"nosave"`
highLimit int
lowLimit int
reassemblers map[FragmentID]*reassembler
rList reassemblerList
memSize int
timeout time.Duration
blockSize uint16
clock tcpip.Clock
releaseJob *tcpip.Job
timeoutHandler TimeoutHandler
}
// TimeoutHandler is consulted if a packet reassembly has timed out.
type TimeoutHandler interface {
// OnReassemblyTimeout will be called with the first fragment (or nil, if the
// first fragment has not been received) of a packet whose reassembly has
// timed out.
OnReassemblyTimeout(pkt *stack.PacketBuffer)
}
// NewFragmentation creates a new Fragmentation.
//
// blockSize specifies the fragment block size, in bytes.
//
// highMemoryLimit specifies the limit on the memory consumed
// by the fragments stored by Fragmentation (overhead of internal data-structures
// is not accounted). Fragments are dropped when the limit is reached.
//
// lowMemoryLimit specifies the limit on which we will reach by dropping
// fragments after reaching highMemoryLimit.
//
// reassemblingTimeout specifies the maximum time allowed to reassemble a packet.
// Fragments are lazily evicted only when a new a packet with an
// already existing fragmentation-id arrives after the timeout.
func NewFragmentation(blockSize uint16, highMemoryLimit, lowMemoryLimit int, reassemblingTimeout time.Duration, clock tcpip.Clock, timeoutHandler TimeoutHandler) *Fragmentation {
if lowMemoryLimit >= highMemoryLimit {
lowMemoryLimit = highMemoryLimit
}
if lowMemoryLimit < 0 {
lowMemoryLimit = 0
}
if blockSize < minBlockSize {
blockSize = minBlockSize
}
f := &Fragmentation{
reassemblers: make(map[FragmentID]*reassembler),
highLimit: highMemoryLimit,
lowLimit: lowMemoryLimit,
timeout: reassemblingTimeout,
blockSize: blockSize,
clock: clock,
timeoutHandler: timeoutHandler,
}
f.releaseJob = tcpip.NewJob(f.clock, &f.mu, f.releaseReassemblersLocked)
return f
}
// Process processes an incoming fragment belonging to an ID and returns a
// complete packet and its protocol number when all the packets belonging to
// that ID have been received.
//
// [first, last] is the range of the fragment bytes.
//
// first must be a multiple of the block size f is configured with. The size
// of the fragment data must be a multiple of the block size, unless there are
// no fragments following this fragment (more set to false).
//
// proto is the protocol number marked in the fragment being processed. It has
// to be given here outside of the FragmentID struct because IPv6 should not use
// the protocol to identify a fragment.
func (f *Fragmentation) Process(
id FragmentID, first, last uint16, more bool, proto uint8, pkt *stack.PacketBuffer) (
*stack.PacketBuffer, uint8, bool, error) {
if first > last {
return nil, 0, false, fmt.Errorf("first=%d is greater than last=%d: %w", first, last, ErrInvalidArgs)
}
if first%f.blockSize != 0 {
return nil, 0, false, fmt.Errorf("first=%d is not a multiple of block size=%d: %w", first, f.blockSize, ErrInvalidArgs)
}
fragmentSize := last - first + 1
if more && fragmentSize%f.blockSize != 0 {
return nil, 0, false, fmt.Errorf("fragment size=%d bytes is not a multiple of block size=%d on non-final fragment: %w", fragmentSize, f.blockSize, ErrInvalidArgs)
}
if l := pkt.Data().Size(); l != int(fragmentSize) {
return nil, 0, false, fmt.Errorf("got fragment size=%d bytes not equal to the expected fragment size=%d bytes (first=%d last=%d): %w", l, fragmentSize, first, last, ErrInvalidArgs)
}
f.mu.Lock()
if f.reassemblers == nil {
return nil, 0, false, fmt.Errorf("Release() called before fragmentation processing could finish")
}
r, ok := f.reassemblers[id]
if !ok {
r = newReassembler(id, f.clock)
f.reassemblers[id] = r
wasEmpty := f.rList.Empty()
f.rList.PushFront(r)
if wasEmpty {
// If we have just pushed a first reassembler into an empty list, we
// should kickstart the release job. The release job will keep
// rescheduling itself until the list becomes empty.
f.releaseReassemblersLocked()
}
}
f.mu.Unlock()
resPkt, firstFragmentProto, done, memConsumed, err := r.process(first, last, more, proto, pkt)
if err != nil {
// We probably got an invalid sequence of fragments. Just
// discard the reassembler and move on.
f.mu.Lock()
f.release(r, false /* timedOut */)
f.mu.Unlock()
return nil, 0, false, fmt.Errorf("fragmentation processing error: %w", err)
}
f.mu.Lock()
f.memSize += memConsumed
if done {
f.release(r, false /* timedOut */)
}
// Evict reassemblers if we are consuming more memory than highLimit until
// we reach lowLimit.
if f.memSize > f.highLimit {
for f.memSize > f.lowLimit {
tail := f.rList.Back()
if tail == nil {
break
}
f.release(tail, false /* timedOut */)
}
}
f.mu.Unlock()
return resPkt, firstFragmentProto, done, nil
}
// Release releases all underlying resources.
func (f *Fragmentation) Release() {
f.mu.Lock()
defer f.mu.Unlock()
for _, r := range f.reassemblers {
f.release(r, false /* timedOut */)
}
f.reassemblers = nil
}
func (f *Fragmentation) release(r *reassembler, timedOut bool) {
// Before releasing a fragment we need to check if r is already marked as done.
// Otherwise, we would delete it twice.
if r.checkDoneOrMark() {
return
}
delete(f.reassemblers, r.id)
f.rList.Remove(r)
f.memSize -= r.memSize
if f.memSize < 0 {
log.Warningf("memory counter < 0 (%d), this is an accounting bug that requires investigation", f.memSize)
f.memSize = 0
}
if h := f.timeoutHandler; timedOut && h != nil {
h.OnReassemblyTimeout(r.pkt)
}
if r.pkt != nil {
r.pkt.DecRef()
r.pkt = nil
}
for _, h := range r.holes {
if h.pkt != nil {
h.pkt.DecRef()
h.pkt = nil
}
}
r.holes = nil
}
// releaseReassemblersLocked releases already-expired reassemblers, then
// schedules the job to call back itself for the remaining reassemblers if
// any. This function must be called with f.mu locked.
func (f *Fragmentation) releaseReassemblersLocked() {
now := f.clock.NowMonotonic()
for {
// The reassembler at the end of the list is the oldest.
r := f.rList.Back()
if r == nil {
// The list is empty.
break
}
elapsed := now.Sub(r.createdAt)
if f.timeout > elapsed {
// If the oldest reassembler has not expired, schedule the release
// job so that this function is called back when it has expired.
f.releaseJob.Schedule(f.timeout - elapsed)
break
}
// If the oldest reassembler has already expired, release it.
f.release(r, true /* timedOut*/)
}
}
// PacketFragmenter is the book-keeping struct for packet fragmentation.
type PacketFragmenter struct {
transportHeader []byte
data buffer.Buffer
reserve int
fragmentPayloadLen int
fragmentCount int
currentFragment int
fragmentOffset int
}
// MakePacketFragmenter prepares the struct needed for packet fragmentation.
//
// pkt is the packet to be fragmented.
//
// fragmentPayloadLen is the maximum number of bytes of fragmentable data a fragment can
// have.
//
// reserve is the number of bytes that should be reserved for the headers in
// each generated fragment.
func MakePacketFragmenter(pkt *stack.PacketBuffer, fragmentPayloadLen uint32, reserve int) PacketFragmenter {
// As per RFC 8200 Section 4.5, some IPv6 extension headers should not be
// repeated in each fragment. However we do not currently support any header
// of that kind yet, so the following computation is valid for both IPv4 and
// IPv6.
// TODO(gvisor.dev/issue/3912): Once Authentication or ESP Headers are
// supported for outbound packets, the fragmentable data should not include
// these headers.
var fragmentableData buffer.Buffer
fragmentableData.Append(pkt.TransportHeader().View())
pktBuf := pkt.Data().ToBuffer()
fragmentableData.Merge(&pktBuf)
fragmentCount := (uint32(fragmentableData.Size()) + fragmentPayloadLen - 1) / fragmentPayloadLen
return PacketFragmenter{
data: fragmentableData,
reserve: reserve,
fragmentPayloadLen: int(fragmentPayloadLen),
fragmentCount: int(fragmentCount),
}
}
// BuildNextFragment returns a packet with the payload of the next fragment,
// along with the fragment's offset, the number of bytes copied and a boolean
// indicating if there are more fragments left or not. If this function is
// called again after it indicated that no more fragments were left, it will
// panic.
//
// Note that the returned packet will not have its network and link headers
// populated, but space for them will be reserved. The transport header will be
// stored in the packet's data.
func (pf *PacketFragmenter) BuildNextFragment() (*stack.PacketBuffer, int, int, bool) {
if pf.currentFragment >= pf.fragmentCount {
panic("BuildNextFragment should not be called again after the last fragment was returned")
}
fragPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{
ReserveHeaderBytes: pf.reserve,
})
// Copy data for the fragment.
copied := fragPkt.Data().ReadFrom(&pf.data, pf.fragmentPayloadLen)
offset := pf.fragmentOffset
pf.fragmentOffset += copied
pf.currentFragment++
more := pf.currentFragment != pf.fragmentCount
return fragPkt, offset, copied, more
}
// RemainingFragmentCount returns the number of fragments left to be built.
func (pf *PacketFragmenter) RemainingFragmentCount() int {
return pf.fragmentCount - pf.currentFragment
}
// Release frees resources owned by the packet fragmenter.
func (pf *PacketFragmenter) Release() {
pf.data.Release()
}
|