1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fragmentation
import (
"math"
"sort"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
// +stateify savable
type hole struct {
first uint16
last uint16
filled bool
final bool
// pkt is the fragment packet if hole is filled. We keep the whole pkt rather
// than the fragmented payload to prevent binding to specific buffer types.
pkt *stack.PacketBuffer
}
// +stateify savable
type reassembler struct {
reassemblerEntry
id FragmentID
memSize int
proto uint8
mu sync.Mutex `state:"nosave"`
holes []hole
filled int
done bool
createdAt tcpip.MonotonicTime
pkt *stack.PacketBuffer
}
func newReassembler(id FragmentID, clock tcpip.Clock) *reassembler {
r := &reassembler{
id: id,
createdAt: clock.NowMonotonic(),
}
r.holes = append(r.holes, hole{
first: 0,
last: math.MaxUint16,
filled: false,
final: true,
})
return r
}
func (r *reassembler) process(first, last uint16, more bool, proto uint8, pkt *stack.PacketBuffer) (*stack.PacketBuffer, uint8, bool, int, error) {
r.mu.Lock()
defer r.mu.Unlock()
if r.done {
// A concurrent goroutine might have already reassembled
// the packet and emptied the heap while this goroutine
// was waiting on the mutex. We don't have to do anything in this case.
return nil, 0, false, 0, nil
}
var holeFound bool
var memConsumed int
for i := range r.holes {
currentHole := &r.holes[i]
if last < currentHole.first || currentHole.last < first {
continue
}
// For IPv6, overlaps with an existing fragment are explicitly forbidden by
// RFC 8200 section 4.5:
// If any of the fragments being reassembled overlap with any other
// fragments being reassembled for the same packet, reassembly of that
// packet must be abandoned and all the fragments that have been received
// for that packet must be discarded, and no ICMP error messages should be
// sent.
//
// It is not explicitly forbidden for IPv4, but to keep parity with Linux we
// disallow it as well:
// https://github.com/torvalds/linux/blob/38525c6/net/ipv4/inet_fragment.c#L349
if first < currentHole.first || currentHole.last < last {
// Incoming fragment only partially fits in the free hole.
return nil, 0, false, 0, ErrFragmentOverlap
}
if !more {
if !currentHole.final || currentHole.filled && currentHole.last != last {
// We have another final fragment, which does not perfectly overlap.
return nil, 0, false, 0, ErrFragmentConflict
}
}
holeFound = true
if currentHole.filled {
// Incoming fragment is a duplicate.
continue
}
// We are populating the current hole with the payload and creating a new
// hole for any unfilled ranges on either end.
if first > currentHole.first {
r.holes = append(r.holes, hole{
first: currentHole.first,
last: first - 1,
filled: false,
final: false,
})
}
if last < currentHole.last && more {
r.holes = append(r.holes, hole{
first: last + 1,
last: currentHole.last,
filled: false,
final: currentHole.final,
})
currentHole.final = false
}
memConsumed = pkt.MemSize()
r.memSize += memConsumed
// Update the current hole to precisely match the incoming fragment.
r.holes[i] = hole{
first: first,
last: last,
filled: true,
final: currentHole.final,
pkt: pkt.IncRef(),
}
r.filled++
// For IPv6, it is possible to have different Protocol values between
// fragments of a packet (because, unlike IPv4, the Protocol is not used to
// identify a fragment). In this case, only the Protocol of the first
// fragment must be used as per RFC 8200 Section 4.5.
//
// TODO(gvisor.dev/issue/3648): During reassembly of an IPv6 packet, IP
// options received in the first fragment should be used - and they should
// override options from following fragments.
if first == 0 {
if r.pkt != nil {
r.pkt.DecRef()
}
r.pkt = pkt.IncRef()
r.proto = proto
}
break
}
if !holeFound {
// Incoming fragment is beyond end.
return nil, 0, false, 0, ErrFragmentConflict
}
// Check if all the holes have been filled and we are ready to reassemble.
if r.filled < len(r.holes) {
return nil, 0, false, memConsumed, nil
}
sort.Slice(r.holes, func(i, j int) bool {
return r.holes[i].first < r.holes[j].first
})
resPkt := r.holes[0].pkt.Clone()
for i := 1; i < len(r.holes); i++ {
stack.MergeFragment(resPkt, r.holes[i].pkt)
}
return resPkt, r.proto, true /* done */, memConsumed, nil
}
func (r *reassembler) checkDoneOrMark() bool {
r.mu.Lock()
prev := r.done
r.done = true
r.mu.Unlock()
return prev
}
|