1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package checklocks
import (
"fmt"
"go/token"
"go/types"
"strings"
"sync/atomic"
"golang.org/x/tools/go/ssa"
)
// lockInfo describes a held lock.
type lockInfo struct {
exclusive bool
object types.Object
}
// lockState tracks the locking state and aliases.
type lockState struct {
// lockedMutexes is used to track which mutexes in a given struct are
// currently locked. Note that most of the heavy lifting is done by
// valueAndObject below, which maps to specific structure fields, etc.
//
// The value indicates whether this is an exclusive lock.
lockedMutexes map[string]lockInfo
// stored stores values that have been stored in memory, bound to
// FreeVars or passed as Parameterse.
stored map[ssa.Value]ssa.Value
// used is a temporary map, used only for valueAndObject. It prevents
// multiple use of the same memory location.
used map[ssa.Value]struct{}
// defers are the stack of defers that have been pushed.
defers []*ssa.Defer
// refs indicates the number of references on this structure. If it's
// greater than one, we will do copy-on-write.
refs *int32
}
// newLockState makes a new lockState.
func newLockState() *lockState {
refs := int32(1) // Not shared.
return &lockState{
lockedMutexes: make(map[string]lockInfo),
used: make(map[ssa.Value]struct{}),
stored: make(map[ssa.Value]ssa.Value),
defers: make([]*ssa.Defer, 0),
refs: &refs,
}
}
// fork forks the locking state. When a lockState is forked, any modifications
// will cause maps to be copied.
func (l *lockState) fork() *lockState {
if l == nil {
return newLockState()
}
atomic.AddInt32(l.refs, 1)
return &lockState{
lockedMutexes: l.lockedMutexes,
used: make(map[ssa.Value]struct{}),
stored: l.stored,
defers: l.defers,
refs: l.refs,
}
}
// modify indicates that this state will be modified.
func (l *lockState) modify() {
if atomic.LoadInt32(l.refs) > 1 {
// Copy the lockedMutexes.
lm := make(map[string]lockInfo)
for k, v := range l.lockedMutexes {
lm[k] = v
}
l.lockedMutexes = lm
// Copy the stored values.
s := make(map[ssa.Value]ssa.Value)
for k, v := range l.stored {
s[k] = v
}
l.stored = s
// Reset the used values.
clear(l.used)
// Copy the defers.
ds := make([]*ssa.Defer, len(l.defers))
copy(ds, l.defers)
l.defers = ds
// Drop our reference.
atomic.AddInt32(l.refs, -1)
newRefs := int32(1) // Not shared.
l.refs = &newRefs
}
}
// isHeld indicates whether the field is held is not.
//
// Precondition: rv must be valid.
func (l *lockState) isHeld(rv resolvedValue, exclusiveRequired bool) (string, bool) {
if !rv.valid() {
panic("invalid resolvedValue passed to isHeld")
}
s, _ := rv.valueAndObject(l)
info, ok := l.lockedMutexes[s]
if !ok {
return s, false
}
// Accept a weaker lock if exclusiveRequired is false.
if exclusiveRequired && !info.exclusive {
return s, false
}
return s, true
}
// lockField locks the given field.
//
// If false is returned, the field was already locked.
//
// Precondition: rv must be valid.
func (l *lockState) lockField(rv resolvedValue, exclusive bool) (string, bool) {
if !rv.valid() {
panic("invalid resolvedValue passed to isHeld")
}
s, obj := rv.valueAndObject(l)
if _, ok := l.lockedMutexes[s]; ok {
return s, false
}
l.modify()
l.lockedMutexes[s] = lockInfo{
exclusive: exclusive,
object: obj,
}
return s, true
}
// unlockField unlocks the given field.
//
// If false is returned, the field was not locked.
//
// Precondition: rv must be valid.
func (l *lockState) unlockField(rv resolvedValue, exclusive bool) (string, bool) {
if !rv.valid() {
panic("invalid resolvedValue passed to isHeld")
}
s, _ := rv.valueAndObject(l)
info, ok := l.lockedMutexes[s]
if !ok {
return s, false
}
if info.exclusive != exclusive {
return s, false
}
l.modify()
delete(l.lockedMutexes, s)
return s, true
}
// downgradeField downgrades the given field.
//
// If false was returned, the field was not downgraded.
//
// Precondition: rv must be valid.
func (l *lockState) downgradeField(rv resolvedValue) (string, bool) {
if !rv.valid() {
panic("invalid resolvedValue passed to isHeld")
}
s, _ := rv.valueAndObject(l)
info, ok := l.lockedMutexes[s]
if !ok {
return s, false
}
if !info.exclusive {
return s, false
}
l.modify()
info.exclusive = false
l.lockedMutexes[s] = info // Downgraded.
return s, true
}
// store records an alias.
func (l *lockState) store(addr ssa.Value, v ssa.Value) {
l.modify()
l.stored[addr] = v
}
// isSubset indicates other holds all the locks held by l.
func (l *lockState) isSubset(other *lockState) bool {
for k, info := range l.lockedMutexes {
otherInfo, otherOk := other.lockedMutexes[k]
if !otherOk {
return false
}
// Accept weaker locks as a subset.
if info.exclusive && !otherInfo.exclusive {
return false
}
}
return true
}
// count indicates the number of locks held.
func (l *lockState) count() int {
return len(l.lockedMutexes)
}
// isCompatible returns true if the states are compatible.
func (l *lockState) isCompatible(other *lockState) bool {
return l.isSubset(other) && other.isSubset(l)
}
// elemType is a type that implements the Elem function.
type elemType interface {
Elem() types.Type
}
// valueAndObject returns a string for a given value, along with a source level
// object (if available and relevant).
//
// This decomposes the value into the simplest possible representation in terms
// of parameters, free variables and globals. During resolution, stored values
// may be transferred, as well as bound free variables.
//
// Nil may not be passed here.
func (l *lockState) valueAndObject(v ssa.Value) (string, types.Object) {
switch x := v.(type) {
case *ssa.Parameter:
// Was this provided as a paramter for a local anonymous
// function invocation?
v, ok := l.stored[x]
if ok {
return l.valueAndObject(v)
}
return fmt.Sprintf("{param:%s}", x.Name()), x.Object()
case *ssa.Global:
return fmt.Sprintf("{global:%s}", x.Name()), x.Object()
case *ssa.FreeVar:
// Attempt to resolve this, in case we are being invoked in a
// scope where all the variables are bound.
v, ok := l.stored[x]
if ok {
// The FreeVar is typically bound to a location, so we
// check what's been stored there. Note that the second
// may map to the same FreeVar, which we can check.
stored, ok := l.stored[v]
if ok {
return l.valueAndObject(stored)
}
}
// FreeVar does not have a corresponding source-level object
// that we can return here.
return fmt.Sprintf("{freevar:%s}", x.Name()), nil
case *ssa.Convert:
// Just disregard conversion.
return l.valueAndObject(x.X)
case *ssa.ChangeType:
// Ditto, disregard.
return l.valueAndObject(x.X)
case *ssa.UnOp:
if x.Op != token.MUL {
break
}
// Is this loading a free variable? If yes, then this can be
// resolved in the original isAlias function.
if fv, ok := x.X.(*ssa.FreeVar); ok {
return l.valueAndObject(fv)
}
// Should be try to resolve via a memory address? This needs to
// be done since a memory location can hold its own value.
if _, ok := l.used[x.X]; !ok {
// Check if we know what the accessed location holds.
// This is used to disambiguate memory locations.
v, ok := l.stored[x.X]
if ok {
l.used[x.X] = struct{}{}
defer func() { delete(l.used, x.X) }()
return l.valueAndObject(v)
}
}
// x.X.Type is pointer. We must construct this type
// dynamically, since the ssa.Value could be synthetic.
s, obj := l.valueAndObject(x.X)
return fmt.Sprintf("*(%s)", s), obj
case *ssa.Field:
structType, ok := resolveStruct(x.X.Type())
if !ok {
// This should not happen.
panic(fmt.Sprintf("structType not available for struct: %#v", x.X))
}
fieldObj := structType.Field(x.Field)
s, _ := l.valueAndObject(x.X)
return fmt.Sprintf("%s.%s", s, fieldObj.Name()), fieldObj
case *ssa.FieldAddr:
structType, ok := resolveStruct(x.X.Type())
if !ok {
// This should not happen.
panic(fmt.Sprintf("structType not available for struct: %#v", x.X))
}
fieldObj := structType.Field(x.Field)
s, _ := l.valueAndObject(x.X)
return fmt.Sprintf("&(%s.%s)", s, fieldObj.Name()), fieldObj
case *ssa.Index:
s, _ := l.valueAndObject(x.X)
i, _ := l.valueAndObject(x.Index)
return fmt.Sprintf("%s[%s]", s, i), nil
case *ssa.IndexAddr:
s, _ := l.valueAndObject(x.X)
i, _ := l.valueAndObject(x.Index)
return fmt.Sprintf("&(%s[%s])", s, i), nil
case *ssa.Lookup:
s, _ := l.valueAndObject(x.X)
i, _ := l.valueAndObject(x.Index)
return fmt.Sprintf("%s[%s]", s, i), nil
case *ssa.Extract:
s, _ := l.valueAndObject(x.Tuple)
return fmt.Sprintf("%s[%d]", s, x.Index), nil
}
// In the case of any other type (e.g. this may be an alloc, a return
// value, etc.), just return the literal pointer value to the Value.
// This will be unique within the ssa graph, and so if two values are
// equal, they are from the same type.
return fmt.Sprintf("{%T:%p}", v, v), nil
}
// String returns the full lock state.
func (l *lockState) String() string {
if l.count() == 0 {
return "no locks held"
}
keys := make([]string, 0, len(l.lockedMutexes))
for k, info := range l.lockedMutexes {
// Include the exclusive status of each lock.
keys = append(keys, fmt.Sprintf("%s %s", k, exclusiveStr(info.exclusive)))
}
return strings.Join(keys, ",")
}
// pushDefer pushes a defer onto the stack.
func (l *lockState) pushDefer(d *ssa.Defer) {
l.modify()
l.defers = append(l.defers, d)
}
// popDefer pops a defer from the stack.
func (l *lockState) popDefer() *ssa.Defer {
// Does not technically modify the underlying slice.
count := len(l.defers)
if count == 0 {
return nil
}
d := l.defers[count-1]
l.defers = l.defers[:count-1]
return d
}
|