1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"encoding/binary"
"fmt"
"math/rand"
"gvisor.dev/gvisor/pkg/sleep"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/waiter"
)
// epQueue is a queue of endpoints.
//
// +stateify savable
type epQueue struct {
mu sync.Mutex `state:"nosave"`
list endpointList
}
// enqueue adds e to the queue if the endpoint is not already on the queue.
func (q *epQueue) enqueue(e *Endpoint) {
q.mu.Lock()
defer q.mu.Unlock()
e.pendingProcessingMu.Lock()
defer e.pendingProcessingMu.Unlock()
if e.pendingProcessing {
return
}
q.list.PushBack(e)
e.pendingProcessing = true
}
// dequeue removes and returns the first element from the queue if available,
// returns nil otherwise.
func (q *epQueue) dequeue() *Endpoint {
q.mu.Lock()
if e := q.list.Front(); e != nil {
q.list.Remove(e)
e.pendingProcessingMu.Lock()
e.pendingProcessing = false
e.pendingProcessingMu.Unlock()
q.mu.Unlock()
return e
}
q.mu.Unlock()
return nil
}
// empty returns true if the queue is empty, false otherwise.
func (q *epQueue) empty() bool {
q.mu.Lock()
v := q.list.Empty()
q.mu.Unlock()
return v
}
// processor is responsible for processing packets queued to a tcp endpoint.
//
// +stateify savable
type processor struct {
epQ epQueue
sleeper sleep.Sleeper
// TODO(b/341946753): Restore them when netstack is savable.
newEndpointWaker sleep.Waker `state:"nosave"`
closeWaker sleep.Waker `state:"nosave"`
pauseWaker sleep.Waker `state:"nosave"`
pauseChan chan struct{} `state:"nosave"`
resumeChan chan struct{} `state:"nosave"`
}
func (p *processor) close() {
p.closeWaker.Assert()
}
func (p *processor) queueEndpoint(ep *Endpoint) {
// Queue an endpoint for processing by the processor goroutine.
p.epQ.enqueue(ep)
p.newEndpointWaker.Assert()
}
// deliverAccepted delivers a passively connected endpoint to the accept queue
// of its associated listening endpoint.
//
// +checklocks:ep.mu
func deliverAccepted(ep *Endpoint) bool {
lEP := ep.h.listenEP
lEP.acceptMu.Lock()
// Remove endpoint from list of pendingEndpoints as the handshake is now
// complete.
delete(lEP.acceptQueue.pendingEndpoints, ep)
// Deliver this endpoint to the listening socket's accept queue.
if lEP.acceptQueue.capacity == 0 {
lEP.acceptMu.Unlock()
return false
}
// NOTE: We always queue the endpoint and on purpose do not check if
// accept queue is full at this point. This is similar to linux because
// two racing incoming ACK's can both pass the acceptQueue.isFull check
// and proceed to ESTABLISHED state. In such a case its better to
// deliver both even if it temporarily exceeds the queue limit rather
// than drop a connection that is fully connected.
//
// For reference see:
// https://github.com/torvalds/linux/blob/169e77764adc041b1dacba84ea90516a895d43b2/net/ipv4/tcp_minisocks.c#L764
// https://github.com/torvalds/linux/blob/169e77764adc041b1dacba84ea90516a895d43b2/net/ipv4/tcp_ipv4.c#L1500
lEP.acceptQueue.endpoints.PushBack(ep)
lEP.acceptMu.Unlock()
ep.h.listenEP.waiterQueue.Notify(waiter.ReadableEvents)
return true
}
// handleConnecting is responsible for TCP processing for an endpoint in one of
// the connecting states.
func handleConnecting(ep *Endpoint) {
if !ep.TryLock() {
return
}
cleanup := func() {
ep.mu.Unlock()
ep.drainClosingSegmentQueue()
ep.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
}
if !ep.EndpointState().connecting() {
// If the endpoint has already transitioned out of a connecting
// stage then just return (only possible if it was closed or
// timed out by the time we got around to processing the wakeup.
ep.mu.Unlock()
return
}
if err := ep.h.processSegments(); err != nil { // +checklocksforce:ep.h.ep.mu
// handshake failed. clean up the tcp endpoint and handshake
// state.
if lEP := ep.h.listenEP; lEP != nil {
lEP.acceptMu.Lock()
delete(lEP.acceptQueue.pendingEndpoints, ep)
lEP.acceptMu.Unlock()
}
ep.handshakeFailed(err)
cleanup()
return
}
if ep.EndpointState() == StateEstablished && ep.h.listenEP != nil {
ep.isConnectNotified = true
ep.stack.Stats().TCP.PassiveConnectionOpenings.Increment()
if !deliverAccepted(ep) {
ep.resetConnectionLocked(&tcpip.ErrConnectionAborted{})
cleanup()
return
}
}
ep.mu.Unlock()
}
// handleConnected is responsible for TCP processing for an endpoint in one of
// the connected states(StateEstablished, StateFinWait1 etc.)
func handleConnected(ep *Endpoint) {
if !ep.TryLock() {
return
}
if !ep.EndpointState().connected() {
// If the endpoint has already transitioned out of a connected
// state then just return (only possible if it was closed or
// timed out by the time we got around to processing the wakeup.
ep.mu.Unlock()
return
}
// NOTE: We read this outside of e.mu lock which means that by the time
// we get to handleSegments the endpoint may not be in ESTABLISHED. But
// this should be fine as all normal shutdown states are handled by
// handleSegmentsLocked.
switch err := ep.handleSegmentsLocked(); {
case err != nil:
// Send any active resets if required.
ep.resetConnectionLocked(err)
fallthrough
case ep.EndpointState() == StateClose:
ep.mu.Unlock()
ep.drainClosingSegmentQueue()
ep.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
return
case ep.EndpointState() == StateTimeWait:
startTimeWait(ep)
}
ep.mu.Unlock()
}
// startTimeWait starts a new goroutine to handle TIME-WAIT.
//
// +checklocks:ep.mu
func startTimeWait(ep *Endpoint) {
// Disable close timer as we are now entering real TIME_WAIT.
if ep.finWait2Timer != nil {
ep.finWait2Timer.Stop()
}
// Wake up any waiters before we start TIME-WAIT.
ep.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
timeWaitDuration := ep.getTimeWaitDuration()
ep.timeWaitTimer = ep.stack.Clock().AfterFunc(timeWaitDuration, ep.timeWaitTimerExpired)
}
// handleTimeWait is responsible for TCP processing for an endpoint in TIME-WAIT
// state.
func handleTimeWait(ep *Endpoint) {
if !ep.TryLock() {
return
}
if ep.EndpointState() != StateTimeWait {
// If the endpoint has already transitioned out of a TIME-WAIT
// state then just return (only possible if it was closed or
// timed out by the time we got around to processing the wakeup.
ep.mu.Unlock()
return
}
extendTimeWait, reuseTW := ep.handleTimeWaitSegments()
if reuseTW != nil {
ep.transitionToStateCloseLocked()
ep.mu.Unlock()
ep.drainClosingSegmentQueue()
ep.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
reuseTW()
return
}
if extendTimeWait {
ep.timeWaitTimer.Reset(ep.getTimeWaitDuration())
}
ep.mu.Unlock()
}
// handleListen is responsible for TCP processing for an endpoint in LISTEN
// state.
func handleListen(ep *Endpoint) {
if !ep.TryLock() {
return
}
defer ep.mu.Unlock()
if ep.EndpointState() != StateListen {
// If the endpoint has already transitioned out of a LISTEN
// state then just return (only possible if it was closed or
// shutdown).
return
}
for i := 0; i < maxSegmentsPerWake; i++ {
s := ep.segmentQueue.dequeue()
if s == nil {
break
}
// TODO(gvisor.dev/issue/4690): Better handle errors instead of
// silently dropping.
_ = ep.handleListenSegment(ep.listenCtx, s)
s.DecRef()
}
}
// start runs the main loop for a processor which is responsible for all TCP
// processing for TCP endpoints.
func (p *processor) start(wg *sync.WaitGroup) {
defer wg.Done()
defer p.sleeper.Done()
for {
switch w := p.sleeper.Fetch(true); {
case w == &p.closeWaker:
return
case w == &p.pauseWaker:
if !p.epQ.empty() {
p.newEndpointWaker.Assert()
p.pauseWaker.Assert()
continue
} else {
p.pauseChan <- struct{}{}
<-p.resumeChan
}
case w == &p.newEndpointWaker:
for {
ep := p.epQ.dequeue()
if ep == nil {
break
}
if ep.segmentQueue.empty() {
continue
}
switch state := ep.EndpointState(); {
case state.connecting():
handleConnecting(ep)
case state.connected() && state != StateTimeWait:
handleConnected(ep)
case state == StateTimeWait:
handleTimeWait(ep)
case state == StateListen:
handleListen(ep)
case state == StateError || state == StateClose:
// Try to redeliver any still queued
// packets to another endpoint or send a
// RST if it can't be delivered.
ep.mu.Lock()
if st := ep.EndpointState(); st == StateError || st == StateClose {
ep.drainClosingSegmentQueue()
}
ep.mu.Unlock()
default:
panic(fmt.Sprintf("unexpected tcp state in processor: %v", state))
}
// If there are more segments to process and the
// endpoint lock is not held by user then
// requeue this endpoint for processing.
if !ep.segmentQueue.empty() && !ep.isOwnedByUser() {
p.epQ.enqueue(ep)
}
}
}
}
}
// pause pauses the processor loop.
func (p *processor) pause() chan struct{} {
p.pauseWaker.Assert()
return p.pauseChan
}
// resume resumes a previously paused loop.
//
// Precondition: Pause must have been called previously.
func (p *processor) resume() {
p.resumeChan <- struct{}{}
}
// dispatcher manages a pool of TCP endpoint processors which are responsible
// for the processing of inbound segments. This fixed pool of processor
// goroutines do full tcp processing. The processor is selected based on the
// hash of the endpoint id to ensure that delivery for the same endpoint happens
// in-order.
//
// +stateify savable
type dispatcher struct {
processors []processor
wg sync.WaitGroup `state:"nosave"`
hasher jenkinsHasher
mu sync.Mutex `state:"nosave"`
// +checklocks:mu
paused bool
// +checklocks:mu
closed bool
}
// init initializes a dispatcher and starts the main loop for all the processors
// owned by this dispatcher.
func (d *dispatcher) init(rng *rand.Rand, nProcessors int) {
d.close()
d.wait()
d.mu.Lock()
defer d.mu.Unlock()
d.closed = false
d.processors = make([]processor, nProcessors)
d.hasher = jenkinsHasher{seed: rng.Uint32()}
for i := range d.processors {
p := &d.processors[i]
p.sleeper.AddWaker(&p.newEndpointWaker)
p.sleeper.AddWaker(&p.closeWaker)
p.sleeper.AddWaker(&p.pauseWaker)
p.pauseChan = make(chan struct{})
p.resumeChan = make(chan struct{})
d.wg.Add(1)
// NB: sleeper-waker registration must happen synchronously to avoid races
// with `close`. It's possible to pull all this logic into `start`, but
// that results in a heap-allocated function literal.
go p.start(&d.wg)
}
}
// close closes a dispatcher and its processors.
func (d *dispatcher) close() {
d.mu.Lock()
d.closed = true
d.mu.Unlock()
for i := range d.processors {
d.processors[i].close()
}
}
// wait waits for all processor goroutines to end.
func (d *dispatcher) wait() {
d.wg.Wait()
}
// queuePacket queues an incoming packet to the matching tcp endpoint and
// also queues the endpoint to a processor queue for processing.
func (d *dispatcher) queuePacket(stackEP stack.TransportEndpoint, id stack.TransportEndpointID, clock tcpip.Clock, pkt *stack.PacketBuffer) {
d.mu.Lock()
closed := d.closed
d.mu.Unlock()
if closed {
return
}
ep := stackEP.(*Endpoint)
s, err := newIncomingSegment(id, clock, pkt)
if err != nil {
ep.stack.Stats().TCP.InvalidSegmentsReceived.Increment()
ep.stats.ReceiveErrors.MalformedPacketsReceived.Increment()
return
}
defer s.DecRef()
if !s.csumValid {
ep.stack.Stats().TCP.ChecksumErrors.Increment()
ep.stats.ReceiveErrors.ChecksumErrors.Increment()
return
}
ep.stack.Stats().TCP.ValidSegmentsReceived.Increment()
ep.stats.SegmentsReceived.Increment()
if (s.flags & header.TCPFlagRst) != 0 {
ep.stack.Stats().TCP.ResetsReceived.Increment()
}
if !ep.enqueueSegment(s) {
return
}
// Only wakeup the processor if endpoint lock is not held by a user
// goroutine as endpoint.UnlockUser will wake up the processor if the
// segment queue is not empty.
if !ep.isOwnedByUser() {
d.selectProcessor(id).queueEndpoint(ep)
}
}
// selectProcessor uses a hash of the transport endpoint ID to queue the
// endpoint to a specific processor. This is required to main TCP ordering as
// queueing the same endpoint to multiple processors can *potentially* result in
// out of order processing of incoming segments. It also ensures that a dispatcher
// evenly loads the processor goroutines.
func (d *dispatcher) selectProcessor(id stack.TransportEndpointID) *processor {
return &d.processors[d.hasher.hash(id)%uint32(len(d.processors))]
}
// pause pauses a dispatcher and all its processor goroutines.
func (d *dispatcher) pause() {
d.mu.Lock()
d.paused = true
d.mu.Unlock()
for i := range d.processors {
<-d.processors[i].pause()
}
}
// resume resumes a previously paused dispatcher and its processor goroutines.
// Calling resume on a dispatcher that was never paused is a no-op.
func (d *dispatcher) resume() {
d.mu.Lock()
if !d.paused {
// If this was a restore run the stack is a new instance and
// it was never paused, so just return as there is nothing to
// resume.
d.mu.Unlock()
return
}
d.paused = false
d.mu.Unlock()
for i := range d.processors {
d.processors[i].resume()
}
}
// jenkinsHasher contains state needed to for a jenkins hash.
//
// +stateify savable
type jenkinsHasher struct {
seed uint32
}
// hash hashes the provided TransportEndpointID using the jenkins hash
// algorithm.
func (j jenkinsHasher) hash(id stack.TransportEndpointID) uint32 {
var payload [4]byte
binary.LittleEndian.PutUint16(payload[0:], id.LocalPort)
binary.LittleEndian.PutUint16(payload[2:], id.RemotePort)
h := jenkins.Sum32(j.seed)
h.Write(payload[:])
h.Write(id.LocalAddress.AsSlice())
h.Write(id.RemoteAddress.AsSlice())
return h.Sum32()
}
|